virtualx-engine/modules/assimp/editor_scene_importer_assimp.cpp
Juan Linietsky a6f3bc7c69 Renaming of servers for coherency.
VisualServer -> RenderingServer
PhysicsServer -> PhysicsServer3D
Physics2DServer -> PhysicsServer2D
NavigationServer -> NavigationServer3D
Navigation2DServer -> NavigationServer2D

Also renamed corresponding files.
2020-03-27 15:21:27 -03:00

1509 lines
52 KiB
C++

/*************************************************************************/
/* editor_scene_importer_assimp.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "editor_scene_importer_assimp.h"
#include "core/io/image_loader.h"
#include "editor/import/resource_importer_scene.h"
#include "import_utils.h"
#include "scene/3d/camera_3d.h"
#include "scene/3d/light_3d.h"
#include "scene/3d/mesh_instance_3d.h"
#include "scene/main/node.h"
#include "scene/resources/material.h"
#include "scene/resources/surface_tool.h"
#include <assimp/matrix4x4.h>
#include <assimp/postprocess.h>
#include <assimp/scene.h>
#include <assimp/Importer.hpp>
#include <assimp/LogStream.hpp>
#include <string>
// move into assimp
aiBone *get_bone_by_name(const aiScene *scene, aiString bone_name) {
for (unsigned int mesh_id = 0; mesh_id < scene->mNumMeshes; ++mesh_id) {
aiMesh *mesh = scene->mMeshes[mesh_id];
// iterate over all the bones on the mesh for this node only!
for (unsigned int boneIndex = 0; boneIndex < mesh->mNumBones; boneIndex++) {
aiBone *bone = mesh->mBones[boneIndex];
if (bone->mName == bone_name) {
printf("matched bone by name: %s\n", bone->mName.C_Str());
return bone;
}
}
}
return NULL;
}
void EditorSceneImporterAssimp::get_extensions(List<String> *r_extensions) const {
const String import_setting_string = "filesystem/import/open_asset_import/";
Map<String, ImportFormat> import_format;
{
Vector<String> exts;
exts.push_back("fbx");
ImportFormat import = { exts, true };
import_format.insert("fbx", import);
}
for (Map<String, ImportFormat>::Element *E = import_format.front(); E; E = E->next()) {
_register_project_setting_import(E->key(), import_setting_string, E->get().extensions, r_extensions,
E->get().is_default);
}
}
void EditorSceneImporterAssimp::_register_project_setting_import(const String generic, const String import_setting_string,
const Vector<String> &exts, List<String> *r_extensions,
const bool p_enabled) const {
const String use_generic = "use_" + generic;
_GLOBAL_DEF(import_setting_string + use_generic, p_enabled, true);
if (ProjectSettings::get_singleton()->get(import_setting_string + use_generic)) {
for (int32_t i = 0; i < exts.size(); i++) {
r_extensions->push_back(exts[i]);
}
}
}
uint32_t EditorSceneImporterAssimp::get_import_flags() const {
return IMPORT_SCENE;
}
void EditorSceneImporterAssimp::_bind_methods() {
}
Node *EditorSceneImporterAssimp::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps,
List<String> *r_missing_deps, Error *r_err) {
Assimp::Importer importer;
std::wstring w_path = ProjectSettings::get_singleton()->globalize_path(p_path).c_str();
std::string s_path(w_path.begin(), w_path.end());
importer.SetPropertyBool(AI_CONFIG_PP_FD_REMOVE, true);
// Cannot remove pivot points because the static mesh will be in the wrong place
importer.SetPropertyBool(AI_CONFIG_IMPORT_FBX_PRESERVE_PIVOTS, false);
int32_t max_bone_weights = 4;
//if (p_flags & IMPORT_ANIMATION_EIGHT_WEIGHTS) {
// const int eight_bones = 8;
// importer.SetPropertyBool(AI_CONFIG_PP_LBW_MAX_WEIGHTS, eight_bones);
// max_bone_weights = eight_bones;
//}
importer.SetPropertyInteger(AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT);
//importer.SetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD, 1.0f);
int32_t post_process_Steps = aiProcess_CalcTangentSpace |
aiProcess_GlobalScale |
// imports models and listens to their file scale for CM to M conversions
//aiProcess_FlipUVs |
aiProcess_FlipWindingOrder |
// very important for culling so that it is done in the correct order.
//aiProcess_DropNormals |
//aiProcess_GenSmoothNormals |
//aiProcess_JoinIdenticalVertices |
aiProcess_ImproveCacheLocality |
//aiProcess_RemoveRedundantMaterials | // Causes a crash
//aiProcess_SplitLargeMeshes |
aiProcess_Triangulate |
aiProcess_GenUVCoords |
//aiProcess_FindDegenerates |
//aiProcess_SortByPType |
// aiProcess_FindInvalidData |
aiProcess_TransformUVCoords |
aiProcess_FindInstances |
//aiProcess_FixInfacingNormals |
//aiProcess_ValidateDataStructure |
aiProcess_OptimizeMeshes |
aiProcess_PopulateArmatureData |
//aiProcess_OptimizeGraph |
//aiProcess_Debone |
// aiProcess_EmbedTextures |
//aiProcess_SplitByBoneCount |
0;
aiScene *scene = (aiScene *)importer.ReadFile(s_path.c_str(), post_process_Steps);
ERR_FAIL_COND_V_MSG(scene == NULL, NULL, String("Open Asset Import failed to open: ") + String(importer.GetErrorString()));
return _generate_scene(p_path, scene, p_flags, p_bake_fps, max_bone_weights);
}
template <class T>
struct EditorSceneImporterAssetImportInterpolate {
T lerp(const T &a, const T &b, float c) const {
return a + (b - a) * c;
}
T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
float t2 = t * t;
float t3 = t2 * t;
return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
}
T bezier(T start, T control_1, T control_2, T end, float t) {
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
real_t t2 = t * t;
real_t t3 = t2 * t;
return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
}
};
//thank you for existing, partial specialization
template <>
struct EditorSceneImporterAssetImportInterpolate<Quat> {
Quat lerp(const Quat &a, const Quat &b, float c) const {
ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quat(), "The quaternion \"a\" must be normalized.");
ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quat(), "The quaternion \"b\" must be normalized.");
return a.slerp(b, c).normalized();
}
Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) {
ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quat(), "The quaternion \"p1\" must be normalized.");
ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quat(), "The quaternion \"p2\" must be normalized.");
return p1.slerp(p2, c).normalized();
}
Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) {
ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quat(), "The start quaternion must be normalized.");
ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quat(), "The end quaternion must be normalized.");
return start.slerp(end, t).normalized();
}
};
template <class T>
T EditorSceneImporterAssimp::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, float p_time,
AssetImportAnimation::Interpolation p_interp) {
//could use binary search, worth it?
int idx = -1;
for (int i = 0; i < p_times.size(); i++) {
if (p_times[i] > p_time)
break;
idx++;
}
EditorSceneImporterAssetImportInterpolate<T> interp;
switch (p_interp) {
case AssetImportAnimation::INTERP_LINEAR: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.lerp(p_values[idx], p_values[idx + 1], c);
} break;
case AssetImportAnimation::INTERP_STEP: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
return p_values[idx];
} break;
case AssetImportAnimation::INTERP_CATMULLROMSPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[1 + p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
} break;
case AssetImportAnimation::INTERP_CUBIC_SPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[(p_times.size() - 1) * 3 + 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
T from = p_values[idx * 3 + 1];
T c1 = from + p_values[idx * 3 + 2];
T to = p_values[idx * 3 + 4];
T c2 = to + p_values[idx * 3 + 3];
return interp.bezier(from, c1, c2, to, c);
} break;
}
ERR_FAIL_V(p_values[0]);
}
aiBone *EditorSceneImporterAssimp::get_bone_from_stack(ImportState &state, aiString name) {
List<aiBone *>::Element *iter;
aiBone *bone = NULL;
for (iter = state.bone_stack.front(); iter; iter = iter->next()) {
bone = (aiBone *)iter->get();
if (bone && bone->mName == name) {
state.bone_stack.erase(bone);
return bone;
}
}
return NULL;
}
Node3D *
EditorSceneImporterAssimp::_generate_scene(const String &p_path, aiScene *scene, const uint32_t p_flags, int p_bake_fps,
const int32_t p_max_bone_weights) {
ERR_FAIL_COND_V(scene == NULL, NULL);
ImportState state;
state.path = p_path;
state.assimp_scene = scene;
state.max_bone_weights = p_max_bone_weights;
state.animation_player = NULL;
// populate light map
for (unsigned int l = 0; l < scene->mNumLights; l++) {
aiLight *ai_light = scene->mLights[l];
ERR_CONTINUE(ai_light == NULL);
state.light_cache[AssimpUtils::get_assimp_string(ai_light->mName)] = l;
}
// fill camera cache
for (unsigned int c = 0; c < scene->mNumCameras; c++) {
aiCamera *ai_camera = scene->mCameras[c];
ERR_CONTINUE(ai_camera == NULL);
state.camera_cache[AssimpUtils::get_assimp_string(ai_camera->mName)] = c;
}
if (scene->mRootNode) {
state.nodes.push_back(scene->mRootNode);
// make flat node tree - in order to make processing deterministic
for (unsigned int i = 0; i < scene->mRootNode->mNumChildren; i++) {
_generate_node(state, scene->mRootNode->mChildren[i]);
}
RegenerateBoneStack(state);
Node *last_valid_parent = NULL;
List<const aiNode *>::Element *iter;
for (iter = state.nodes.front(); iter; iter = iter->next()) {
const aiNode *element_assimp_node = iter->get();
const aiNode *parent_assimp_node = element_assimp_node->mParent;
String node_name = AssimpUtils::get_assimp_string(element_assimp_node->mName);
//print_verbose("node: " + node_name);
Node3D *spatial = NULL;
Transform transform = AssimpUtils::assimp_matrix_transform(element_assimp_node->mTransformation);
// retrieve this node bone
aiBone *bone = get_bone_from_stack(state, element_assimp_node->mName);
if (state.light_cache.has(node_name)) {
spatial = create_light(state, node_name, transform);
} else if (state.camera_cache.has(node_name)) {
spatial = create_camera(state, node_name, transform);
} else if (state.armature_nodes.find(element_assimp_node)) {
// create skeleton
print_verbose("Making skeleton: " + node_name);
Skeleton3D *skeleton = memnew(Skeleton3D);
spatial = skeleton;
if (!state.armature_skeletons.has(element_assimp_node)) {
state.armature_skeletons.insert(element_assimp_node, skeleton);
}
} else if (bone != NULL) {
continue;
} else {
spatial = memnew(Node3D);
}
ERR_CONTINUE_MSG(spatial == NULL, "FBX Import - are we out of ram?");
// we on purpose set the transform and name after creating the node.
spatial->set_name(node_name);
spatial->set_global_transform(transform);
// first element is root
if (iter == state.nodes.front()) {
state.root = spatial;
}
// flat node map parent lookup tool
state.flat_node_map.insert(element_assimp_node, spatial);
Map<const aiNode *, Node3D *>::Element *parent_lookup = state.flat_node_map.find(parent_assimp_node);
// note: this always fails on the root node :) keep that in mind this is by design
if (parent_lookup) {
Node3D *parent_node = parent_lookup->value();
ERR_FAIL_COND_V_MSG(parent_node == NULL, state.root,
"Parent node invalid even though lookup successful, out of ram?");
if (spatial != state.root) {
parent_node->add_child(spatial);
spatial->set_owner(state.root);
} else {
// required - think about it root never has a parent yet is valid, anything else without a parent is not valid.
}
} else if (spatial != state.root) {
// if the ainode is not in the tree
// parent it to the last good parent found
if (last_valid_parent) {
last_valid_parent->add_child(spatial);
spatial->set_owner(state.root);
} else {
// this is a serious error?
memdelete(spatial);
}
}
// update last valid parent
last_valid_parent = spatial;
}
print_verbose("node counts: " + itos(state.nodes.size()));
// make clean bone stack
RegenerateBoneStack(state);
print_verbose("generating godot bone data");
print_verbose("Godot bone stack count: " + itos(state.bone_stack.size()));
// This is a list of bones, duplicates are from other meshes and must be dealt with properly
for (List<aiBone *>::Element *element = state.bone_stack.front(); element; element = element->next()) {
aiBone *bone = element->get();
ERR_CONTINUE_MSG(!bone, "invalid bone read from assimp?");
// Utilities for armature lookup - for now only FBX makes these
aiNode *armature_for_bone = bone->mArmature;
// Utilities for bone node lookup - for now only FBX makes these
aiNode *bone_node = bone->mNode;
aiNode *parent_node = bone_node->mParent;
String bone_name = AssimpUtils::get_anim_string_from_assimp(bone->mName);
ERR_CONTINUE_MSG(armature_for_bone == NULL, "Armature for bone invalid: " + bone_name);
Skeleton3D *skeleton = state.armature_skeletons[armature_for_bone];
state.skeleton_bone_map[bone] = skeleton;
if (bone_name.empty()) {
bone_name = "untitled_bone_name";
WARN_PRINT("Untitled bone name detected... report with file please");
}
// todo: this is where skin support goes
if (skeleton && skeleton->find_bone(bone_name) == -1) {
print_verbose("[Godot Glue] Imported bone" + bone_name);
int boneIdx = skeleton->get_bone_count();
Transform pform = AssimpUtils::assimp_matrix_transform(bone->mNode->mTransformation);
skeleton->add_bone(bone_name);
skeleton->set_bone_rest(boneIdx, pform);
skeleton->set_bone_pose(boneIdx, pform);
if (parent_node != NULL) {
int parent_bone_id = skeleton->find_bone(AssimpUtils::get_anim_string_from_assimp(parent_node->mName));
int current_bone_id = boneIdx;
skeleton->set_bone_parent(current_bone_id, parent_bone_id);
}
}
}
print_verbose("generating mesh phase from skeletal mesh");
List<Node3D *> cleanup_template_nodes;
for (Map<const aiNode *, Node3D *>::Element *key_value_pair = state.flat_node_map.front(); key_value_pair; key_value_pair = key_value_pair->next()) {
const aiNode *assimp_node = key_value_pair->key();
Node3D *mesh_template = key_value_pair->value();
ERR_CONTINUE(assimp_node == NULL);
ERR_CONTINUE(mesh_template == NULL);
Node *parent_node = mesh_template->get_parent();
if (mesh_template == state.root) {
continue;
}
if (parent_node == NULL) {
print_error("Found invalid parent node!");
continue; // root node
}
String node_name = AssimpUtils::get_assimp_string(assimp_node->mName);
Transform node_transform = AssimpUtils::assimp_matrix_transform(assimp_node->mTransformation);
if (assimp_node->mNumMeshes > 0) {
MeshInstance3D *mesh = create_mesh(state, assimp_node, node_name, parent_node, node_transform);
if (mesh) {
parent_node->remove_child(mesh_template);
// re-parent children
List<Node *> children;
// re-parent all children to new node
// note: since get_child_count will change during execution we must build a list first to be safe.
for (int childId = 0; childId < mesh_template->get_child_count(); childId++) {
// get child
Node *child = mesh_template->get_child(childId);
children.push_back(child);
}
for (List<Node *>::Element *element = children.front(); element; element = element->next()) {
// reparent the children to the real mesh node.
mesh_template->remove_child(element->get());
mesh->add_child(element->get());
element->get()->set_owner(state.root);
}
// update mesh in list so that each mesh node is available
// this makes the template unavailable which is the desired behaviour
state.flat_node_map[assimp_node] = mesh;
cleanup_template_nodes.push_back(mesh_template);
// clean up this list we don't need it
children.clear();
}
}
}
for (List<Node3D *>::Element *element = cleanup_template_nodes.front(); element; element = element->next()) {
if (element->get()) {
memdelete(element->get());
}
}
}
if (p_flags & IMPORT_ANIMATION && scene->mNumAnimations) {
state.animation_player = memnew(AnimationPlayer);
state.root->add_child(state.animation_player);
state.animation_player->set_owner(state.root);
for (uint32_t i = 0; i < scene->mNumAnimations; i++) {
_import_animation(state, i, p_bake_fps);
}
}
//
// Cleanup operations
//
state.mesh_cache.clear();
state.material_cache.clear();
state.light_cache.clear();
state.camera_cache.clear();
state.assimp_node_map.clear();
state.path_to_image_cache.clear();
state.nodes.clear();
state.flat_node_map.clear();
state.armature_skeletons.clear();
state.bone_stack.clear();
return state.root;
}
void EditorSceneImporterAssimp::_insert_animation_track(ImportState &scene, const aiAnimation *assimp_anim, int track_id,
int anim_fps, Ref<Animation> animation, float ticks_per_second,
Skeleton3D *skeleton, const NodePath &node_path,
const String &node_name, aiBone *track_bone) {
const aiNodeAnim *assimp_track = assimp_anim->mChannels[track_id];
//make transform track
int track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_TRANSFORM);
animation->track_set_path(track_idx, node_path);
//first determine animation length
float increment = 1.0 / float(anim_fps);
float time = 0.0;
bool last = false;
Vector<Vector3> pos_values;
Vector<float> pos_times;
Vector<Vector3> scale_values;
Vector<float> scale_times;
Vector<Quat> rot_values;
Vector<float> rot_times;
for (size_t p = 0; p < assimp_track->mNumPositionKeys; p++) {
aiVector3D pos = assimp_track->mPositionKeys[p].mValue;
pos_values.push_back(Vector3(pos.x, pos.y, pos.z));
pos_times.push_back(assimp_track->mPositionKeys[p].mTime / ticks_per_second);
}
for (size_t r = 0; r < assimp_track->mNumRotationKeys; r++) {
aiQuaternion quat = assimp_track->mRotationKeys[r].mValue;
rot_values.push_back(Quat(quat.x, quat.y, quat.z, quat.w).normalized());
rot_times.push_back(assimp_track->mRotationKeys[r].mTime / ticks_per_second);
}
for (size_t sc = 0; sc < assimp_track->mNumScalingKeys; sc++) {
aiVector3D scale = assimp_track->mScalingKeys[sc].mValue;
scale_values.push_back(Vector3(scale.x, scale.y, scale.z));
scale_times.push_back(assimp_track->mScalingKeys[sc].mTime / ticks_per_second);
}
while (true) {
Vector3 pos;
Quat rot;
Vector3 scale(1, 1, 1);
if (pos_values.size()) {
pos = _interpolate_track<Vector3>(pos_times, pos_values, time, AssetImportAnimation::INTERP_LINEAR);
}
if (rot_values.size()) {
rot = _interpolate_track<Quat>(rot_times, rot_values, time,
AssetImportAnimation::INTERP_LINEAR)
.normalized();
}
if (scale_values.size()) {
scale = _interpolate_track<Vector3>(scale_times, scale_values, time, AssetImportAnimation::INTERP_LINEAR);
}
if (skeleton) {
int skeleton_bone = skeleton->find_bone(node_name);
if (skeleton_bone >= 0 && track_bone) {
Transform xform;
xform.basis.set_quat_scale(rot, scale);
xform.origin = pos;
xform = skeleton->get_bone_pose(skeleton_bone).inverse() * xform;
rot = xform.basis.get_rotation_quat();
rot.normalize();
scale = xform.basis.get_scale();
pos = xform.origin;
} else {
ERR_FAIL_MSG("Skeleton bone lookup failed for skeleton: " + skeleton->get_name());
}
}
animation->track_set_interpolation_type(track_idx, Animation::INTERPOLATION_LINEAR);
animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
if (last) { //done this way so a key is always inserted past the end (for proper interpolation)
break;
}
time += increment;
if (time >= animation->get_length()) {
last = true;
}
}
}
// I really do not like this but need to figure out a better way of removing it later.
Node *EditorSceneImporterAssimp::get_node_by_name(ImportState &state, String name) {
for (Map<const aiNode *, Node3D *>::Element *key_value_pair = state.flat_node_map.front(); key_value_pair; key_value_pair = key_value_pair->next()) {
const aiNode *assimp_node = key_value_pair->key();
Node3D *node = key_value_pair->value();
String node_name = AssimpUtils::get_assimp_string(assimp_node->mName);
if (name == node_name && node) {
return node;
}
}
return NULL;
}
/* Bone stack is a fifo handler for multiple armatures since armatures aren't a thing in assimp (yet) */
void EditorSceneImporterAssimp::RegenerateBoneStack(ImportState &state) {
state.bone_stack.clear();
// build bone stack list
for (unsigned int mesh_id = 0; mesh_id < state.assimp_scene->mNumMeshes; ++mesh_id) {
aiMesh *mesh = state.assimp_scene->mMeshes[mesh_id];
// iterate over all the bones on the mesh for this node only!
for (unsigned int boneIndex = 0; boneIndex < mesh->mNumBones; boneIndex++) {
aiBone *bone = mesh->mBones[boneIndex];
// doubtful this is required right now but best to check
if (!state.bone_stack.find(bone)) {
//print_verbose("[assimp] bone stack added: " + String(bone->mName.C_Str()) );
state.bone_stack.push_back(bone);
}
}
}
}
/* Bone stack is a fifo handler for multiple armatures since armatures aren't a thing in assimp (yet) */
void EditorSceneImporterAssimp::RegenerateBoneStack(ImportState &state, aiMesh *mesh) {
state.bone_stack.clear();
// iterate over all the bones on the mesh for this node only!
for (unsigned int boneIndex = 0; boneIndex < mesh->mNumBones; boneIndex++) {
aiBone *bone = mesh->mBones[boneIndex];
if (state.bone_stack.find(bone) == NULL) {
state.bone_stack.push_back(bone);
}
}
}
// animation tracks are per bone
void EditorSceneImporterAssimp::_import_animation(ImportState &state, int p_animation_index, int p_bake_fps) {
ERR_FAIL_INDEX(p_animation_index, (int)state.assimp_scene->mNumAnimations);
const aiAnimation *anim = state.assimp_scene->mAnimations[p_animation_index];
String name = AssimpUtils::get_anim_string_from_assimp(anim->mName);
if (name == String()) {
name = "Animation " + itos(p_animation_index + 1);
}
print_verbose("import animation: " + name);
float ticks_per_second = anim->mTicksPerSecond;
if (state.assimp_scene->mMetaData != NULL && Math::is_equal_approx(ticks_per_second, 0.0f)) {
int32_t time_mode = 0;
state.assimp_scene->mMetaData->Get("TimeMode", time_mode);
ticks_per_second = AssimpUtils::get_fbx_fps(time_mode, state.assimp_scene);
}
//?
//if ((p_path.get_file().get_extension().to_lower() == "glb" || p_path.get_file().get_extension().to_lower() == "gltf") && Math::is_equal_approx(ticks_per_second, 0.0f)) {
// ticks_per_second = 1000.0f;
//}
if (Math::is_equal_approx(ticks_per_second, 0.0f)) {
ticks_per_second = 25.0f;
}
Ref<Animation> animation;
animation.instance();
animation->set_name(name);
animation->set_length(anim->mDuration / ticks_per_second);
if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) {
animation->set_loop(true);
}
// generate bone stack for animation import
RegenerateBoneStack(state);
//regular tracks
for (size_t i = 0; i < anim->mNumChannels; i++) {
const aiNodeAnim *track = anim->mChannels[i];
String node_name = AssimpUtils::get_assimp_string(track->mNodeName);
print_verbose("track name import: " + node_name);
if (track->mNumRotationKeys == 0 && track->mNumPositionKeys == 0 && track->mNumScalingKeys == 0) {
continue; //do not bother
}
Skeleton3D *skeleton = NULL;
NodePath node_path;
aiBone *bone = NULL;
// Import skeleton bone animation for this track
// Any bone will do, no point in processing more than just what is in the skeleton
{
bone = get_bone_from_stack(state, track->mNodeName);
if (bone) {
// get skeleton by bone
skeleton = state.armature_skeletons[bone->mArmature];
if (skeleton) {
String path = state.root->get_path_to(skeleton);
path += ":" + node_name;
node_path = path;
if (node_path != NodePath()) {
_insert_animation_track(state, anim, i, p_bake_fps, animation, ticks_per_second, skeleton,
node_path, node_name, bone);
} else {
print_error("Failed to find valid node path for animation");
}
}
}
}
// not a bone
// note this is flaky it uses node names which is unreliable
Node *allocated_node = get_node_by_name(state, node_name);
// todo: implement skeleton grabbing for node based animations too :)
// check if node exists, if it does then also apply animation track for node and bones above are all handled.
// this is now inclusive animation handling so that
// we import all the data and do not miss anything.
if (allocated_node) {
node_path = state.root->get_path_to(allocated_node);
if (node_path != NodePath()) {
_insert_animation_track(state, anim, i, p_bake_fps, animation, ticks_per_second, skeleton,
node_path, node_name, nullptr);
}
}
}
//blend shape tracks
for (size_t i = 0; i < anim->mNumMorphMeshChannels; i++) {
const aiMeshMorphAnim *anim_mesh = anim->mMorphMeshChannels[i];
const String prop_name = AssimpUtils::get_assimp_string(anim_mesh->mName);
const String mesh_name = prop_name.split("*")[0];
ERR_CONTINUE(prop_name.split("*").size() != 2);
Node *item = get_node_by_name(state, mesh_name);
ERR_CONTINUE_MSG(!item, "failed to look up node by name");
const MeshInstance3D *mesh_instance = Object::cast_to<MeshInstance3D>(item);
ERR_CONTINUE(mesh_instance == NULL);
String base_path = state.root->get_path_to(mesh_instance);
Ref<Mesh> mesh = mesh_instance->get_mesh();
ERR_CONTINUE(mesh.is_null());
//add the tracks for this mesh
int base_track = animation->get_track_count();
for (int j = 0; j < mesh->get_blend_shape_count(); j++) {
animation->add_track(Animation::TYPE_VALUE);
animation->track_set_path(base_track + j, base_path + ":blend_shapes/" + mesh->get_blend_shape_name(j));
}
for (size_t k = 0; k < anim_mesh->mNumKeys; k++) {
for (size_t j = 0; j < anim_mesh->mKeys[k].mNumValuesAndWeights; j++) {
float t = anim_mesh->mKeys[k].mTime / ticks_per_second;
float w = anim_mesh->mKeys[k].mWeights[j];
animation->track_insert_key(base_track + j, t, w);
}
}
}
if (animation->get_track_count()) {
state.animation_player->add_animation(name, animation);
}
}
//
// Mesh Generation from indices ? why do we need so much mesh code
// [debt needs looked into]
Ref<Mesh>
EditorSceneImporterAssimp::_generate_mesh_from_surface_indices(ImportState &state, const Vector<int> &p_surface_indices,
const aiNode *assimp_node, Ref<Skin> &skin,
Skeleton3D *&skeleton_assigned) {
Ref<ArrayMesh> mesh;
mesh.instance();
bool has_uvs = false;
Map<String, uint32_t> morph_mesh_string_lookup;
for (int i = 0; i < p_surface_indices.size(); i++) {
const unsigned int mesh_idx = p_surface_indices[0];
const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_idx];
for (size_t j = 0; j < ai_mesh->mNumAnimMeshes; j++) {
String ai_anim_mesh_name = AssimpUtils::get_assimp_string(ai_mesh->mAnimMeshes[j]->mName);
if (!morph_mesh_string_lookup.has(ai_anim_mesh_name)) {
morph_mesh_string_lookup.insert(ai_anim_mesh_name, j);
mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
if (ai_anim_mesh_name.empty()) {
ai_anim_mesh_name = String("morph_") + itos(j);
}
mesh->add_blend_shape(ai_anim_mesh_name);
}
}
}
//
// Process Vertex Weights
//
for (int i = 0; i < p_surface_indices.size(); i++) {
const unsigned int mesh_idx = p_surface_indices[i];
const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_idx];
Map<uint32_t, Vector<BoneInfo>> vertex_weights;
if (ai_mesh->mNumBones > 0) {
for (size_t b = 0; b < ai_mesh->mNumBones; b++) {
aiBone *bone = ai_mesh->mBones[b];
if (!skeleton_assigned) {
print_verbose("Assigned mesh skeleton during mesh creation");
skeleton_assigned = state.skeleton_bone_map[bone];
if (!skin.is_valid()) {
print_verbose("Configured new skin");
skin.instance();
} else {
print_verbose("Reusing existing skin!");
}
}
// skeleton_assigned =
String bone_name = AssimpUtils::get_assimp_string(bone->mName);
int bone_index = skeleton_assigned->find_bone(bone_name);
ERR_CONTINUE(bone_index == -1);
for (size_t w = 0; w < bone->mNumWeights; w++) {
aiVertexWeight ai_weights = bone->mWeights[w];
BoneInfo bi;
uint32_t vertex_index = ai_weights.mVertexId;
bi.bone = bone_index;
bi.weight = ai_weights.mWeight;
if (!vertex_weights.has(vertex_index)) {
vertex_weights[vertex_index] = Vector<BoneInfo>();
}
vertex_weights[vertex_index].push_back(bi);
}
}
}
//
// Create mesh from data from assimp
//
Ref<SurfaceTool> st;
st.instance();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
for (size_t j = 0; j < ai_mesh->mNumVertices; j++) {
// Get the texture coordinates if they exist
if (ai_mesh->HasTextureCoords(0)) {
has_uvs = true;
st->add_uv(Vector2(ai_mesh->mTextureCoords[0][j].x, 1.0f - ai_mesh->mTextureCoords[0][j].y));
}
if (ai_mesh->HasTextureCoords(1)) {
has_uvs = true;
st->add_uv2(Vector2(ai_mesh->mTextureCoords[1][j].x, 1.0f - ai_mesh->mTextureCoords[1][j].y));
}
// Assign vertex colors
if (ai_mesh->HasVertexColors(0)) {
Color color = Color(ai_mesh->mColors[0]->r, ai_mesh->mColors[0]->g, ai_mesh->mColors[0]->b,
ai_mesh->mColors[0]->a);
st->add_color(color);
}
// Work out normal calculations? - this needs work it doesn't work properly on huestos
if (ai_mesh->mNormals != NULL) {
const aiVector3D normals = ai_mesh->mNormals[j];
const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z);
st->add_normal(godot_normal);
if (ai_mesh->HasTangentsAndBitangents()) {
const aiVector3D tangents = ai_mesh->mTangents[j];
const Vector3 godot_tangent = Vector3(tangents.x, tangents.y, tangents.z);
const aiVector3D bitangent = ai_mesh->mBitangents[j];
const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z);
float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f;
st->add_tangent(Plane(tangents.x, tangents.y, tangents.z, d));
}
}
// We have vertex weights right?
if (vertex_weights.has(j)) {
Vector<BoneInfo> bone_info = vertex_weights[j];
Vector<int> bones;
bones.resize(bone_info.size());
Vector<float> weights;
weights.resize(bone_info.size());
// todo? do we really need to loop over all bones? - assimp may have helper to find all influences on this vertex.
for (int k = 0; k < bone_info.size(); k++) {
bones.write[k] = bone_info[k].bone;
weights.write[k] = bone_info[k].weight;
}
st->add_bones(bones);
st->add_weights(weights);
}
// Assign vertex
const aiVector3D pos = ai_mesh->mVertices[j];
// note we must include node offset transform as this is relative to world space not local space.
Vector3 godot_pos = Vector3(pos.x, pos.y, pos.z);
st->add_vertex(godot_pos);
}
// fire replacement for face handling
for (size_t j = 0; j < ai_mesh->mNumFaces; j++) {
const aiFace face = ai_mesh->mFaces[j];
for (unsigned int k = 0; k < face.mNumIndices; k++) {
st->add_index(face.mIndices[k]);
}
}
if (ai_mesh->HasTangentsAndBitangents() == false && has_uvs) {
st->generate_tangents();
}
aiMaterial *ai_material = state.assimp_scene->mMaterials[ai_mesh->mMaterialIndex];
Ref<StandardMaterial3D> mat;
mat.instance();
int32_t mat_two_sided = 0;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_TWOSIDED, mat_two_sided)) {
if (mat_two_sided > 0) {
mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED);
} else {
mat->set_cull_mode(StandardMaterial3D::CULL_BACK);
}
}
aiString mat_name;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_NAME, mat_name)) {
mat->set_name(AssimpUtils::get_assimp_string(mat_name));
}
// Culling handling for meshes
// cull all back faces
mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED);
// Now process materials
aiTextureType base_color = aiTextureType_BASE_COLOR;
{
String filename, path;
AssimpImageData image_data;
if (AssimpUtils::GetAssimpTexture(state, ai_material, base_color, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
// anything transparent must be culled
if (image_data.raw_image->detect_alpha() != Image::ALPHA_NONE) {
mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS);
mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); // since you can see both sides in transparent mode
}
mat->set_texture(StandardMaterial3D::TEXTURE_ALBEDO, image_data.texture);
}
}
aiTextureType tex_diffuse = aiTextureType_DIFFUSE;
{
String filename, path;
AssimpImageData image_data;
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_diffuse, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
// anything transparent must be culled
if (image_data.raw_image->detect_alpha() != Image::ALPHA_NONE) {
mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS);
mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); // since you can see both sides in transparent mode
}
mat->set_texture(StandardMaterial3D::TEXTURE_ALBEDO, image_data.texture);
}
aiColor4D clr_diffuse;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_COLOR_DIFFUSE, clr_diffuse)) {
if (Math::is_equal_approx(clr_diffuse.a, 1.0f) == false) {
mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS);
mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); // since you can see both sides in transparent mode
}
mat->set_albedo(Color(clr_diffuse.r, clr_diffuse.g, clr_diffuse.b, clr_diffuse.a));
}
}
aiTextureType tex_normal = aiTextureType_NORMALS;
{
String filename, path;
Ref<ImageTexture> texture;
AssimpImageData image_data;
// Process texture normal map
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_normal, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture);
} else {
aiString texture_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_NORMAL_TEXTURE, AI_PROPERTIES, texture_path)) {
if (AssimpUtils::CreateAssimpTexture(state, texture_path, filename, path, image_data)) {
mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture);
}
}
}
}
aiTextureType tex_normal_camera = aiTextureType_NORMAL_CAMERA;
{
String filename, path;
Ref<ImageTexture> texture;
AssimpImageData image_data;
// Process texture normal map
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_normal_camera, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture);
}
}
aiTextureType tex_emission_color = aiTextureType_EMISSION_COLOR;
{
String filename, path;
Ref<ImageTexture> texture;
AssimpImageData image_data;
// Process texture normal map
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_emission_color, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture);
}
}
aiTextureType tex_metalness = aiTextureType_METALNESS;
{
String filename, path;
Ref<ImageTexture> texture;
AssimpImageData image_data;
// Process texture normal map
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_metalness, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_texture(StandardMaterial3D::TEXTURE_METALLIC, image_data.texture);
}
}
aiTextureType tex_roughness = aiTextureType_DIFFUSE_ROUGHNESS;
{
String filename, path;
Ref<ImageTexture> texture;
AssimpImageData image_data;
// Process texture normal map
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_roughness, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_texture(StandardMaterial3D::TEXTURE_ROUGHNESS, image_data.texture);
}
}
aiTextureType tex_emissive = aiTextureType_EMISSIVE;
{
String filename = "";
String path = "";
Ref<Image> texture;
AssimpImageData image_data;
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_emissive, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_feature(StandardMaterial3D::FEATURE_EMISSION, true);
mat->set_texture(StandardMaterial3D::TEXTURE_EMISSION, image_data.texture);
} else {
// Process emission textures
aiString texture_emissive_path;
if (AI_SUCCESS ==
ai_material->Get(AI_MATKEY_FBX_MAYA_EMISSION_TEXTURE, AI_PROPERTIES, texture_emissive_path)) {
if (AssimpUtils::CreateAssimpTexture(state, texture_emissive_path, filename, path, image_data)) {
mat->set_feature(StandardMaterial3D::FEATURE_EMISSION, true);
mat->set_texture(StandardMaterial3D::TEXTURE_EMISSION, image_data.texture);
}
} else {
float pbr_emission = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_EMISSIVE_FACTOR, AI_NULL, pbr_emission)) {
mat->set_emission(Color(pbr_emission, pbr_emission, pbr_emission, 1.0f));
}
}
}
}
aiTextureType tex_specular = aiTextureType_SPECULAR;
{
String filename, path;
Ref<ImageTexture> texture;
AssimpImageData image_data;
// Process texture normal map
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_specular, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_texture(StandardMaterial3D::TEXTURE_METALLIC, image_data.texture);
}
}
aiTextureType tex_ao_map = aiTextureType_AMBIENT_OCCLUSION;
{
String filename, path;
Ref<ImageTexture> texture;
AssimpImageData image_data;
// Process texture normal map
if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_ao_map, filename, path, image_data)) {
AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture);
mat->set_feature(StandardMaterial3D::FEATURE_AMBIENT_OCCLUSION, true);
mat->set_texture(StandardMaterial3D::TEXTURE_AMBIENT_OCCLUSION, image_data.texture);
}
}
Array array_mesh = st->commit_to_arrays();
Array morphs;
morphs.resize(ai_mesh->mNumAnimMeshes);
Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
for (size_t j = 0; j < ai_mesh->mNumAnimMeshes; j++) {
String ai_anim_mesh_name = AssimpUtils::get_assimp_string(ai_mesh->mAnimMeshes[j]->mName);
if (ai_anim_mesh_name.empty()) {
ai_anim_mesh_name = String("morph_") + itos(j);
}
Array array_copy;
array_copy.resize(RenderingServer::ARRAY_MAX);
for (int l = 0; l < RenderingServer::ARRAY_MAX; l++) {
array_copy[l] = array_mesh[l].duplicate(true);
}
const size_t num_vertices = ai_mesh->mAnimMeshes[j]->mNumVertices;
array_copy[Mesh::ARRAY_INDEX] = Variant();
if (ai_mesh->mAnimMeshes[j]->HasPositions()) {
PackedVector3Array vertices;
vertices.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiVector3D ai_pos = ai_mesh->mAnimMeshes[j]->mVertices[l];
Vector3 position = Vector3(ai_pos.x, ai_pos.y, ai_pos.z);
vertices.ptrw()[l] = position;
}
PackedVector3Array new_vertices = array_copy[RenderingServer::ARRAY_VERTEX].duplicate(true);
ERR_CONTINUE(vertices.size() != new_vertices.size());
for (int32_t l = 0; l < new_vertices.size(); l++) {
Vector3 *w = new_vertices.ptrw();
w[l] = vertices[l];
}
array_copy[RenderingServer::ARRAY_VERTEX] = new_vertices;
}
int32_t color_set = 0;
if (ai_mesh->mAnimMeshes[j]->HasVertexColors(color_set)) {
PackedColorArray colors;
colors.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiColor4D ai_color = ai_mesh->mAnimMeshes[j]->mColors[color_set][l];
Color color = Color(ai_color.r, ai_color.g, ai_color.b, ai_color.a);
colors.ptrw()[l] = color;
}
PackedColorArray new_colors = array_copy[RenderingServer::ARRAY_COLOR].duplicate(true);
ERR_CONTINUE(colors.size() != new_colors.size());
for (int32_t l = 0; l < colors.size(); l++) {
Color *w = new_colors.ptrw();
w[l] = colors[l];
}
array_copy[RenderingServer::ARRAY_COLOR] = new_colors;
}
if (ai_mesh->mAnimMeshes[j]->HasNormals()) {
PackedVector3Array normals;
normals.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiVector3D ai_normal = ai_mesh->mAnimMeshes[j]->mNormals[l];
Vector3 normal = Vector3(ai_normal.x, ai_normal.y, ai_normal.z);
normals.ptrw()[l] = normal;
}
PackedVector3Array new_normals = array_copy[RenderingServer::ARRAY_NORMAL].duplicate(true);
ERR_CONTINUE(normals.size() != new_normals.size());
for (int l = 0; l < normals.size(); l++) {
Vector3 *w = new_normals.ptrw();
w[l] = normals[l];
}
array_copy[RenderingServer::ARRAY_NORMAL] = new_normals;
}
if (ai_mesh->mAnimMeshes[j]->HasTangentsAndBitangents()) {
PackedColorArray tangents;
tangents.resize(num_vertices);
Color *w = tangents.ptrw();
for (size_t l = 0; l < num_vertices; l++) {
AssimpUtils::calc_tangent_from_mesh(ai_mesh, j, l, l, w);
}
PackedFloat32Array new_tangents = array_copy[RenderingServer::ARRAY_TANGENT].duplicate(true);
ERR_CONTINUE(new_tangents.size() != tangents.size() * 4);
for (int32_t l = 0; l < tangents.size(); l++) {
new_tangents.ptrw()[l + 0] = tangents[l].r;
new_tangents.ptrw()[l + 1] = tangents[l].g;
new_tangents.ptrw()[l + 2] = tangents[l].b;
new_tangents.ptrw()[l + 3] = tangents[l].a;
}
array_copy[RenderingServer::ARRAY_TANGENT] = new_tangents;
}
morphs[j] = array_copy;
}
mesh->add_surface_from_arrays(primitive, array_mesh, morphs);
mesh->surface_set_material(i, mat);
mesh->surface_set_name(i, AssimpUtils::get_assimp_string(ai_mesh->mName));
}
return mesh;
}
/**
* Create a new mesh for the node supplied
*/
MeshInstance3D *
EditorSceneImporterAssimp::create_mesh(ImportState &state, const aiNode *assimp_node, const String &node_name, Node *active_node, Transform node_transform) {
/* MESH NODE */
Ref<Mesh> mesh;
Ref<Skin> skin;
// see if we have mesh cache for this.
Vector<int> surface_indices;
RegenerateBoneStack(state);
// Configure indices
for (uint32_t i = 0; i < assimp_node->mNumMeshes; i++) {
int mesh_index = assimp_node->mMeshes[i];
// create list of mesh indexes
surface_indices.push_back(mesh_index);
}
//surface_indices.sort();
String mesh_key;
for (int i = 0; i < surface_indices.size(); i++) {
if (i > 0) {
mesh_key += ":";
}
mesh_key += itos(surface_indices[i]);
}
Skeleton3D *skeleton = NULL;
aiNode *armature = NULL;
if (!state.mesh_cache.has(mesh_key)) {
mesh = _generate_mesh_from_surface_indices(state, surface_indices, assimp_node, skin, skeleton);
state.mesh_cache[mesh_key] = mesh;
}
MeshInstance3D *mesh_node = memnew(MeshInstance3D);
mesh = state.mesh_cache[mesh_key];
mesh_node->set_mesh(mesh);
// if we have a valid skeleton set it up
if (skin.is_valid()) {
for (uint32_t i = 0; i < assimp_node->mNumMeshes; i++) {
unsigned int mesh_index = assimp_node->mMeshes[i];
const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_index];
// please remember bone id relative to the skin is NOT the mesh relative index.
// it is the index relative to the skeleton that is why
// we have state.bone_id_map, it allows for duplicate bone id's too :)
// hope this makes sense
int bind_count = 0;
for (unsigned int boneId = 0; boneId < ai_mesh->mNumBones; ++boneId) {
aiBone *iterBone = ai_mesh->mBones[boneId];
// used to reparent mesh to the correct armature later on if assigned.
if (!armature) {
print_verbose("Configured mesh armature, will reparent later to armature");
armature = iterBone->mArmature;
}
if (skeleton) {
int id = skeleton->find_bone(AssimpUtils::get_assimp_string(iterBone->mName));
if (id != -1) {
print_verbose("Set bind bone: mesh: " + itos(mesh_index) + " bone index: " + itos(id));
Transform t = AssimpUtils::assimp_matrix_transform(iterBone->mOffsetMatrix);
skin->add_bind(bind_count, t);
skin->set_bind_bone(bind_count, id);
bind_count++;
}
}
}
}
print_verbose("Finished configuring bind pose for skin mesh");
}
// this code parents all meshes with bones to the armature they are for
// GLTF2 specification relies on this and we are enforcing it for FBX.
if (armature && state.flat_node_map[armature]) {
Node *armature_parent = state.flat_node_map[armature];
print_verbose("Parented mesh " + node_name + " to armature " + armature_parent->get_name());
// static mesh handling
armature_parent->add_child(mesh_node);
// transform must be identity
mesh_node->set_global_transform(Transform());
mesh_node->set_name(node_name);
mesh_node->set_owner(state.root);
} else {
// static mesh handling
active_node->add_child(mesh_node);
mesh_node->set_global_transform(node_transform);
mesh_node->set_name(node_name);
mesh_node->set_owner(state.root);
}
if (skeleton) {
print_verbose("Attempted to set skeleton path!");
mesh_node->set_skeleton_path(mesh_node->get_path_to(skeleton));
mesh_node->set_skin(skin);
}
return mesh_node;
}
/**
* Create a light for the scene
* Automatically caches lights for lookup later
*/
Node3D *EditorSceneImporterAssimp::create_light(
ImportState &state,
const String &node_name,
Transform &look_at_transform) {
Light3D *light = NULL;
aiLight *assimp_light = state.assimp_scene->mLights[state.light_cache[node_name]];
ERR_FAIL_COND_V(!assimp_light, NULL);
if (assimp_light->mType == aiLightSource_DIRECTIONAL) {
light = memnew(DirectionalLight3D);
} else if (assimp_light->mType == aiLightSource_POINT) {
light = memnew(OmniLight3D);
} else if (assimp_light->mType == aiLightSource_SPOT) {
light = memnew(SpotLight3D);
}
ERR_FAIL_COND_V(light == NULL, NULL);
if (assimp_light->mType != aiLightSource_POINT) {
Vector3 pos = Vector3(
assimp_light->mPosition.x,
assimp_light->mPosition.y,
assimp_light->mPosition.z);
Vector3 look_at = Vector3(
assimp_light->mDirection.y,
assimp_light->mDirection.x,
assimp_light->mDirection.z)
.normalized();
Vector3 up = Vector3(
assimp_light->mUp.x,
assimp_light->mUp.y,
assimp_light->mUp.z);
look_at_transform.set_look_at(pos, look_at, up);
}
// properties for light variables should be put here.
// not really hugely important yet but we will need them in the future
light->set_color(
Color(assimp_light->mColorDiffuse.r, assimp_light->mColorDiffuse.g, assimp_light->mColorDiffuse.b));
return light;
}
/**
* Create camera for the scene
*/
Node3D *EditorSceneImporterAssimp::create_camera(
ImportState &state,
const String &node_name,
Transform &look_at_transform) {
aiCamera *camera = state.assimp_scene->mCameras[state.camera_cache[node_name]];
ERR_FAIL_COND_V(!camera, NULL);
Camera3D *camera_node = memnew(Camera3D);
ERR_FAIL_COND_V(!camera_node, NULL);
float near = camera->mClipPlaneNear;
if (Math::is_equal_approx(near, 0.0f)) {
near = 0.1f;
}
camera_node->set_perspective(Math::rad2deg(camera->mHorizontalFOV) * 2.0f, near, camera->mClipPlaneFar);
Vector3 pos = Vector3(camera->mPosition.x, camera->mPosition.y, camera->mPosition.z);
Vector3 look_at = Vector3(camera->mLookAt.y, camera->mLookAt.x, camera->mLookAt.z).normalized();
Vector3 up = Vector3(camera->mUp.x, camera->mUp.y, camera->mUp.z);
look_at_transform.set_look_at(pos + look_at_transform.origin, look_at, up);
return camera_node;
}
/**
* Generate node
* Recursive call to iterate over all nodes
*/
void EditorSceneImporterAssimp::_generate_node(
ImportState &state,
const aiNode *assimp_node) {
ERR_FAIL_COND(assimp_node == NULL);
state.nodes.push_back(assimp_node);
String parent_name = AssimpUtils::get_assimp_string(assimp_node->mParent->mName);
// please note
// duplicate bone names exist
// this is why we only check if the bone exists
// so everything else is useless but the name
// please do not copy any other values from get_bone_by_name.
aiBone *parent_bone = get_bone_by_name(state.assimp_scene, assimp_node->mParent->mName);
aiBone *current_bone = get_bone_by_name(state.assimp_scene, assimp_node->mName);
// is this an armature
// parent null
// and this is the first bone :)
if (parent_bone == NULL && current_bone) {
state.armature_nodes.push_back(assimp_node->mParent);
print_verbose("found valid armature: " + parent_name);
}
for (size_t i = 0; i < assimp_node->mNumChildren; i++) {
_generate_node(state, assimp_node->mChildren[i]);
}
}