virtualx-engine/scene/resources/bit_map.cpp
Rémi Verschelde 1426cd3b3a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".

Backported from #70885.
2023-01-10 15:26:54 +01:00

688 lines
18 KiB
C++

/**************************************************************************/
/* bit_map.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "bit_map.h"
#include "core/io/image_loader.h"
void BitMap::create(const Size2 &p_size) {
ERR_FAIL_COND(p_size.width < 1);
ERR_FAIL_COND(p_size.height < 1);
width = p_size.width;
height = p_size.height;
bitmask.resize((((width * height) - 1) / 8) + 1);
memset(bitmask.ptrw(), 0, bitmask.size());
}
void BitMap::create_from_image_alpha(const Ref<Image> &p_image, float p_threshold) {
ERR_FAIL_COND(p_image.is_null() || p_image->empty());
Ref<Image> img = p_image->duplicate();
img->convert(Image::FORMAT_LA8);
ERR_FAIL_COND(img->get_format() != Image::FORMAT_LA8);
create(Size2(img->get_width(), img->get_height()));
PoolVector<uint8_t>::Read r = img->get_data().read();
uint8_t *w = bitmask.ptrw();
for (int i = 0; i < width * height; i++) {
int bbyte = i / 8;
int bbit = i % 8;
if (r[i * 2 + 1] / 255.0 > p_threshold) {
w[bbyte] |= (1 << bbit);
}
}
}
void BitMap::set_bit_rect(const Rect2 &p_rect, bool p_value) {
Rect2i current = Rect2i(0, 0, width, height).clip(p_rect);
uint8_t *data = bitmask.ptrw();
for (int i = current.position.x; i < current.position.x + current.size.x; i++) {
for (int j = current.position.y; j < current.position.y + current.size.y; j++) {
int ofs = width * j + i;
int bbyte = ofs / 8;
int bbit = ofs % 8;
uint8_t b = data[bbyte];
if (p_value) {
b |= (1 << bbit);
} else {
b &= ~(1 << bbit);
}
data[bbyte] = b;
}
}
}
int BitMap::get_true_bit_count() const {
int ds = bitmask.size();
const uint8_t *d = bitmask.ptr();
int c = 0;
//fast, almost branchless version
for (int i = 0; i < ds; i++) {
c += (d[i] & (1 << 7)) >> 7;
c += (d[i] & (1 << 6)) >> 6;
c += (d[i] & (1 << 5)) >> 5;
c += (d[i] & (1 << 4)) >> 4;
c += (d[i] & (1 << 3)) >> 3;
c += (d[i] & (1 << 2)) >> 2;
c += (d[i] & (1 << 1)) >> 1;
c += d[i] & 1;
}
return c;
}
void BitMap::set_bit(const Point2 &p_pos, bool p_value) {
int x = p_pos.x;
int y = p_pos.y;
ERR_FAIL_INDEX(x, width);
ERR_FAIL_INDEX(y, height);
int ofs = width * y + x;
int bbyte = ofs / 8;
int bbit = ofs % 8;
uint8_t b = bitmask[bbyte];
if (p_value) {
b |= (1 << bbit);
} else {
b &= ~(1 << bbit);
}
bitmask.write[bbyte] = b;
}
bool BitMap::get_bit(const Point2 &p_pos) const {
int x = Math::fast_ftoi(p_pos.x);
int y = Math::fast_ftoi(p_pos.y);
ERR_FAIL_INDEX_V(x, width, false);
ERR_FAIL_INDEX_V(y, height, false);
int ofs = width * y + x;
int bbyte = ofs / 8;
int bbit = ofs % 8;
return (bitmask[bbyte] & (1 << bbit)) != 0;
}
Size2 BitMap::get_size() const {
return Size2(width, height);
}
void BitMap::_set_data(const Dictionary &p_d) {
ERR_FAIL_COND(!p_d.has("size"));
ERR_FAIL_COND(!p_d.has("data"));
create(p_d["size"]);
bitmask = p_d["data"];
}
Dictionary BitMap::_get_data() const {
Dictionary d;
d["size"] = get_size();
d["data"] = bitmask;
return d;
}
Vector<Vector2> BitMap::_march_square(const Rect2i &rect, const Point2i &start) const {
int stepx = 0;
int stepy = 0;
int prevx = 0;
int prevy = 0;
int startx = start.x;
int starty = start.y;
int curx = startx;
int cury = starty;
unsigned int count = 0;
Set<Point2i> case9s;
Set<Point2i> case6s;
Vector<Vector2> _points;
do {
int sv = 0;
{ //square value
/*
checking the 2x2 pixel grid, assigning these values to each pixel, if not transparent
+---+---+
| 1 | 2 |
+---+---+
| 4 | 8 | <- current pixel (curx,cury)
+---+---+
*/
Point2i tl = Point2i(curx - 1, cury - 1);
sv += (rect.has_point(tl) && get_bit(tl)) ? 1 : 0;
Point2i tr = Point2i(curx, cury - 1);
sv += (rect.has_point(tr) && get_bit(tr)) ? 2 : 0;
Point2i bl = Point2i(curx - 1, cury);
sv += (rect.has_point(bl) && get_bit(bl)) ? 4 : 0;
Point2i br = Point2i(curx, cury);
sv += (rect.has_point(br) && get_bit(br)) ? 8 : 0;
ERR_FAIL_COND_V(sv == 0 || sv == 15, Vector<Vector2>());
}
switch (sv) {
case 1:
case 5:
case 13:
/* going UP with these cases:
1 5 13
+---+---+ +---+---+ +---+---+
| 1 | | | 1 | | | 1 | |
+---+---+ +---+---+ +---+---+
| | | | 4 | | | 4 | 8 |
+---+---+ +---+---+ +---+---+
*/
stepx = 0;
stepy = -1;
break;
case 8:
case 10:
case 11:
/* going DOWN with these cases:
8 10 11
+---+---+ +---+---+ +---+---+
| | | | | 2 | | 1 | 2 |
+---+---+ +---+---+ +---+---+
| | 8 | | | 8 | | | 8 |
+---+---+ +---+---+ +---+---+
*/
stepx = 0;
stepy = 1;
break;
case 4:
case 12:
case 14:
/* going LEFT with these cases:
4 12 14
+---+---+ +---+---+ +---+---+
| | | | | | | | 2 |
+---+---+ +---+---+ +---+---+
| 4 | | | 4 | 8 | | 4 | 8 |
+---+---+ +---+---+ +---+---+
*/
stepx = -1;
stepy = 0;
break;
case 2:
case 3:
case 7:
/* going RIGHT with these cases:
2 3 7
+---+---+ +---+---+ +---+---+
| | 2 | | 1 | 2 | | 1 | 2 |
+---+---+ +---+---+ +---+---+
| | | | | | | 4 | |
+---+---+ +---+---+ +---+---+
*/
stepx = 1;
stepy = 0;
break;
case 9:
/*
+---+---+
| 1 | |
+---+---+
| | 8 |
+---+---+
this should normally go UP, but if we already been here, we go down
*/
if (case9s.has(Point2i(curx, cury))) {
//found, so we go down, and delete from case9s;
stepx = 0;
stepy = 1;
case9s.erase(Point2i(curx, cury));
} else {
//not found, we go up, and add to case9s;
stepx = 0;
stepy = -1;
case9s.insert(Point2i(curx, cury));
}
break;
case 6:
/*
6
+---+---+
| | 2 |
+---+---+
| 4 | |
+---+---+
this normally go RIGHT, but if its coming from RIGHT, it should go LEFT
*/
if (case6s.has(Point2i(curx, cury))) {
//found, so we go left, and delete from case6s;
stepx = -1;
stepy = 0;
case6s.erase(Point2i(curx, cury));
} else {
//not found, we go right, and add to case6s;
stepx = 1;
stepy = 0;
case6s.insert(Point2i(curx, cury));
}
break;
default:
ERR_PRINT("this shouldn't happen.");
}
//little optimization
// if previous direction is same as current direction,
// then we should modify the last vec to current
curx += stepx;
cury += stepy;
if (stepx == prevx && stepy == prevy) {
_points.write[_points.size() - 1].x = (float)(curx - rect.position.x);
_points.write[_points.size() - 1].y = (float)(cury + rect.position.y);
} else {
_points.push_back(Vector2((float)(curx - rect.position.x), (float)(cury + rect.position.y)));
}
count++;
prevx = stepx;
prevy = stepy;
ERR_FAIL_COND_V((int)count > width * height, _points);
} while (curx != startx || cury != starty);
return _points;
}
static float perpendicular_distance(const Vector2 &i, const Vector2 &start, const Vector2 &end) {
float res;
float slope;
float intercept;
if (start.x == end.x) {
res = Math::absf(i.x - end.x);
} else if (start.y == end.y) {
res = Math::absf(i.y - end.y);
} else {
slope = (end.y - start.y) / (end.x - start.x);
intercept = start.y - (slope * start.x);
res = Math::absf(slope * i.x - i.y + intercept) / Math::sqrt(Math::pow(slope, 2.0f) + 1.0);
}
return res;
}
static Vector<Vector2> rdp(const Vector<Vector2> &v, float optimization) {
if (v.size() < 3) {
return v;
}
int index = -1;
float dist = 0;
//not looping first and last point
for (size_t i = 1, size = v.size(); i < size - 1; ++i) {
float cdist = perpendicular_distance(v[i], v[0], v[v.size() - 1]);
if (cdist > dist) {
dist = cdist;
index = static_cast<int>(i);
}
}
if (dist > optimization) {
Vector<Vector2> left, right;
left.resize(index);
for (int i = 0; i < index; i++) {
left.write[i] = v[i];
}
right.resize(v.size() - index);
for (int i = 0; i < right.size(); i++) {
right.write[i] = v[index + i];
}
Vector<Vector2> r1 = rdp(left, optimization);
Vector<Vector2> r2 = rdp(right, optimization);
int middle = r1.size();
r1.resize(r1.size() + r2.size());
for (int i = 0; i < r2.size(); i++) {
r1.write[middle + i] = r2[i];
}
return r1;
} else {
Vector<Vector2> ret;
ret.push_back(v[0]);
ret.push_back(v[v.size() - 1]);
return ret;
}
}
static Vector<Vector2> reduce(const Vector<Vector2> &points, const Rect2i &rect, float epsilon) {
int size = points.size();
// if there are less than 3 points, then we have nothing
ERR_FAIL_COND_V(size < 3, Vector<Vector2>());
// if there are less than 9 points (but more than 3), then we don't need to reduce it
if (size < 9) {
return points;
}
float maxEp = MIN(rect.size.width, rect.size.height);
float ep = CLAMP(epsilon, 0.0, maxEp / 2);
Vector<Vector2> result = rdp(points, ep);
Vector2 last = result[result.size() - 1];
if (last.y > result[0].y && last.distance_to(result[0]) < ep * 0.5f) {
result.write[0].y = last.y;
result.resize(result.size() - 1);
}
return result;
}
struct FillBitsStackEntry {
Point2i pos;
int i;
int j;
};
static void fill_bits(const BitMap *p_src, Ref<BitMap> &p_map, const Point2i &p_pos, const Rect2i &rect) {
// Using a custom stack to work iteratively to avoid stack overflow on big bitmaps
PoolVector<FillBitsStackEntry> stack;
// Tracking size since we won't be shrinking the stack vector
int stack_size = 0;
Point2i pos = p_pos;
int next_i = 0;
int next_j = 0;
bool reenter = true;
bool popped = false;
do {
if (reenter) {
next_i = pos.x - 1;
next_j = pos.y - 1;
reenter = false;
}
for (int i = next_i; i <= pos.x + 1; i++) {
for (int j = next_j; j <= pos.y + 1; j++) {
if (popped) {
// The next loop over j must start normally
next_j = pos.y;
popped = false;
// Skip because an iteration was already executed with current counter values
continue;
}
if (i < rect.position.x || i >= rect.position.x + rect.size.x) {
continue;
}
if (j < rect.position.y || j >= rect.position.y + rect.size.y) {
continue;
}
if (p_map->get_bit(Vector2(i, j))) {
continue;
} else if (p_src->get_bit(Vector2(i, j))) {
p_map->set_bit(Vector2(i, j), true);
FillBitsStackEntry se = { pos, i, j };
stack.resize(MAX(stack_size + 1, stack.size()));
stack.set(stack_size, se);
stack_size++;
pos = Point2i(i, j);
reenter = true;
break;
}
}
if (reenter) {
break;
}
}
if (!reenter) {
if (stack_size) {
FillBitsStackEntry se = stack.get(stack_size - 1);
stack_size--;
pos = se.pos;
next_i = se.i;
next_j = se.j;
popped = true;
}
}
} while (reenter || popped);
print_verbose("BitMap: Max stack size: " + itos(stack.size()));
}
Vector<Vector<Vector2>> BitMap::clip_opaque_to_polygons(const Rect2 &p_rect, float p_epsilon) const {
Rect2i r = Rect2i(0, 0, width, height).clip(p_rect);
print_verbose("BitMap: Rect: " + r);
Point2i from;
Ref<BitMap> fill;
fill.instance();
fill->create(get_size());
Vector<Vector<Vector2>> polygons;
for (int i = r.position.y; i < r.position.y + r.size.height; i++) {
for (int j = r.position.x; j < r.position.x + r.size.width; j++) {
if (!fill->get_bit(Point2(j, i)) && get_bit(Point2(j, i))) {
fill_bits(this, fill, Point2i(j, i), r);
Vector<Vector2> polygon = _march_square(r, Point2i(j, i));
print_verbose("BitMap: Pre reduce: " + itos(polygon.size()));
polygon = reduce(polygon, r, p_epsilon);
print_verbose("BitMap: Post reduce: " + itos(polygon.size()));
if (polygon.size() < 3) {
print_verbose("Invalid polygon, skipped");
continue;
}
polygons.push_back(polygon);
}
}
}
return polygons;
}
void BitMap::grow_mask(int p_pixels, const Rect2 &p_rect) {
if (p_pixels == 0) {
return;
}
bool bit_value = p_pixels > 0;
p_pixels = Math::abs(p_pixels);
Rect2i r = Rect2i(0, 0, width, height).clip(p_rect);
Ref<BitMap> copy;
copy.instance();
copy->create(get_size());
copy->bitmask = bitmask;
for (int i = r.position.y; i < r.position.y + r.size.height; i++) {
for (int j = r.position.x; j < r.position.x + r.size.width; j++) {
if (bit_value == get_bit(Point2(j, i))) {
continue;
}
bool found = false;
for (int y = i - p_pixels; y <= i + p_pixels; y++) {
for (int x = j - p_pixels; x <= j + p_pixels; x++) {
bool outside = false;
if ((x < p_rect.position.x) || (x >= p_rect.position.x + p_rect.size.x) || (y < p_rect.position.y) || (y >= p_rect.position.y + p_rect.size.y)) {
// outside of rectangle counts as bit not set
if (!bit_value) {
outside = true;
} else {
continue;
}
}
float d = Point2(j, i).distance_to(Point2(x, y)) - CMP_EPSILON;
if (d > p_pixels) {
continue;
}
if (outside || (bit_value == copy->get_bit(Point2(x, y)))) {
found = true;
break;
}
}
if (found) {
break;
}
}
if (found) {
set_bit(Point2(j, i), bit_value);
}
}
}
}
void BitMap::shrink_mask(int p_pixels, const Rect2 &p_rect) {
grow_mask(-p_pixels, p_rect);
}
Array BitMap::_opaque_to_polygons_bind(const Rect2 &p_rect, float p_epsilon) const {
Vector<Vector<Vector2>> result = clip_opaque_to_polygons(p_rect, p_epsilon);
// Convert result to bindable types
Array result_array;
result_array.resize(result.size());
for (int i = 0; i < result.size(); i++) {
const Vector<Vector2> &polygon = result[i];
PoolVector2Array polygon_array;
polygon_array.resize(polygon.size());
{
PoolVector2Array::Write w = polygon_array.write();
for (int j = 0; j < polygon.size(); j++) {
w[j] = polygon[j];
}
}
result_array[i] = polygon_array;
}
return result_array;
}
void BitMap::resize(const Size2 &p_new_size) {
Ref<BitMap> new_bitmap;
new_bitmap.instance();
new_bitmap->create(p_new_size);
int lw = MIN(width, new_bitmap->width);
int lh = MIN(height, new_bitmap->height);
for (int x = 0; x < lw; x++) {
for (int y = 0; y < lh; y++) {
new_bitmap->set_bit(Vector2(x, y), get_bit(Vector2(x, y)));
}
}
width = new_bitmap->width;
height = new_bitmap->height;
bitmask = new_bitmap->bitmask;
}
Ref<Image> BitMap::convert_to_image() const {
Ref<Image> image;
image.instance();
image->create(width, height, false, Image::FORMAT_L8);
image->lock();
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
image->set_pixel(i, j, get_bit(Point2(i, j)) ? Color(1, 1, 1) : Color(0, 0, 0));
}
}
image->unlock();
return image;
}
void BitMap::blit(const Vector2 &p_pos, const Ref<BitMap> &p_bitmap) {
int x = p_pos.x;
int y = p_pos.y;
int w = p_bitmap->get_size().width;
int h = p_bitmap->get_size().height;
for (int i = 0; i < w; i++) {
for (int j = 0; j < h; j++) {
int px = x + i;
int py = y + j;
if (px < 0 || px >= width) {
continue;
}
if (py < 0 || py >= height) {
continue;
}
if (p_bitmap->get_bit(Vector2(i, j))) {
set_bit(Vector2(x, y), true);
}
}
}
}
void BitMap::_bind_methods() {
ClassDB::bind_method(D_METHOD("create", "size"), &BitMap::create);
ClassDB::bind_method(D_METHOD("create_from_image_alpha", "image", "threshold"), &BitMap::create_from_image_alpha, DEFVAL(0.1));
ClassDB::bind_method(D_METHOD("set_bit", "position", "bit"), &BitMap::set_bit);
ClassDB::bind_method(D_METHOD("get_bit", "position"), &BitMap::get_bit);
ClassDB::bind_method(D_METHOD("set_bit_rect", "rect", "bit"), &BitMap::set_bit_rect);
ClassDB::bind_method(D_METHOD("get_true_bit_count"), &BitMap::get_true_bit_count);
ClassDB::bind_method(D_METHOD("get_size"), &BitMap::get_size);
ClassDB::bind_method(D_METHOD("resize", "new_size"), &BitMap::resize);
ClassDB::bind_method(D_METHOD("_set_data"), &BitMap::_set_data);
ClassDB::bind_method(D_METHOD("_get_data"), &BitMap::_get_data);
ClassDB::bind_method(D_METHOD("grow_mask", "pixels", "rect"), &BitMap::grow_mask);
ClassDB::bind_method(D_METHOD("convert_to_image"), &BitMap::convert_to_image);
ClassDB::bind_method(D_METHOD("opaque_to_polygons", "rect", "epsilon"), &BitMap::_opaque_to_polygons_bind, DEFVAL(2.0));
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data");
}
BitMap::BitMap() {
width = 0;
height = 0;
}
//////////////////////////////////////