virtualx-engine/thirdparty/embree/common/sys/sysinfo.cpp
Rémi Verschelde a20aabf84a
Web: Fix side module build with Embree
Using `EM_ASM` here would cause this error in template builds:
```
EM_ASM is not supported in side modules
```
We use our own method for this since it already handles this properly.
2022-12-09 08:02:03 +01:00

692 lines
24 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "sysinfo.h"
#include "intrinsics.h"
#include "string.h"
#include "ref.h"
#if defined(__FREEBSD__)
#include <sys/cpuset.h>
#include <pthread_np.h>
typedef cpuset_t cpu_set_t;
#endif
////////////////////////////////////////////////////////////////////////////////
/// All Platforms
////////////////////////////////////////////////////////////////////////////////
namespace embree
{
NullTy null;
std::string getPlatformName()
{
#if defined(__ANDROID__) && !defined(__64BIT__)
return "Android (32bit)";
#elif defined(__ANDROID__) && defined(__64BIT__)
return "Android (64bit)";
#elif defined(__LINUX__) && !defined(__64BIT__)
return "Linux (32bit)";
#elif defined(__LINUX__) && defined(__64BIT__)
return "Linux (64bit)";
#elif defined(__FREEBSD__) && !defined(__64BIT__)
return "FreeBSD (32bit)";
#elif defined(__FREEBSD__) && defined(__64BIT__)
return "FreeBSD (64bit)";
#elif defined(__CYGWIN__) && !defined(__64BIT__)
return "Cygwin (32bit)";
#elif defined(__CYGWIN__) && defined(__64BIT__)
return "Cygwin (64bit)";
#elif defined(__WIN32__) && !defined(__64BIT__)
return "Windows (32bit)";
#elif defined(__WIN32__) && defined(__64BIT__)
return "Windows (64bit)";
#elif defined(__MACOSX__) && !defined(__64BIT__)
return "Mac OS X (32bit)";
#elif defined(__MACOSX__) && defined(__64BIT__)
return "Mac OS X (64bit)";
#elif defined(__UNIX__) && !defined(__64BIT__)
return "Unix (32bit)";
#elif defined(__UNIX__) && defined(__64BIT__)
return "Unix (64bit)";
#else
return "Unknown";
#endif
}
std::string getCompilerName()
{
#if defined(__INTEL_COMPILER)
int icc_mayor = __INTEL_COMPILER / 100 % 100;
int icc_minor = __INTEL_COMPILER % 100;
std::string version = "Intel Compiler ";
version += toString(icc_mayor);
version += "." + toString(icc_minor);
#if defined(__INTEL_COMPILER_UPDATE)
version += "." + toString(__INTEL_COMPILER_UPDATE);
#endif
return version;
#elif defined(__clang__)
return "CLANG " __clang_version__;
#elif defined (__GNUC__)
return "GCC " __VERSION__;
#elif defined(_MSC_VER)
std::string version = toString(_MSC_FULL_VER);
version.insert(4,".");
version.insert(9,".");
version.insert(2,".");
return "Visual C++ Compiler " + version;
#else
return "Unknown Compiler";
#endif
}
std::string getCPUVendor()
{
#if defined(__X86_ASM__)
int cpuinfo[4];
__cpuid (cpuinfo, 0);
int name[4];
name[0] = cpuinfo[1];
name[1] = cpuinfo[3];
name[2] = cpuinfo[2];
name[3] = 0;
return (char*)name;
#elif defined(__ARM_NEON)
return "ARM";
#else
return "Unknown";
#endif
}
CPU getCPUModel()
{
#if defined(__X86_ASM__)
if (getCPUVendor() != "GenuineIntel")
return CPU::UNKNOWN;
int out[4];
__cpuid(out, 0);
if (out[0] < 1) return CPU::UNKNOWN;
__cpuid(out, 1);
/* please see CPUID documentation for these formulas */
uint32_t family_ID = (out[0] >> 8) & 0x0F;
uint32_t extended_family_ID = (out[0] >> 20) & 0xFF;
uint32_t model_ID = (out[0] >> 4) & 0x0F;
uint32_t extended_model_ID = (out[0] >> 16) & 0x0F;
uint32_t DisplayFamily = family_ID;
if (family_ID == 0x0F)
DisplayFamily += extended_family_ID;
uint32_t DisplayModel = model_ID;
if (family_ID == 0x06 || family_ID == 0x0F)
DisplayModel += extended_model_ID << 4;
uint32_t DisplayFamily_DisplayModel = (DisplayFamily << 8) + (DisplayModel << 0);
// Data from Intel® 64 and IA-32 Architectures, Volume 4, Chapter 2, Table 2-1 (CPUID Signature Values of DisplayFamily_DisplayModel)
if (DisplayFamily_DisplayModel == 0x067D) return CPU::CORE_ICE_LAKE;
if (DisplayFamily_DisplayModel == 0x067E) return CPU::CORE_ICE_LAKE;
if (DisplayFamily_DisplayModel == 0x068C) return CPU::CORE_TIGER_LAKE;
if (DisplayFamily_DisplayModel == 0x06A5) return CPU::CORE_COMET_LAKE;
if (DisplayFamily_DisplayModel == 0x06A6) return CPU::CORE_COMET_LAKE;
if (DisplayFamily_DisplayModel == 0x0666) return CPU::CORE_CANNON_LAKE;
if (DisplayFamily_DisplayModel == 0x068E) return CPU::CORE_KABY_LAKE;
if (DisplayFamily_DisplayModel == 0x069E) return CPU::CORE_KABY_LAKE;
if (DisplayFamily_DisplayModel == 0x066A) return CPU::XEON_ICE_LAKE;
if (DisplayFamily_DisplayModel == 0x066C) return CPU::XEON_ICE_LAKE;
if (DisplayFamily_DisplayModel == 0x0655) return CPU::XEON_SKY_LAKE;
if (DisplayFamily_DisplayModel == 0x064E) return CPU::CORE_SKY_LAKE;
if (DisplayFamily_DisplayModel == 0x065E) return CPU::CORE_SKY_LAKE;
if (DisplayFamily_DisplayModel == 0x0656) return CPU::XEON_BROADWELL;
if (DisplayFamily_DisplayModel == 0x064F) return CPU::XEON_BROADWELL;
if (DisplayFamily_DisplayModel == 0x0647) return CPU::CORE_BROADWELL;
if (DisplayFamily_DisplayModel == 0x063D) return CPU::CORE_BROADWELL;
if (DisplayFamily_DisplayModel == 0x063F) return CPU::XEON_HASWELL;
if (DisplayFamily_DisplayModel == 0x063C) return CPU::CORE_HASWELL;
if (DisplayFamily_DisplayModel == 0x0645) return CPU::CORE_HASWELL;
if (DisplayFamily_DisplayModel == 0x0646) return CPU::CORE_HASWELL;
if (DisplayFamily_DisplayModel == 0x063E) return CPU::XEON_IVY_BRIDGE;
if (DisplayFamily_DisplayModel == 0x063A) return CPU::CORE_IVY_BRIDGE;
if (DisplayFamily_DisplayModel == 0x062D) return CPU::SANDY_BRIDGE;
if (DisplayFamily_DisplayModel == 0x062F) return CPU::SANDY_BRIDGE;
if (DisplayFamily_DisplayModel == 0x062A) return CPU::SANDY_BRIDGE;
if (DisplayFamily_DisplayModel == 0x062E) return CPU::NEHALEM;
if (DisplayFamily_DisplayModel == 0x0625) return CPU::NEHALEM;
if (DisplayFamily_DisplayModel == 0x062C) return CPU::NEHALEM;
if (DisplayFamily_DisplayModel == 0x061E) return CPU::NEHALEM;
if (DisplayFamily_DisplayModel == 0x061F) return CPU::NEHALEM;
if (DisplayFamily_DisplayModel == 0x061A) return CPU::NEHALEM;
if (DisplayFamily_DisplayModel == 0x061D) return CPU::NEHALEM;
if (DisplayFamily_DisplayModel == 0x0617) return CPU::CORE2;
if (DisplayFamily_DisplayModel == 0x060F) return CPU::CORE2;
if (DisplayFamily_DisplayModel == 0x060E) return CPU::CORE1;
if (DisplayFamily_DisplayModel == 0x0685) return CPU::XEON_PHI_KNIGHTS_MILL;
if (DisplayFamily_DisplayModel == 0x0657) return CPU::XEON_PHI_KNIGHTS_LANDING;
#elif defined(__ARM_NEON)
return CPU::ARM;
#endif
return CPU::UNKNOWN;
}
std::string stringOfCPUModel(CPU model)
{
switch (model) {
case CPU::XEON_ICE_LAKE : return "Xeon Ice Lake";
case CPU::CORE_ICE_LAKE : return "Core Ice Lake";
case CPU::CORE_TIGER_LAKE : return "Core Tiger Lake";
case CPU::CORE_COMET_LAKE : return "Core Comet Lake";
case CPU::CORE_CANNON_LAKE : return "Core Cannon Lake";
case CPU::CORE_KABY_LAKE : return "Core Kaby Lake";
case CPU::XEON_SKY_LAKE : return "Xeon Sky Lake";
case CPU::CORE_SKY_LAKE : return "Core Sky Lake";
case CPU::XEON_PHI_KNIGHTS_MILL : return "Xeon Phi Knights Mill";
case CPU::XEON_PHI_KNIGHTS_LANDING: return "Xeon Phi Knights Landing";
case CPU::XEON_BROADWELL : return "Xeon Broadwell";
case CPU::CORE_BROADWELL : return "Core Broadwell";
case CPU::XEON_HASWELL : return "Xeon Haswell";
case CPU::CORE_HASWELL : return "Core Haswell";
case CPU::XEON_IVY_BRIDGE : return "Xeon Ivy Bridge";
case CPU::CORE_IVY_BRIDGE : return "Core Ivy Bridge";
case CPU::SANDY_BRIDGE : return "Sandy Bridge";
case CPU::NEHALEM : return "Nehalem";
case CPU::CORE2 : return "Core2";
case CPU::CORE1 : return "Core";
case CPU::ARM : return "ARM";
case CPU::UNKNOWN : return "Unknown CPU";
}
return "Unknown CPU (error)";
}
#if defined(__X86_ASM__)
/* constants to access destination registers of CPUID instruction */
static const int EAX = 0;
static const int EBX = 1;
static const int ECX = 2;
static const int EDX = 3;
/* cpuid[eax=1].ecx */
static const int CPU_FEATURE_BIT_SSE3 = 1 << 0;
static const int CPU_FEATURE_BIT_SSSE3 = 1 << 9;
static const int CPU_FEATURE_BIT_FMA3 = 1 << 12;
static const int CPU_FEATURE_BIT_SSE4_1 = 1 << 19;
static const int CPU_FEATURE_BIT_SSE4_2 = 1 << 20;
//static const int CPU_FEATURE_BIT_MOVBE = 1 << 22;
static const int CPU_FEATURE_BIT_POPCNT = 1 << 23;
//static const int CPU_FEATURE_BIT_XSAVE = 1 << 26;
static const int CPU_FEATURE_BIT_OXSAVE = 1 << 27;
static const int CPU_FEATURE_BIT_AVX = 1 << 28;
static const int CPU_FEATURE_BIT_F16C = 1 << 29;
static const int CPU_FEATURE_BIT_RDRAND = 1 << 30;
/* cpuid[eax=1].edx */
static const int CPU_FEATURE_BIT_SSE = 1 << 25;
static const int CPU_FEATURE_BIT_SSE2 = 1 << 26;
/* cpuid[eax=0x80000001].ecx */
static const int CPU_FEATURE_BIT_LZCNT = 1 << 5;
/* cpuid[eax=7,ecx=0].ebx */
static const int CPU_FEATURE_BIT_BMI1 = 1 << 3;
static const int CPU_FEATURE_BIT_AVX2 = 1 << 5;
static const int CPU_FEATURE_BIT_BMI2 = 1 << 8;
static const int CPU_FEATURE_BIT_AVX512F = 1 << 16; // AVX512F (foundation)
static const int CPU_FEATURE_BIT_AVX512DQ = 1 << 17; // AVX512DQ (doubleword and quadword instructions)
static const int CPU_FEATURE_BIT_AVX512PF = 1 << 26; // AVX512PF (prefetch gather/scatter instructions)
static const int CPU_FEATURE_BIT_AVX512ER = 1 << 27; // AVX512ER (exponential and reciprocal instructions)
static const int CPU_FEATURE_BIT_AVX512CD = 1 << 28; // AVX512CD (conflict detection instructions)
static const int CPU_FEATURE_BIT_AVX512BW = 1 << 30; // AVX512BW (byte and word instructions)
static const int CPU_FEATURE_BIT_AVX512VL = 1 << 31; // AVX512VL (vector length extensions)
static const int CPU_FEATURE_BIT_AVX512IFMA = 1 << 21; // AVX512IFMA (integer fused multiple-add instructions)
/* cpuid[eax=7,ecx=0].ecx */
static const int CPU_FEATURE_BIT_AVX512VBMI = 1 << 1; // AVX512VBMI (vector bit manipulation instructions)
#endif
#if defined(__X86_ASM__)
__noinline int64_t get_xcr0()
{
#if defined (__WIN32__) && !defined (__MINGW32__) && defined(_XCR_XFEATURE_ENABLED_MASK)
int64_t xcr0 = 0; // int64_t is workaround for compiler bug under VS2013, Win32
xcr0 = _xgetbv(0);
return xcr0;
#else
int xcr0 = 0;
__asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx" );
return xcr0;
#endif
}
#endif
int getCPUFeatures()
{
#if defined(__X86_ASM__)
/* cache CPU features access */
static int cpu_features = 0;
if (cpu_features)
return cpu_features;
/* get number of CPUID leaves */
int cpuid_leaf0[4];
__cpuid(cpuid_leaf0, 0x00000000);
unsigned nIds = cpuid_leaf0[EAX];
/* get number of extended CPUID leaves */
int cpuid_leafe[4];
__cpuid(cpuid_leafe, 0x80000000);
unsigned nExIds = cpuid_leafe[EAX];
/* get CPUID leaves for EAX = 1,7, and 0x80000001 */
int cpuid_leaf_1[4] = { 0,0,0,0 };
int cpuid_leaf_7[4] = { 0,0,0,0 };
int cpuid_leaf_e1[4] = { 0,0,0,0 };
if (nIds >= 1) __cpuid (cpuid_leaf_1,0x00000001);
#if _WIN32
#if _MSC_VER && (_MSC_FULL_VER < 160040219)
#else
if (nIds >= 7) __cpuidex(cpuid_leaf_7,0x00000007,0);
#endif
#else
if (nIds >= 7) __cpuid_count(cpuid_leaf_7,0x00000007,0);
#endif
if (nExIds >= 0x80000001) __cpuid(cpuid_leaf_e1,0x80000001);
/* detect if OS saves XMM, YMM, and ZMM states */
bool xmm_enabled = true;
bool ymm_enabled = false;
bool zmm_enabled = false;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_OXSAVE) {
int64_t xcr0 = get_xcr0();
xmm_enabled = ((xcr0 & 0x02) == 0x02); /* checks if xmm are enabled in XCR0 */
ymm_enabled = xmm_enabled && ((xcr0 & 0x04) == 0x04); /* checks if ymm state are enabled in XCR0 */
zmm_enabled = ymm_enabled && ((xcr0 & 0xE0) == 0xE0); /* checks if OPMASK state, upper 256-bit of ZMM0-ZMM15 and ZMM16-ZMM31 state are enabled in XCR0 */
}
if (xmm_enabled) cpu_features |= CPU_FEATURE_XMM_ENABLED;
if (ymm_enabled) cpu_features |= CPU_FEATURE_YMM_ENABLED;
if (zmm_enabled) cpu_features |= CPU_FEATURE_ZMM_ENABLED;
if (cpuid_leaf_1[EDX] & CPU_FEATURE_BIT_SSE ) cpu_features |= CPU_FEATURE_SSE;
if (cpuid_leaf_1[EDX] & CPU_FEATURE_BIT_SSE2 ) cpu_features |= CPU_FEATURE_SSE2;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_SSE3 ) cpu_features |= CPU_FEATURE_SSE3;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_SSSE3 ) cpu_features |= CPU_FEATURE_SSSE3;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_SSE4_1) cpu_features |= CPU_FEATURE_SSE41;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_SSE4_2) cpu_features |= CPU_FEATURE_SSE42;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_POPCNT) cpu_features |= CPU_FEATURE_POPCNT;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_AVX ) cpu_features |= CPU_FEATURE_AVX;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_F16C ) cpu_features |= CPU_FEATURE_F16C;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_RDRAND) cpu_features |= CPU_FEATURE_RDRAND;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX2 ) cpu_features |= CPU_FEATURE_AVX2;
if (cpuid_leaf_1[ECX] & CPU_FEATURE_BIT_FMA3 ) cpu_features |= CPU_FEATURE_FMA3;
if (cpuid_leaf_e1[ECX] & CPU_FEATURE_BIT_LZCNT) cpu_features |= CPU_FEATURE_LZCNT;
if (cpuid_leaf_7 [EBX] & CPU_FEATURE_BIT_BMI1 ) cpu_features |= CPU_FEATURE_BMI1;
if (cpuid_leaf_7 [EBX] & CPU_FEATURE_BIT_BMI2 ) cpu_features |= CPU_FEATURE_BMI2;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512F ) cpu_features |= CPU_FEATURE_AVX512F;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512DQ ) cpu_features |= CPU_FEATURE_AVX512DQ;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512PF ) cpu_features |= CPU_FEATURE_AVX512PF;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512ER ) cpu_features |= CPU_FEATURE_AVX512ER;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512CD ) cpu_features |= CPU_FEATURE_AVX512CD;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512BW ) cpu_features |= CPU_FEATURE_AVX512BW;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512IFMA) cpu_features |= CPU_FEATURE_AVX512IFMA;
if (cpuid_leaf_7[EBX] & CPU_FEATURE_BIT_AVX512VL ) cpu_features |= CPU_FEATURE_AVX512VL;
if (cpuid_leaf_7[ECX] & CPU_FEATURE_BIT_AVX512VBMI) cpu_features |= CPU_FEATURE_AVX512VBMI;
return cpu_features;
#elif defined(__ARM_NEON) || defined(__EMSCRIPTEN__)
int cpu_features = CPU_FEATURE_NEON|CPU_FEATURE_SSE|CPU_FEATURE_SSE2;
cpu_features |= CPU_FEATURE_SSE3|CPU_FEATURE_SSSE3|CPU_FEATURE_SSE42;
cpu_features |= CPU_FEATURE_XMM_ENABLED;
cpu_features |= CPU_FEATURE_YMM_ENABLED;
cpu_features |= CPU_FEATURE_SSE41 | CPU_FEATURE_RDRAND | CPU_FEATURE_F16C;
cpu_features |= CPU_FEATURE_POPCNT;
cpu_features |= CPU_FEATURE_AVX;
cpu_features |= CPU_FEATURE_AVX2;
cpu_features |= CPU_FEATURE_FMA3;
cpu_features |= CPU_FEATURE_LZCNT;
cpu_features |= CPU_FEATURE_BMI1;
cpu_features |= CPU_FEATURE_BMI2;
cpu_features |= CPU_FEATURE_NEON_2X;
return cpu_features;
#else
/* Unknown CPU. */
return 0;
#endif
}
std::string stringOfCPUFeatures(int features)
{
std::string str;
if (features & CPU_FEATURE_XMM_ENABLED) str += "XMM ";
if (features & CPU_FEATURE_YMM_ENABLED) str += "YMM ";
if (features & CPU_FEATURE_ZMM_ENABLED) str += "ZMM ";
if (features & CPU_FEATURE_SSE ) str += "SSE ";
if (features & CPU_FEATURE_SSE2 ) str += "SSE2 ";
if (features & CPU_FEATURE_SSE3 ) str += "SSE3 ";
if (features & CPU_FEATURE_SSSE3 ) str += "SSSE3 ";
if (features & CPU_FEATURE_SSE41 ) str += "SSE4.1 ";
if (features & CPU_FEATURE_SSE42 ) str += "SSE4.2 ";
if (features & CPU_FEATURE_POPCNT) str += "POPCNT ";
if (features & CPU_FEATURE_AVX ) str += "AVX ";
if (features & CPU_FEATURE_F16C ) str += "F16C ";
if (features & CPU_FEATURE_RDRAND) str += "RDRAND ";
if (features & CPU_FEATURE_AVX2 ) str += "AVX2 ";
if (features & CPU_FEATURE_FMA3 ) str += "FMA3 ";
if (features & CPU_FEATURE_LZCNT ) str += "LZCNT ";
if (features & CPU_FEATURE_BMI1 ) str += "BMI1 ";
if (features & CPU_FEATURE_BMI2 ) str += "BMI2 ";
if (features & CPU_FEATURE_AVX512F) str += "AVX512F ";
if (features & CPU_FEATURE_AVX512DQ) str += "AVX512DQ ";
if (features & CPU_FEATURE_AVX512PF) str += "AVX512PF ";
if (features & CPU_FEATURE_AVX512ER) str += "AVX512ER ";
if (features & CPU_FEATURE_AVX512CD) str += "AVX512CD ";
if (features & CPU_FEATURE_AVX512BW) str += "AVX512BW ";
if (features & CPU_FEATURE_AVX512VL) str += "AVX512VL ";
if (features & CPU_FEATURE_AVX512IFMA) str += "AVX512IFMA ";
if (features & CPU_FEATURE_AVX512VBMI) str += "AVX512VBMI ";
if (features & CPU_FEATURE_NEON) str += "NEON ";
if (features & CPU_FEATURE_NEON_2X) str += "2xNEON ";
return str;
}
std::string stringOfISA (int isa)
{
if (isa == SSE) return "SSE";
if (isa == SSE2) return "SSE2";
if (isa == SSE3) return "SSE3";
if (isa == SSSE3) return "SSSE3";
if (isa == SSE41) return "SSE4.1";
if (isa == SSE42) return "SSE4.2";
if (isa == AVX) return "AVX";
if (isa == AVX2) return "AVX2";
if (isa == AVX512) return "AVX512";
if (isa == NEON) return "NEON";
if (isa == NEON_2X) return "2xNEON";
return "UNKNOWN";
}
bool hasISA(int features, int isa) {
return (features & isa) == isa;
}
std::string supportedTargetList (int features)
{
std::string v;
if (hasISA(features,SSE)) v += "SSE ";
if (hasISA(features,SSE2)) v += "SSE2 ";
if (hasISA(features,SSE3)) v += "SSE3 ";
if (hasISA(features,SSSE3)) v += "SSSE3 ";
if (hasISA(features,SSE41)) v += "SSE4.1 ";
if (hasISA(features,SSE42)) v += "SSE4.2 ";
if (hasISA(features,AVX)) v += "AVX ";
if (hasISA(features,AVXI)) v += "AVXI ";
if (hasISA(features,AVX2)) v += "AVX2 ";
if (hasISA(features,AVX512)) v += "AVX512 ";
if (hasISA(features,NEON)) v += "NEON ";
if (hasISA(features,NEON_2X)) v += "2xNEON ";
return v;
}
}
////////////////////////////////////////////////////////////////////////////////
/// Windows Platform
////////////////////////////////////////////////////////////////////////////////
#if defined(__WIN32__)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <psapi.h>
namespace embree
{
std::string getExecutableFileName() {
char filename[1024];
if (!GetModuleFileName(nullptr, filename, sizeof(filename)))
return std::string();
return std::string(filename);
}
unsigned int getNumberOfLogicalThreads()
{
static int nThreads = -1;
if (nThreads != -1) return nThreads;
typedef WORD (WINAPI *GetActiveProcessorGroupCountFunc)();
typedef DWORD (WINAPI *GetActiveProcessorCountFunc)(WORD);
HMODULE hlib = LoadLibrary("Kernel32");
GetActiveProcessorGroupCountFunc pGetActiveProcessorGroupCount = (GetActiveProcessorGroupCountFunc)GetProcAddress(hlib, "GetActiveProcessorGroupCount");
GetActiveProcessorCountFunc pGetActiveProcessorCount = (GetActiveProcessorCountFunc) GetProcAddress(hlib, "GetActiveProcessorCount");
if (pGetActiveProcessorGroupCount && pGetActiveProcessorCount)
{
int groups = pGetActiveProcessorGroupCount();
int totalProcessors = 0;
for (int i = 0; i < groups; i++)
totalProcessors += pGetActiveProcessorCount(i);
nThreads = totalProcessors;
}
else
{
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
nThreads = sysinfo.dwNumberOfProcessors;
}
assert(nThreads);
return nThreads;
}
int getTerminalWidth()
{
HANDLE handle = GetStdHandle(STD_OUTPUT_HANDLE);
if (handle == INVALID_HANDLE_VALUE) return 80;
CONSOLE_SCREEN_BUFFER_INFO info;
memset(&info,0,sizeof(info));
GetConsoleScreenBufferInfo(handle, &info);
return info.dwSize.X;
}
double getSeconds()
{
LARGE_INTEGER freq, val;
QueryPerformanceFrequency(&freq);
QueryPerformanceCounter(&val);
return (double)val.QuadPart / (double)freq.QuadPart;
}
void sleepSeconds(double t) {
Sleep(DWORD(1000.0*t));
}
size_t getVirtualMemoryBytes()
{
PROCESS_MEMORY_COUNTERS info;
GetProcessMemoryInfo( GetCurrentProcess( ), &info, sizeof(info) );
return (size_t)info.QuotaPeakPagedPoolUsage;
}
size_t getResidentMemoryBytes()
{
PROCESS_MEMORY_COUNTERS info;
GetProcessMemoryInfo( GetCurrentProcess( ), &info, sizeof(info) );
return (size_t)info.WorkingSetSize;
}
}
#endif
////////////////////////////////////////////////////////////////////////////////
/// Linux Platform
////////////////////////////////////////////////////////////////////////////////
#if defined(__LINUX__)
#include <stdio.h>
#include <unistd.h>
namespace embree
{
std::string getExecutableFileName()
{
std::string pid = "/proc/" + toString(getpid()) + "/exe";
char buf[4096];
memset(buf,0,sizeof(buf));
if (readlink(pid.c_str(), buf, sizeof(buf)-1) == -1)
return std::string();
return std::string(buf);
}
size_t getVirtualMemoryBytes()
{
size_t virt, resident, shared;
std::ifstream buffer("/proc/self/statm");
buffer >> virt >> resident >> shared;
return virt*sysconf(_SC_PAGE_SIZE);
}
size_t getResidentMemoryBytes()
{
size_t virt, resident, shared;
std::ifstream buffer("/proc/self/statm");
buffer >> virt >> resident >> shared;
return resident*sysconf(_SC_PAGE_SIZE);
}
}
#endif
////////////////////////////////////////////////////////////////////////////////
/// FreeBSD Platform
////////////////////////////////////////////////////////////////////////////////
#if defined (__FreeBSD__)
#include <sys/sysctl.h>
namespace embree
{
std::string getExecutableFileName()
{
const int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1 };
char buf[4096];
memset(buf,0,sizeof(buf));
size_t len = sizeof(buf)-1;
if (sysctl(mib, 4, buf, &len, 0x0, 0) == -1)
return std::string();
return std::string(buf);
}
size_t getVirtualMemoryBytes() {
return 0;
}
size_t getResidentMemoryBytes() {
return 0;
}
}
#endif
////////////////////////////////////////////////////////////////////////////////
/// Mac OS X Platform
////////////////////////////////////////////////////////////////////////////////
#if defined(__MACOSX__)
#include <mach-o/dyld.h>
namespace embree
{
std::string getExecutableFileName()
{
char buf[4096];
uint32_t size = sizeof(buf);
if (_NSGetExecutablePath(buf, &size) != 0)
return std::string();
return std::string(buf);
}
size_t getVirtualMemoryBytes() {
return 0;
}
size_t getResidentMemoryBytes() {
return 0;
}
}
#endif
////////////////////////////////////////////////////////////////////////////////
/// Unix Platform
////////////////////////////////////////////////////////////////////////////////
#if defined(__UNIX__)
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <pthread.h>
#if defined(__EMSCRIPTEN__)
#include <emscripten.h>
// -- GODOT start --
extern "C" {
extern int godot_js_os_hw_concurrency_get();
}
// -- GODOT end --
#endif
namespace embree
{
unsigned int getNumberOfLogicalThreads()
{
static int nThreads = -1;
if (nThreads != -1) return nThreads;
#if defined(__MACOSX__) || defined(__ANDROID__)
nThreads = sysconf(_SC_NPROCESSORS_ONLN); // does not work in Linux LXC container
assert(nThreads);
#elif defined(__EMSCRIPTEN__)
// -- GODOT start --
nThreads = godot_js_os_hw_concurrency_get();
// -- GODOT end --
#else
cpu_set_t set;
if (pthread_getaffinity_np(pthread_self(), sizeof(set), &set) == 0)
nThreads = CPU_COUNT(&set);
#endif
assert(nThreads);
return nThreads;
}
int getTerminalWidth()
{
struct winsize info;
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &info) < 0) return 80;
return info.ws_col;
}
double getSeconds() {
struct timeval tp; gettimeofday(&tp,nullptr);
return double(tp.tv_sec) + double(tp.tv_usec)/1E6;
}
void sleepSeconds(double t) {
usleep(1000000.0*t);
}
}
#endif