virtualx-engine/modules/mono/glue/Managed/Files/Basis.cs
Aaron Franke 86922ff70b
Make is_equal_approx separate for structures
This commit adds exposed behavior for C#
2019-10-14 16:46:54 -04:00

687 lines
21 KiB
C#
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using System;
using System.Runtime.InteropServices;
#if REAL_T_IS_DOUBLE
using real_t = System.Double;
#else
using real_t = System.Single;
#endif
namespace Godot
{
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Basis : IEquatable<Basis>
{
// NOTE: x, y and z are public-only. Use Column0, Column1 and Column2 internally.
/// <summary>
/// Returns the basis matrixs x vector.
/// This is equivalent to <see cref="Column0"/>.
/// </summary>
public Vector3 x
{
get => Column0;
set => Column0 = value;
}
/// <summary>
/// Returns the basis matrixs y vector.
/// This is equivalent to <see cref="Column1"/>.
/// </summary>
public Vector3 y
{
get => Column1;
set => Column1 = value;
}
/// <summary>
/// Returns the basis matrixs z vector.
/// This is equivalent to <see cref="Column2"/>.
/// </summary>
public Vector3 z
{
get => Column2;
set => Column2 = value;
}
public Vector3 Row0;
public Vector3 Row1;
public Vector3 Row2;
public Vector3 Column0
{
get => new Vector3(Row0.x, Row1.x, Row2.x);
set
{
this.Row0.x = value.x;
this.Row1.x = value.y;
this.Row2.x = value.z;
}
}
public Vector3 Column1
{
get => new Vector3(Row0.y, Row1.y, Row2.y);
set
{
this.Row0.y = value.x;
this.Row1.y = value.y;
this.Row2.y = value.z;
}
}
public Vector3 Column2
{
get => new Vector3(Row0.z, Row1.z, Row2.z);
set
{
this.Row0.z = value.x;
this.Row1.z = value.y;
this.Row2.z = value.z;
}
}
public Vector3 Scale
{
get
{
real_t detSign = Mathf.Sign(Determinant());
return detSign * new Vector3
(
new Vector3(this.Row0[0], this.Row1[0], this.Row2[0]).Length(),
new Vector3(this.Row0[1], this.Row1[1], this.Row2[1]).Length(),
new Vector3(this.Row0[2], this.Row1[2], this.Row2[2]).Length()
);
}
}
public Vector3 this[int columnIndex]
{
get
{
switch (columnIndex)
{
case 0:
return Column0;
case 1:
return Column1;
case 2:
return Column2;
default:
throw new IndexOutOfRangeException();
}
}
set
{
switch (columnIndex)
{
case 0:
Column0 = value;
return;
case 1:
Column1 = value;
return;
case 2:
Column2 = value;
return;
default:
throw new IndexOutOfRangeException();
}
}
}
public real_t this[int columnIndex, int rowIndex]
{
get
{
switch (columnIndex)
{
case 0:
return Column0[rowIndex];
case 1:
return Column1[rowIndex];
case 2:
return Column2[rowIndex];
default:
throw new IndexOutOfRangeException();
}
}
set
{
switch (columnIndex)
{
case 0:
{
var column0 = Column0;
column0[rowIndex] = value;
Column0 = column0;
return;
}
case 1:
{
var column1 = Column1;
column1[rowIndex] = value;
Column1 = column1;
return;
}
case 2:
{
var column2 = Column2;
column2[rowIndex] = value;
Column2 = column2;
return;
}
default:
throw new IndexOutOfRangeException();
}
}
}
internal Quat RotationQuat()
{
Basis orthonormalizedBasis = Orthonormalized();
real_t det = orthonormalizedBasis.Determinant();
if (det < 0)
{
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
orthonormalizedBasis = orthonormalizedBasis.Scaled(Vector3.NegOne);
}
return orthonormalizedBasis.Quat();
}
internal void SetQuatScale(Quat quat, Vector3 scale)
{
SetDiagonal(scale);
Rotate(quat);
}
private void Rotate(Quat quat)
{
this *= new Basis(quat);
}
private void SetDiagonal(Vector3 diagonal)
{
Row0 = new Vector3(diagonal.x, 0, 0);
Row1 = new Vector3(0, diagonal.y, 0);
Row2 = new Vector3(0, 0, diagonal.z);
}
public real_t Determinant()
{
real_t cofac00 = Row1[1] * Row2[2] - Row1[2] * Row2[1];
real_t cofac10 = Row1[2] * Row2[0] - Row1[0] * Row2[2];
real_t cofac20 = Row1[0] * Row2[1] - Row1[1] * Row2[0];
return Row0[0] * cofac00 + Row0[1] * cofac10 + Row0[2] * cofac20;
}
public Vector3 GetEuler()
{
Basis m = Orthonormalized();
Vector3 euler;
euler.z = 0.0f;
real_t mzy = m.Row1[2];
if (mzy < 1.0f)
{
if (mzy > -1.0f)
{
euler.x = Mathf.Asin(-mzy);
euler.y = Mathf.Atan2(m.Row0[2], m.Row2[2]);
euler.z = Mathf.Atan2(m.Row1[0], m.Row1[1]);
}
else
{
euler.x = Mathf.Pi * 0.5f;
euler.y = -Mathf.Atan2(-m.Row0[1], m.Row0[0]);
}
}
else
{
euler.x = -Mathf.Pi * 0.5f;
euler.y = -Mathf.Atan2(-m.Row0[1], m.Row0[0]);
}
return euler;
}
public Vector3 GetRow(int index)
{
switch (index)
{
case 0:
return Row0;
case 1:
return Row1;
case 2:
return Row2;
default:
throw new IndexOutOfRangeException();
}
}
public void SetRow(int index, Vector3 value)
{
switch (index)
{
case 0:
Row0 = value;
return;
case 1:
Row1 = value;
return;
case 2:
Row2 = value;
return;
default:
throw new IndexOutOfRangeException();
}
}
public Vector3 GetColumn(int index)
{
return this[index];
}
public void SetColumn(int index, Vector3 value)
{
this[index] = value;
}
[Obsolete("GetAxis is deprecated. Use GetColumn instead.")]
public Vector3 GetAxis(int axis)
{
return new Vector3(this.Row0[axis], this.Row1[axis], this.Row2[axis]);
}
public int GetOrthogonalIndex()
{
var orth = this;
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
var row = orth.GetRow(i);
real_t v = row[j];
if (v > 0.5f)
v = 1.0f;
else if (v < -0.5f)
v = -1.0f;
else
v = 0f;
row[j] = v;
orth.SetRow(i, row);
}
}
for (int i = 0; i < 24; i++)
{
if (orth == _orthoBases[i])
return i;
}
return 0;
}
public Basis Inverse()
{
real_t cofac00 = Row1[1] * Row2[2] - Row1[2] * Row2[1];
real_t cofac10 = Row1[2] * Row2[0] - Row1[0] * Row2[2];
real_t cofac20 = Row1[0] * Row2[1] - Row1[1] * Row2[0];
real_t det = Row0[0] * cofac00 + Row0[1] * cofac10 + Row0[2] * cofac20;
if (det == 0)
throw new InvalidOperationException("Matrix determinant is zero and cannot be inverted.");
real_t detInv = 1.0f / det;
real_t cofac01 = Row0[2] * Row2[1] - Row0[1] * Row2[2];
real_t cofac02 = Row0[1] * Row1[2] - Row0[2] * Row1[1];
real_t cofac11 = Row0[0] * Row2[2] - Row0[2] * Row2[0];
real_t cofac12 = Row0[2] * Row1[0] - Row0[0] * Row1[2];
real_t cofac21 = Row0[1] * Row2[0] - Row0[0] * Row2[1];
real_t cofac22 = Row0[0] * Row1[1] - Row0[1] * Row1[0];
return new Basis
(
cofac00 * detInv, cofac01 * detInv, cofac02 * detInv,
cofac10 * detInv, cofac11 * detInv, cofac12 * detInv,
cofac20 * detInv, cofac21 * detInv, cofac22 * detInv
);
}
public Basis Orthonormalized()
{
Vector3 column0 = GetColumn(0);
Vector3 column1 = GetColumn(1);
Vector3 column2 = GetColumn(2);
column0.Normalize();
column1 = column1 - column0 * column0.Dot(column1);
column1.Normalize();
column2 = column2 - column0 * column0.Dot(column2) - column1 * column1.Dot(column2);
column2.Normalize();
return new Basis(column0, column1, column2);
}
public Basis Rotated(Vector3 axis, real_t phi)
{
return new Basis(axis, phi) * this;
}
public Basis Scaled(Vector3 scale)
{
var b = this;
b.Row0 *= scale.x;
b.Row1 *= scale.y;
b.Row2 *= scale.z;
return b;
}
public real_t Tdotx(Vector3 with)
{
return this.Row0[0] * with[0] + this.Row1[0] * with[1] + this.Row2[0] * with[2];
}
public real_t Tdoty(Vector3 with)
{
return this.Row0[1] * with[0] + this.Row1[1] * with[1] + this.Row2[1] * with[2];
}
public real_t Tdotz(Vector3 with)
{
return this.Row0[2] * with[0] + this.Row1[2] * with[1] + this.Row2[2] * with[2];
}
public Basis Transposed()
{
var tr = this;
real_t temp = tr.Row0[1];
tr.Row0[1] = tr.Row1[0];
tr.Row1[0] = temp;
temp = tr.Row0[2];
tr.Row0[2] = tr.Row2[0];
tr.Row2[0] = temp;
temp = tr.Row1[2];
tr.Row1[2] = tr.Row2[1];
tr.Row2[1] = temp;
return tr;
}
public Vector3 Xform(Vector3 v)
{
return new Vector3
(
this.Row0.Dot(v),
this.Row1.Dot(v),
this.Row2.Dot(v)
);
}
public Vector3 XformInv(Vector3 v)
{
return new Vector3
(
this.Row0[0] * v.x + this.Row1[0] * v.y + this.Row2[0] * v.z,
this.Row0[1] * v.x + this.Row1[1] * v.y + this.Row2[1] * v.z,
this.Row0[2] * v.x + this.Row1[2] * v.y + this.Row2[2] * v.z
);
}
public Quat Quat()
{
real_t trace = Row0[0] + Row1[1] + Row2[2];
if (trace > 0.0f)
{
real_t s = Mathf.Sqrt(trace + 1.0f) * 2f;
real_t inv_s = 1f / s;
return new Quat(
(Row2[1] - Row1[2]) * inv_s,
(Row0[2] - Row2[0]) * inv_s,
(Row1[0] - Row0[1]) * inv_s,
s * 0.25f
);
}
if (Row0[0] > Row1[1] && Row0[0] > Row2[2])
{
real_t s = Mathf.Sqrt(Row0[0] - Row1[1] - Row2[2] + 1.0f) * 2f;
real_t inv_s = 1f / s;
return new Quat(
s * 0.25f,
(Row0[1] + Row1[0]) * inv_s,
(Row0[2] + Row2[0]) * inv_s,
(Row2[1] - Row1[2]) * inv_s
);
}
if (Row1[1] > Row2[2])
{
real_t s = Mathf.Sqrt(-Row0[0] + Row1[1] - Row2[2] + 1.0f) * 2f;
real_t inv_s = 1f / s;
return new Quat(
(Row0[1] + Row1[0]) * inv_s,
s * 0.25f,
(Row1[2] + Row2[1]) * inv_s,
(Row0[2] - Row2[0]) * inv_s
);
}
else
{
real_t s = Mathf.Sqrt(-Row0[0] - Row1[1] + Row2[2] + 1.0f) * 2f;
real_t inv_s = 1f / s;
return new Quat(
(Row0[2] + Row2[0]) * inv_s,
(Row1[2] + Row2[1]) * inv_s,
s * 0.25f,
(Row1[0] - Row0[1]) * inv_s
);
}
}
private static readonly Basis[] _orthoBases = {
new Basis(1f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, 1f),
new Basis(0f, -1f, 0f, 1f, 0f, 0f, 0f, 0f, 1f),
new Basis(-1f, 0f, 0f, 0f, -1f, 0f, 0f, 0f, 1f),
new Basis(0f, 1f, 0f, -1f, 0f, 0f, 0f, 0f, 1f),
new Basis(1f, 0f, 0f, 0f, 0f, -1f, 0f, 1f, 0f),
new Basis(0f, 0f, 1f, 1f, 0f, 0f, 0f, 1f, 0f),
new Basis(-1f, 0f, 0f, 0f, 0f, 1f, 0f, 1f, 0f),
new Basis(0f, 0f, -1f, -1f, 0f, 0f, 0f, 1f, 0f),
new Basis(1f, 0f, 0f, 0f, -1f, 0f, 0f, 0f, -1f),
new Basis(0f, 1f, 0f, 1f, 0f, 0f, 0f, 0f, -1f),
new Basis(-1f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, -1f),
new Basis(0f, -1f, 0f, -1f, 0f, 0f, 0f, 0f, -1f),
new Basis(1f, 0f, 0f, 0f, 0f, 1f, 0f, -1f, 0f),
new Basis(0f, 0f, -1f, 1f, 0f, 0f, 0f, -1f, 0f),
new Basis(-1f, 0f, 0f, 0f, 0f, -1f, 0f, -1f, 0f),
new Basis(0f, 0f, 1f, -1f, 0f, 0f, 0f, -1f, 0f),
new Basis(0f, 0f, 1f, 0f, 1f, 0f, -1f, 0f, 0f),
new Basis(0f, -1f, 0f, 0f, 0f, 1f, -1f, 0f, 0f),
new Basis(0f, 0f, -1f, 0f, -1f, 0f, -1f, 0f, 0f),
new Basis(0f, 1f, 0f, 0f, 0f, -1f, -1f, 0f, 0f),
new Basis(0f, 0f, 1f, 0f, -1f, 0f, 1f, 0f, 0f),
new Basis(0f, 1f, 0f, 0f, 0f, 1f, 1f, 0f, 0f),
new Basis(0f, 0f, -1f, 0f, 1f, 0f, 1f, 0f, 0f),
new Basis(0f, -1f, 0f, 0f, 0f, -1f, 1f, 0f, 0f)
};
private static readonly Basis _identity = new Basis(1, 0, 0, 0, 1, 0, 0, 0, 1);
private static readonly Basis _flipX = new Basis(-1, 0, 0, 0, 1, 0, 0, 0, 1);
private static readonly Basis _flipY = new Basis(1, 0, 0, 0, -1, 0, 0, 0, 1);
private static readonly Basis _flipZ = new Basis(1, 0, 0, 0, 1, 0, 0, 0, -1);
public static Basis Identity { get { return _identity; } }
public static Basis FlipX { get { return _flipX; } }
public static Basis FlipY { get { return _flipY; } }
public static Basis FlipZ { get { return _flipZ; } }
public Basis(Quat quat)
{
real_t s = 2.0f / quat.LengthSquared;
real_t xs = quat.x * s;
real_t ys = quat.y * s;
real_t zs = quat.z * s;
real_t wx = quat.w * xs;
real_t wy = quat.w * ys;
real_t wz = quat.w * zs;
real_t xx = quat.x * xs;
real_t xy = quat.x * ys;
real_t xz = quat.x * zs;
real_t yy = quat.y * ys;
real_t yz = quat.y * zs;
real_t zz = quat.z * zs;
Row0 = new Vector3(1.0f - (yy + zz), xy - wz, xz + wy);
Row1 = new Vector3(xy + wz, 1.0f - (xx + zz), yz - wx);
Row2 = new Vector3(xz - wy, yz + wx, 1.0f - (xx + yy));
}
public Basis(Vector3 euler)
{
real_t c;
real_t s;
c = Mathf.Cos(euler.x);
s = Mathf.Sin(euler.x);
var xmat = new Basis(1, 0, 0, 0, c, -s, 0, s, c);
c = Mathf.Cos(euler.y);
s = Mathf.Sin(euler.y);
var ymat = new Basis(c, 0, s, 0, 1, 0, -s, 0, c);
c = Mathf.Cos(euler.z);
s = Mathf.Sin(euler.z);
var zmat = new Basis(c, -s, 0, s, c, 0, 0, 0, 1);
this = ymat * xmat * zmat;
}
public Basis(Vector3 axis, real_t phi)
{
Vector3 axisSq = new Vector3(axis.x * axis.x, axis.y * axis.y, axis.z * axis.z);
real_t cosine = Mathf.Cos(phi);
Row0.x = axisSq.x + cosine * (1.0f - axisSq.x);
Row1.y = axisSq.y + cosine * (1.0f - axisSq.y);
Row2.z = axisSq.z + cosine * (1.0f - axisSq.z);
real_t sine = Mathf.Sin(phi);
real_t t = 1.0f - cosine;
real_t xyzt = axis.x * axis.y * t;
real_t zyxs = axis.z * sine;
Row0.y = xyzt - zyxs;
Row1.x = xyzt + zyxs;
xyzt = axis.x * axis.z * t;
zyxs = axis.y * sine;
Row0.z = xyzt + zyxs;
Row2.x = xyzt - zyxs;
xyzt = axis.y * axis.z * t;
zyxs = axis.x * sine;
Row1.z = xyzt - zyxs;
Row2.y = xyzt + zyxs;
}
public Basis(Vector3 column0, Vector3 column1, Vector3 column2)
{
Row0 = new Vector3(column0.x, column1.x, column2.x);
Row1 = new Vector3(column0.y, column1.y, column2.y);
Row2 = new Vector3(column0.z, column1.z, column2.z);
// Same as:
// Column0 = column0;
// Column1 = column1;
// Column2 = column2;
// We need to assign the struct fields here first so we can't do it that way...
}
// Arguments are named such that xy is equal to calling x.y
internal Basis(real_t xx, real_t yx, real_t zx, real_t xy, real_t yy, real_t zy, real_t xz, real_t yz, real_t zz)
{
Row0 = new Vector3(xx, yx, zx);
Row1 = new Vector3(xy, yy, zy);
Row2 = new Vector3(xz, yz, zz);
}
public static Basis operator *(Basis left, Basis right)
{
return new Basis
(
right.Tdotx(left.Row0), right.Tdoty(left.Row0), right.Tdotz(left.Row0),
right.Tdotx(left.Row1), right.Tdoty(left.Row1), right.Tdotz(left.Row1),
right.Tdotx(left.Row2), right.Tdoty(left.Row2), right.Tdotz(left.Row2)
);
}
public static bool operator ==(Basis left, Basis right)
{
return left.Equals(right);
}
public static bool operator !=(Basis left, Basis right)
{
return !left.Equals(right);
}
public override bool Equals(object obj)
{
if (obj is Basis)
{
return Equals((Basis)obj);
}
return false;
}
public bool Equals(Basis other)
{
return Row0.Equals(other.Row0) && Row1.Equals(other.Row1) && Row2.Equals(other.Row2);
}
public bool IsEqualApprox(Basis other)
{
return Row0.IsEqualApprox(other.Row0) && Row1.IsEqualApprox(other.Row1) && Row2.IsEqualApprox(other.Row2);
}
public override int GetHashCode()
{
return Row0.GetHashCode() ^ Row1.GetHashCode() ^ Row2.GetHashCode();
}
public override string ToString()
{
return String.Format("({0}, {1}, {2})", new object[]
{
Row0.ToString(),
Row1.ToString(),
Row2.ToString()
});
}
public string ToString(string format)
{
return String.Format("({0}, {1}, {2})", new object[]
{
Row0.ToString(format),
Row1.ToString(format),
Row2.ToString(format)
});
}
}
}