virtualx-engine/drivers/gles_common/rasterizer_canvas_batcher.h
Rémi Verschelde 49646383f1
Update copyright statements to 2021
Happy new year to the wonderful Godot community!

2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.

We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)

Here's to a great year 2021 for all Godot users 🎆

(cherry picked from commit b5334d14f7)
2021-01-13 16:17:06 +01:00

3103 lines
110 KiB
C++

/*************************************************************************/
/* rasterizer_canvas_batcher.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZER_CANVAS_BATCHER_H
#define RASTERIZER_CANVAS_BATCHER_H
#include "core/os/os.h"
#include "core/project_settings.h"
#include "rasterizer_array.h"
#include "rasterizer_asserts.h"
#include "rasterizer_storage_common.h"
#include "servers/visual/rasterizer.h"
// We are using the curiously recurring template pattern
// https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
// For static polymorphism.
// This makes it super easy to access
// data / call funcs in the derived rasterizers from the base without writing and
// maintaining a boatload of virtual functions.
// In addition it assures that vtable will not be used and the function calls can be optimized,
// because it gives compile time static polymorphism.
// These macros makes it simpler and less verbose to define (and redefine) the inline functions
// template preamble
#define T_PREAMBLE template <class T, typename T_STORAGE>
// class preamble
#define C_PREAMBLE RasterizerCanvasBatcher<T, T_STORAGE>
// generic preamble
#define PREAMBLE(RET_T) \
T_PREAMBLE \
RET_T C_PREAMBLE
template <class T, typename T_STORAGE>
class RasterizerCanvasBatcher {
public:
// used to determine whether we use hardware transform (none)
// software transform all verts, or software transform just a translate
// (no rotate or scale)
enum TransformMode {
TM_NONE,
TM_ALL,
TM_TRANSLATE,
};
// pod versions of vector and color and RID, need to be 32 bit for vertex format
struct BatchVector2 {
float x, y;
void set(float xx, float yy) {
x = xx;
y = yy;
}
void set(const Vector2 &p_o) {
x = p_o.x;
y = p_o.y;
}
void to(Vector2 &r_o) const {
r_o.x = x;
r_o.y = y;
}
};
struct BatchColor {
float r, g, b, a;
void set_white() {
r = 1.0f;
g = 1.0f;
b = 1.0f;
a = 1.0f;
}
void set(const Color &p_c) {
r = p_c.r;
g = p_c.g;
b = p_c.b;
a = p_c.a;
}
void set(float rr, float gg, float bb, float aa) {
r = rr;
g = gg;
b = bb;
a = aa;
}
bool operator==(const BatchColor &p_c) const {
return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a);
}
bool operator!=(const BatchColor &p_c) const { return (*this == p_c) == false; }
bool equals(const Color &p_c) const {
return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a);
}
const float *get_data() const { return &r; }
String to_string() const {
String sz = "{";
const float *data = get_data();
for (int c = 0; c < 4; c++) {
float f = data[c];
int val = ((f * 255.0f) + 0.5f);
sz += String(Variant(val)) + " ";
}
sz += "}";
return sz;
}
};
// simplest FVF - local or baked position
struct BatchVertex {
// must be 32 bit pod
BatchVector2 pos;
BatchVector2 uv;
};
// simple FVF but also incorporating baked color
struct BatchVertexColored : public BatchVertex {
// must be 32 bit pod
BatchColor col;
};
// if we are using normal mapping, we need light angles to be sent
struct BatchVertexLightAngled : public BatchVertexColored {
// must be pod
float light_angle;
};
// CUSTOM SHADER vertex formats. These are larger but will probably
// be needed with custom shaders in order to have the data accessible in the shader.
// if we are using COLOR in vertex shader but not position (VERTEX)
struct BatchVertexModulated : public BatchVertexLightAngled {
BatchColor modulate;
};
struct BatchTransform {
BatchVector2 translate;
BatchVector2 basis[2];
};
// last resort, specially for custom shader, we put everything possible into a huge FVF
// not very efficient, but better than no batching at all.
struct BatchVertexLarge : public BatchVertexModulated {
// must be pod
BatchTransform transform;
};
// Batch should be as small as possible, and ideally nicely aligned (is 32 bytes at the moment)
struct Batch {
RasterizerStorageCommon::BatchType type; // should be 16 bit
uint16_t batch_texture_id;
// also item reference number
uint32_t first_command;
// in the case of DEFAULT, this is num commands.
// with rects, is number of command and rects.
// with lines, is number of lines
uint32_t num_commands;
// first vertex of this batch in the vertex lists
uint32_t first_vert;
BatchColor color;
};
struct BatchTex {
enum TileMode : uint32_t {
TILE_OFF,
TILE_NORMAL,
TILE_FORCE_REPEAT,
};
RID RID_texture;
RID RID_normal;
TileMode tile_mode;
BatchVector2 tex_pixel_size;
uint32_t flags;
};
// items in a list to be sorted prior to joining
struct BSortItem {
// have a function to keep as pod, rather than operator
void assign(const BSortItem &o) {
item = o.item;
z_index = o.z_index;
}
RasterizerCanvas::Item *item;
int z_index;
};
// batch item may represent 1 or more items
struct BItemJoined {
uint32_t first_item_ref;
uint32_t num_item_refs;
Rect2 bounding_rect;
// note the z_index may only be correct for the first of the joined item references
// this has implications for light culling with z ranged lights.
int16_t z_index;
// these are defined in RasterizerStorageCommon::BatchFlags
uint16_t flags;
// we are always splitting items with lots of commands,
// and items with unhandled primitives (default)
bool use_hardware_transform() const { return num_item_refs == 1; }
};
struct BItemRef {
RasterizerCanvas::Item *item;
Color final_modulate;
};
struct BLightRegion {
void reset() {
light_bitfield = 0;
shadow_bitfield = 0;
too_many_lights = false;
}
uint64_t light_bitfield;
uint64_t shadow_bitfield;
bool too_many_lights; // we can only do light region optimization if there are 64 or less lights
};
struct BatchData {
BatchData() {
reset_flush();
reset_joined_item();
gl_vertex_buffer = 0;
gl_index_buffer = 0;
max_quads = 0;
vertex_buffer_size_units = 0;
vertex_buffer_size_bytes = 0;
index_buffer_size_units = 0;
index_buffer_size_bytes = 0;
use_colored_vertices = false;
settings_use_batching = false;
settings_max_join_item_commands = 0;
settings_colored_vertex_format_threshold = 0.0f;
settings_batch_buffer_num_verts = 0;
scissor_threshold_area = 0.0f;
joined_item_batch_flags = 0;
diagnose_frame = false;
next_diagnose_tick = 10000;
diagnose_frame_number = 9999999999; // some high number
join_across_z_indices = true;
settings_item_reordering_lookahead = 0;
settings_use_batching_original_choice = false;
settings_flash_batching = false;
settings_diagnose_frame = false;
settings_scissor_lights = false;
settings_scissor_threshold = -1.0f;
settings_use_single_rect_fallback = false;
settings_use_software_skinning = true;
settings_ninepatch_mode = 0; // default
settings_light_max_join_items = 16;
settings_uv_contract = false;
settings_uv_contract_amount = 0.0f;
buffer_mode_batch_upload_send_null = true;
buffer_mode_batch_upload_flag_stream = false;
stats_items_sorted = 0;
stats_light_items_joined = 0;
}
// called for each joined item
void reset_joined_item() {
// noop but left in as a stub
}
// called after each flush
void reset_flush() {
batches.reset();
batch_textures.reset();
vertices.reset();
light_angles.reset();
vertex_colors.reset();
vertex_modulates.reset();
vertex_transforms.reset();
total_quads = 0;
total_verts = 0;
total_color_changes = 0;
use_light_angles = false;
use_modulate = false;
use_large_verts = false;
fvf = RasterizerStorageCommon::FVF_REGULAR;
}
unsigned int gl_vertex_buffer;
unsigned int gl_index_buffer;
uint32_t max_quads;
uint32_t vertex_buffer_size_units;
uint32_t vertex_buffer_size_bytes;
uint32_t index_buffer_size_units;
uint32_t index_buffer_size_bytes;
// small vertex FVF type - pos and UV.
// This will always be written to initially, but can be translated
// to larger FVFs if necessary.
RasterizerArray<BatchVertex> vertices;
// extra data which can be stored during prefilling, for later translation to larger FVFs
RasterizerArray<float> light_angles;
RasterizerArray<BatchColor> vertex_colors; // these aren't usually used, but are for polys
RasterizerArray<BatchColor> vertex_modulates;
RasterizerArray<BatchTransform> vertex_transforms;
// instead of having a different buffer for each vertex FVF type
// we have a special array big enough for the biggest FVF
// which can have a changeable unit size, and reuse it.
RasterizerUnitArray unit_vertices;
RasterizerArray<Batch> batches;
RasterizerArray<Batch> batches_temp; // used for translating to colored vertex batches
RasterizerArray_non_pod<BatchTex> batch_textures; // the only reason this is non-POD is because of RIDs
// SHOULD THESE BE IN FILLSTATE?
// flexible vertex format.
// all verts have pos and UV.
// some have color, some light angles etc.
RasterizerStorageCommon::FVF fvf;
bool use_colored_vertices;
bool use_light_angles;
bool use_modulate;
bool use_large_verts;
// if the shader is using MODULATE, we prevent baking color so the final_modulate can
// be read in the shader.
// if the shader is reading VERTEX, we prevent baking vertex positions with extra matrices etc
// to prevent the read position being incorrect.
// These flags are defined in RasterizerStorageCommon::BatchFlags
uint32_t joined_item_batch_flags;
RasterizerArray<BItemJoined> items_joined;
RasterizerArray<BItemRef> item_refs;
// items are sorted prior to joining
RasterizerArray<BSortItem> sort_items;
// counts
int total_quads;
int total_verts;
// we keep a record of how many color changes caused new batches
// if the colors are causing an excessive number of batches, we switch
// to alternate batching method and add color to the vertex format.
int total_color_changes;
// measured in pixels, recalculated each frame
float scissor_threshold_area;
// diagnose this frame, every nTh frame when settings_diagnose_frame is on
bool diagnose_frame;
String frame_string;
uint32_t next_diagnose_tick;
uint64_t diagnose_frame_number;
// whether to join items across z_indices - this can interfere with z ranged lights,
// so has to be disabled in some circumstances
bool join_across_z_indices;
// global settings
bool settings_use_batching; // the current use_batching (affected by flash)
bool settings_use_batching_original_choice; // the choice entered in project settings
bool settings_flash_batching; // for regression testing, flash between non-batched and batched renderer
bool settings_diagnose_frame; // print out batches to help optimize / regression test
int settings_max_join_item_commands;
float settings_colored_vertex_format_threshold;
int settings_batch_buffer_num_verts;
bool settings_scissor_lights;
float settings_scissor_threshold; // 0.0 to 1.0
int settings_item_reordering_lookahead;
bool settings_use_single_rect_fallback;
bool settings_use_software_skinning;
int settings_light_max_join_items;
int settings_ninepatch_mode;
// buffer orphaning modes
bool buffer_mode_batch_upload_send_null;
bool buffer_mode_batch_upload_flag_stream;
// uv contraction
bool settings_uv_contract;
float settings_uv_contract_amount;
// only done on diagnose frame
void reset_stats() {
stats_items_sorted = 0;
stats_light_items_joined = 0;
}
// frame stats (just for monitoring and debugging)
int stats_items_sorted;
int stats_light_items_joined;
} bdata;
struct FillState {
void reset_flush() {
// don't reset members that need to be preserved after flushing
// half way through a list of commands
curr_batch = 0;
batch_tex_id = -1;
texpixel_size = Vector2(1, 1);
contract_uvs = false;
sequence_batch_type_flags = 0;
}
void reset_joined_item(bool p_use_hardware_transform) {
reset_flush();
use_hardware_transform = p_use_hardware_transform;
extra_matrix_sent = false;
}
// for batching multiple types, we don't allow mixing RECTs / LINEs etc.
// using flags allows quicker rejection of sequences with different batch types
uint32_t sequence_batch_type_flags;
Batch *curr_batch;
int batch_tex_id;
bool use_hardware_transform;
bool contract_uvs;
Vector2 texpixel_size;
Color final_modulate;
TransformMode transform_mode;
TransformMode orig_transform_mode;
// support for extra matrices
bool extra_matrix_sent; // whether sent on this item (in which case sofware transform can't be used untl end of item)
int transform_extra_command_number_p1; // plus one to allow fast checking against zero
Transform2D transform_combined; // final * extra
};
// used during try_join
struct RenderItemState {
RenderItemState() { reset(); }
void reset() {
current_clip = nullptr;
shader_cache = nullptr;
rebind_shader = true;
prev_use_skeleton = false;
last_blend_mode = -1;
canvas_last_material = RID();
item_group_z = 0;
item_group_light = nullptr;
final_modulate = Color(-1.0, -1.0, -1.0, -1.0); // just something unlikely
joined_item_batch_type_flags_curr = 0;
joined_item_batch_type_flags_prev = 0;
joined_item = nullptr;
}
RasterizerCanvas::Item *current_clip;
typename T_STORAGE::Shader *shader_cache;
bool rebind_shader;
bool prev_use_skeleton;
bool prev_distance_field;
int last_blend_mode;
RID canvas_last_material;
Color final_modulate;
// used for joining items only
BItemJoined *joined_item;
bool join_batch_break;
BLightRegion light_region;
// we need some logic to prevent joining items that have vastly different batch types
// these are defined in RasterizerStorageCommon::BatchTypeFlags
uint32_t joined_item_batch_type_flags_curr;
uint32_t joined_item_batch_type_flags_prev;
// 'item group' is data over a single call to canvas_render_items
int item_group_z;
Color item_group_modulate;
RasterizerCanvas::Light *item_group_light;
Transform2D item_group_base_transform;
} _render_item_state;
bool use_nvidia_rect_workaround;
//////////////////////////////////////////////////////////////////////////////
// End of structs used by the batcher. Beginning of funcs.
private:
// curiously recurring template pattern - allows access to functions in the DERIVED class
// this is kind of like using virtual functions but more efficient as they are resolved at compile time
T_STORAGE *get_storage() { return static_cast<const T *>(this)->storage; }
const T_STORAGE *get_storage() const { return static_cast<const T *>(this)->storage; }
T *get_this() { return static_cast<T *>(this); }
const T *get_this() const { return static_cast<const T *>(this); }
protected:
// main functions called from the rasterizer canvas
void batch_constructor();
void batch_initialize();
void batch_canvas_begin();
void batch_canvas_end();
void batch_canvas_render_items_begin(const Color &p_modulate, RasterizerCanvas::Light *p_light, const Transform2D &p_base_transform);
void batch_canvas_render_items_end();
void batch_canvas_render_items(RasterizerCanvas::Item *p_item_list, int p_z, const Color &p_modulate, RasterizerCanvas::Light *p_light, const Transform2D &p_base_transform);
// recording and sorting items from the initial pass
void record_items(RasterizerCanvas::Item *p_item_list, int p_z);
void join_sorted_items();
void sort_items();
bool _sort_items_match(const BSortItem &p_a, const BSortItem &p_b) const;
bool sort_items_from(int p_start);
// joining logic
bool _disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed);
bool _detect_item_batch_break(RenderItemState &r_ris, RasterizerCanvas::Item *p_ci, bool &r_batch_break);
// drives the loop filling batches and flushing
void render_joined_item_commands(const BItemJoined &p_bij, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit);
private:
// flush once full or end of joined item
void flush_render_batches(RasterizerCanvas::Item *p_first_item, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, uint32_t p_sequence_batch_type_flags);
// a single joined item can contain multiple itemrefs, and thus create lots of batches
bool prefill_joined_item(FillState &r_fill_state, int &r_command_start, RasterizerCanvas::Item *p_item, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material);
// prefilling different types of batch
// default batch is an 'unhandled' legacy type batch that will be drawn with the legacy path,
// all other batches are accelerated.
void _prefill_default_batch(FillState &r_fill_state, int p_command_num, const RasterizerCanvas::Item &p_item);
// accelerated batches
bool _prefill_line(RasterizerCanvas::Item::CommandLine *p_line, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item *p_item, bool multiply_final_modulate);
template <bool SEND_LIGHT_ANGLES>
bool _prefill_ninepatch(RasterizerCanvas::Item::CommandNinePatch *p_np, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item *p_item, bool multiply_final_modulate);
template <bool SEND_LIGHT_ANGLES>
bool _prefill_polygon(RasterizerCanvas::Item::CommandPolygon *p_poly, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item *p_item, bool multiply_final_modulate);
template <bool SEND_LIGHT_ANGLES>
bool _prefill_rect(RasterizerCanvas::Item::CommandRect *rect, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item::Command *const *commands, RasterizerCanvas::Item *p_item, bool multiply_final_modulate);
// dealing with textures
int _batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match);
protected:
// legacy support for non batched mode
void _legacy_canvas_item_render_commands(RasterizerCanvas::Item *p_item, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material);
// light scissoring
bool _light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const;
bool _light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const;
void _calculate_scissor_threshold_area();
private:
// translating vertex formats prior to rendering
void _translate_batches_to_vertex_colored_FVF();
template <class BATCH_VERTEX_TYPE, bool INCLUDE_LIGHT_ANGLES, bool INCLUDE_MODULATE, bool INCLUDE_LARGE>
void _translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags);
protected:
// accessory funcs
void _software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const;
void _software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const;
TransformMode _find_transform_mode(const Transform2D &p_tr) const {
// decided whether to do translate only for software transform
if ((p_tr.elements[0].x == 1.0f) &&
(p_tr.elements[0].y == 0.0f) &&
(p_tr.elements[1].x == 0.0f) &&
(p_tr.elements[1].y == 1.0f)) {
return TM_TRANSLATE;
}
return TM_ALL;
}
bool _software_skin_poly(RasterizerCanvas::Item::CommandPolygon *p_poly, RasterizerCanvas::Item *p_item, BatchVertex *bvs, BatchColor *vertex_colors, const FillState &p_fill_state, const BatchColor *p_precalced_colors);
typename T_STORAGE::Texture *_get_canvas_texture(const RID &p_texture) const {
if (p_texture.is_valid()) {
typename T_STORAGE::Texture *texture = get_storage()->texture_owner.getornull(p_texture);
if (texture) {
// could be a proxy texture (e.g. animated)
if (texture->proxy) {
// take care to prevent infinite loop
int count = 0;
while (texture->proxy) {
texture = texture->proxy;
count++;
ERR_FAIL_COND_V_MSG(count == 16, nullptr, "Texture proxy infinite loop detected.");
}
}
return texture->get_ptr();
}
}
return nullptr;
}
public:
Batch *_batch_request_new(bool p_blank = true) {
Batch *batch = bdata.batches.request();
if (!batch) {
// grow the batches
bdata.batches.grow();
// and the temporary batches (used for color verts)
bdata.batches_temp.reset();
bdata.batches_temp.grow();
// this should always succeed after growing
batch = bdata.batches.request();
RAST_DEBUG_ASSERT(batch);
}
if (p_blank)
memset(batch, 0, sizeof(Batch));
return batch;
}
BatchVertex *_batch_vertex_request_new() {
return bdata.vertices.request();
}
protected:
// no need to compile these in in release, they are unneeded outside the editor and only add to executable size
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
#include "batch_diagnose.inc"
#endif
};
PREAMBLE(void)::batch_canvas_begin() {
// diagnose_frame?
bdata.frame_string = ""; // just in case, always set this as we don't want a string leak in release...
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
if (bdata.settings_diagnose_frame) {
bdata.diagnose_frame = false;
uint32_t tick = OS::get_singleton()->get_ticks_msec();
uint64_t frame = Engine::get_singleton()->get_frames_drawn();
if (tick >= bdata.next_diagnose_tick) {
bdata.next_diagnose_tick = tick + 10000;
// the plus one is prevent starting diagnosis half way through frame
bdata.diagnose_frame_number = frame + 1;
}
if (frame == bdata.diagnose_frame_number) {
bdata.diagnose_frame = true;
bdata.reset_stats();
}
if (bdata.diagnose_frame) {
bdata.frame_string = "canvas_begin FRAME " + itos(frame) + "\n";
}
}
#endif
}
PREAMBLE(void)::batch_canvas_end() {
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
if (bdata.diagnose_frame) {
bdata.frame_string += "canvas_end\n";
if (bdata.stats_items_sorted) {
bdata.frame_string += "\titems reordered: " + itos(bdata.stats_items_sorted) + "\n";
}
if (bdata.stats_light_items_joined) {
bdata.frame_string += "\tlight items joined: " + itos(bdata.stats_light_items_joined) + "\n";
}
print_line(bdata.frame_string);
}
#endif
}
PREAMBLE(void)::batch_canvas_render_items_begin(const Color &p_modulate, RasterizerCanvas::Light *p_light, const Transform2D &p_base_transform) {
// if we are debugging, flash each frame between batching renderer and old version to compare for regressions
if (bdata.settings_flash_batching) {
if ((Engine::get_singleton()->get_frames_drawn() % 2) == 0)
bdata.settings_use_batching = true;
else
bdata.settings_use_batching = false;
}
if (!bdata.settings_use_batching) {
return;
}
// this only needs to be done when screen size changes, but this should be
// infrequent enough
_calculate_scissor_threshold_area();
// set up render item state for all the z_indexes (this is common to all z_indexes)
_render_item_state.reset();
_render_item_state.item_group_modulate = p_modulate;
_render_item_state.item_group_light = p_light;
_render_item_state.item_group_base_transform = p_base_transform;
_render_item_state.light_region.reset();
// batch break must be preserved over the different z indices,
// to prevent joining to an item on a previous index if not allowed
_render_item_state.join_batch_break = false;
// whether to join across z indices depends on whether there are z ranged lights.
// joined z_index items can be wrongly classified with z ranged lights.
bdata.join_across_z_indices = true;
int light_count = 0;
while (p_light) {
light_count++;
if ((p_light->z_min != VS::CANVAS_ITEM_Z_MIN) || (p_light->z_max != VS::CANVAS_ITEM_Z_MAX)) {
// prevent joining across z indices. This would have caused visual regressions
bdata.join_across_z_indices = false;
}
p_light = p_light->next_ptr;
}
// can't use the light region bitfield if there are too many lights
// hopefully most games won't blow this limit..
// if they do they will work but it won't batch join items just in case
if (light_count > 64) {
_render_item_state.light_region.too_many_lights = true;
}
}
PREAMBLE(void)::batch_canvas_render_items_end() {
if (!bdata.settings_use_batching) {
return;
}
join_sorted_items();
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
if (bdata.diagnose_frame) {
bdata.frame_string += "items\n";
}
#endif
// batching render is deferred until after going through all the z_indices, joining all the items
get_this()->canvas_render_items_implementation(0, 0, _render_item_state.item_group_modulate,
_render_item_state.item_group_light,
_render_item_state.item_group_base_transform);
bdata.items_joined.reset();
bdata.item_refs.reset();
bdata.sort_items.reset();
}
PREAMBLE(void)::batch_canvas_render_items(RasterizerCanvas::Item *p_item_list, int p_z, const Color &p_modulate, RasterizerCanvas::Light *p_light, const Transform2D &p_base_transform) {
// stage 1 : join similar items, so that their state changes are not repeated,
// and commands from joined items can be batched together
if (bdata.settings_use_batching) {
record_items(p_item_list, p_z);
return;
}
// only legacy renders at this stage, batched renderer doesn't render until canvas_render_items_end()
get_this()->canvas_render_items_implementation(p_item_list, p_z, p_modulate, p_light, p_base_transform);
}
// Default batches will not occur in software transform only items
// EXCEPT IN THE CASE OF SINGLE RECTS (and this may well not occur, check the logic in prefill_join_item TYPE_RECT)
// but can occur where transform commands have been sent during hardware batch
PREAMBLE(void)::_prefill_default_batch(FillState &r_fill_state, int p_command_num, const RasterizerCanvas::Item &p_item) {
if (r_fill_state.curr_batch->type == RasterizerStorageCommon::BT_DEFAULT) {
// don't need to flush an extra transform command?
if (!r_fill_state.transform_extra_command_number_p1) {
// another default command, just add to the existing batch
r_fill_state.curr_batch->num_commands++;
RAST_DEV_DEBUG_ASSERT(r_fill_state.curr_batch->num_commands <= p_command_num);
} else {
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
if (r_fill_state.transform_extra_command_number_p1 != p_command_num) {
WARN_PRINT_ONCE("_prefill_default_batch : transform_extra_command_number_p1 != p_command_num");
}
#endif
// if the first member of the batch is a transform we have to be careful
if (!r_fill_state.curr_batch->num_commands) {
// there can be leading useless extra transforms (sometimes happens with debug collision polys)
// we need to rejig the first_command for the first useful transform
r_fill_state.curr_batch->first_command += r_fill_state.transform_extra_command_number_p1 - 1;
}
// we do have a pending extra transform command to flush
// either the extra transform is in the prior command, or not, in which case we need 2 batches
r_fill_state.curr_batch->num_commands += 2;
r_fill_state.transform_extra_command_number_p1 = 0; // mark as sent
r_fill_state.extra_matrix_sent = true;
// the original mode should always be hardware transform ..
// test this assumption
//CRASH_COND(r_fill_state.orig_transform_mode != TM_NONE);
r_fill_state.transform_mode = r_fill_state.orig_transform_mode;
// do we need to restore anything else?
}
} else {
// end of previous different type batch, so start new default batch
// first consider whether there is a dirty extra matrix to send
if (r_fill_state.transform_extra_command_number_p1) {
// get which command the extra is in, and blank all the records as it no longer is stored CPU side
int extra_command = r_fill_state.transform_extra_command_number_p1 - 1; // plus 1 based
r_fill_state.transform_extra_command_number_p1 = 0;
r_fill_state.extra_matrix_sent = true;
// send the extra to the GPU in a batch
r_fill_state.curr_batch = _batch_request_new();
r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT;
r_fill_state.curr_batch->first_command = extra_command;
r_fill_state.curr_batch->num_commands = 1;
// revert to the original transform mode
// e.g. go back to NONE if we were in hardware transform mode
r_fill_state.transform_mode = r_fill_state.orig_transform_mode;
// reset the original transform if we are going back to software mode,
// because the extra is now done on the GPU...
// (any subsequent extras are sent directly to the GPU, no deferring)
if (r_fill_state.orig_transform_mode != TM_NONE) {
r_fill_state.transform_combined = p_item.final_transform;
}
// can possibly combine batch with the next one in some cases
// this is more efficient than having an extra batch especially for the extra
if ((extra_command + 1) == p_command_num) {
r_fill_state.curr_batch->num_commands = 2;
return;
}
}
// start default batch
r_fill_state.curr_batch = _batch_request_new();
r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT;
r_fill_state.curr_batch->first_command = p_command_num;
r_fill_state.curr_batch->num_commands = 1;
}
}
PREAMBLE(int)::_batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match) {
// optimization .. in 99% cases the last matched value will be the same, so no need to traverse the list
if (p_previous_match > 0) // if it is zero, it will get hit first in the linear search anyway
{
const BatchTex &batch_texture = bdata.batch_textures[p_previous_match];
// note for future reference, if RID implementation changes, this could become more expensive
if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) {
// tiling mode must also match
bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF;
if (tiles == p_tile)
// match!
return p_previous_match;
}
}
// not the previous match .. we will do a linear search ... slower, but should happen
// not very often except with non-batchable runs, which are going to be slow anyway
// n.b. could possibly be replaced later by a fast hash table
for (int n = 0; n < bdata.batch_textures.size(); n++) {
const BatchTex &batch_texture = bdata.batch_textures[n];
if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) {
// tiling mode must also match
bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF;
if (tiles == p_tile)
// match!
return n;
}
}
// pushing back from local variable .. not ideal but has to use a Vector because non pod
// due to RIDs
BatchTex new_batch_tex;
new_batch_tex.RID_texture = p_texture;
new_batch_tex.RID_normal = p_normal;
// get the texture
typename T_STORAGE::Texture *texture = _get_canvas_texture(p_texture);
if (texture) {
// special case, there can be textures with no width or height
int w = texture->width;
int h = texture->height;
if (!w || !h) {
w = 1;
h = 1;
}
new_batch_tex.tex_pixel_size.x = 1.0 / w;
new_batch_tex.tex_pixel_size.y = 1.0 / h;
new_batch_tex.flags = texture->flags;
} else {
// maybe doesn't need doing...
new_batch_tex.tex_pixel_size.x = 1.0f;
new_batch_tex.tex_pixel_size.y = 1.0f;
new_batch_tex.flags = 0;
}
if (p_tile) {
if (texture) {
// default
new_batch_tex.tile_mode = BatchTex::TILE_NORMAL;
// no hardware support for non power of 2 tiling
if (!get_storage()->config.support_npot_repeat_mipmap) {
if (next_power_of_2(texture->alloc_width) != (unsigned int)texture->alloc_width && next_power_of_2(texture->alloc_height) != (unsigned int)texture->alloc_height) {
new_batch_tex.tile_mode = BatchTex::TILE_FORCE_REPEAT;
}
}
} else {
// this should not happen?
new_batch_tex.tile_mode = BatchTex::TILE_OFF;
}
} else {
new_batch_tex.tile_mode = BatchTex::TILE_OFF;
}
// push back
bdata.batch_textures.push_back(new_batch_tex);
return bdata.batch_textures.size() - 1;
}
PREAMBLE(void)::batch_constructor() {
bdata.settings_use_batching = false;
#ifdef GLES_OVER_GL
use_nvidia_rect_workaround = GLOBAL_GET("rendering/quality/2d/use_nvidia_rect_flicker_workaround");
#else
// Not needed (a priori) on GLES devices
use_nvidia_rect_workaround = false;
#endif
}
PREAMBLE(void)::batch_initialize() {
bdata.settings_use_batching = GLOBAL_GET("rendering/batching/options/use_batching");
bdata.settings_max_join_item_commands = GLOBAL_GET("rendering/batching/parameters/max_join_item_commands");
bdata.settings_colored_vertex_format_threshold = GLOBAL_GET("rendering/batching/parameters/colored_vertex_format_threshold");
bdata.settings_item_reordering_lookahead = GLOBAL_GET("rendering/batching/parameters/item_reordering_lookahead");
bdata.settings_light_max_join_items = GLOBAL_GET("rendering/batching/lights/max_join_items");
bdata.settings_use_single_rect_fallback = GLOBAL_GET("rendering/batching/options/single_rect_fallback");
bdata.settings_use_software_skinning = GLOBAL_GET("rendering/quality/2d/use_software_skinning");
bdata.settings_ninepatch_mode = GLOBAL_GET("rendering/quality/2d/ninepatch_mode");
// alternatively only enable uv contract if pixel snap in use,
// but with this enable bool, it should not be necessary
bdata.settings_uv_contract = GLOBAL_GET("rendering/batching/precision/uv_contract");
bdata.settings_uv_contract_amount = (float)GLOBAL_GET("rendering/batching/precision/uv_contract_amount") / 1000000.0f;
// we can use the threshold to determine whether to turn scissoring off or on
bdata.settings_scissor_threshold = GLOBAL_GET("rendering/batching/lights/scissor_area_threshold");
if (bdata.settings_scissor_threshold > 0.999f) {
bdata.settings_scissor_lights = false;
} else {
bdata.settings_scissor_lights = true;
// apply power of 4 relationship for the area, as most of the important changes
// will be happening at low values of scissor threshold
bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold;
bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold;
}
// The sweet spot on my desktop for cache is actually smaller than the max, and this
// is the default. This saves memory too so we will use it for now, needs testing to see whether this varies according
// to device / platform.
bdata.settings_batch_buffer_num_verts = GLOBAL_GET("rendering/batching/parameters/batch_buffer_size");
// override the use_batching setting in the editor
// (note that if the editor can't start, you can't change the use_batching project setting!)
if (Engine::get_singleton()->is_editor_hint()) {
bool use_in_editor = GLOBAL_GET("rendering/batching/options/use_batching_in_editor");
bdata.settings_use_batching = use_in_editor;
// fix some settings in the editor, as the performance not worth the risk
bdata.settings_use_single_rect_fallback = false;
}
// if we are using batching, we will purposefully disable the nvidia workaround.
// This is because the only reason to use the single rect fallback is the approx 2x speed
// of the uniform drawing technique. If we used nvidia workaround, speed would be
// approx equal to the batcher drawing technique (indexed primitive + VB).
if (bdata.settings_use_batching) {
use_nvidia_rect_workaround = false;
}
// For debugging, if flash is set in project settings, it will flash on alternate frames
// between the non-batched renderer and the batched renderer,
// in order to find regressions.
// This should not be used except during development.
// make a note of the original choice in case we are flashing on and off the batching
bdata.settings_use_batching_original_choice = bdata.settings_use_batching;
bdata.settings_flash_batching = GLOBAL_GET("rendering/batching/debug/flash_batching");
if (!bdata.settings_use_batching) {
// no flash when batching turned off
bdata.settings_flash_batching = false;
}
// frame diagnosis. print out the batches every nth frame
bdata.settings_diagnose_frame = false;
if (!Engine::get_singleton()->is_editor_hint() && bdata.settings_use_batching) {
// {
bdata.settings_diagnose_frame = GLOBAL_GET("rendering/batching/debug/diagnose_frame");
}
// the maximum num quads in a batch is limited by GLES2. We can have only 16 bit indices,
// which means we can address a vertex buffer of max size 65535. 4 vertices are needed per quad.
// Note this determines the memory use by the vertex buffer vector. max quads (65536/4)-1
// but can be reduced to save memory if really required (will result in more batches though)
const int max_possible_quads = (65536 / 4) - 1;
const int min_possible_quads = 8; // some reasonable small value
// value from project settings
int max_quads = bdata.settings_batch_buffer_num_verts / 4;
// sanity checks
max_quads = CLAMP(max_quads, min_possible_quads, max_possible_quads);
bdata.settings_max_join_item_commands = CLAMP(bdata.settings_max_join_item_commands, 0, 65535);
bdata.settings_colored_vertex_format_threshold = CLAMP(bdata.settings_colored_vertex_format_threshold, 0.0f, 1.0f);
bdata.settings_scissor_threshold = CLAMP(bdata.settings_scissor_threshold, 0.0f, 1.0f);
bdata.settings_light_max_join_items = CLAMP(bdata.settings_light_max_join_items, 0, 65535);
bdata.settings_item_reordering_lookahead = CLAMP(bdata.settings_item_reordering_lookahead, 0, 65535);
// for debug purposes, output a string with the batching options
String batching_options_string = "OpenGL ES Batching: ";
if (bdata.settings_use_batching) {
batching_options_string += "ON";
if (OS::get_singleton()->is_stdout_verbose()) {
batching_options_string += "\n\tOPTIONS\n";
batching_options_string += "\tmax_join_item_commands " + itos(bdata.settings_max_join_item_commands) + "\n";
batching_options_string += "\tcolored_vertex_format_threshold " + String(Variant(bdata.settings_colored_vertex_format_threshold)) + "\n";
batching_options_string += "\tbatch_buffer_size " + itos(bdata.settings_batch_buffer_num_verts) + "\n";
batching_options_string += "\tlight_scissor_area_threshold " + String(Variant(bdata.settings_scissor_threshold)) + "\n";
batching_options_string += "\titem_reordering_lookahead " + itos(bdata.settings_item_reordering_lookahead) + "\n";
batching_options_string += "\tlight_max_join_items " + itos(bdata.settings_light_max_join_items) + "\n";
batching_options_string += "\tsingle_rect_fallback " + String(Variant(bdata.settings_use_single_rect_fallback)) + "\n";
batching_options_string += "\tdebug_flash " + String(Variant(bdata.settings_flash_batching)) + "\n";
batching_options_string += "\tdiagnose_frame " + String(Variant(bdata.settings_diagnose_frame));
}
print_line(batching_options_string);
}
// special case, for colored vertex format threshold.
// as the comparison is >=, we want to be able to totally turn on or off
// conversion to colored vertex format at the extremes, so we will force
// 1.0 to be just above 1.0
if (bdata.settings_colored_vertex_format_threshold > 0.995f) {
bdata.settings_colored_vertex_format_threshold = 1.01f;
}
// save memory when batching off
if (!bdata.settings_use_batching) {
max_quads = 0;
}
uint32_t sizeof_batch_vert = sizeof(BatchVertex);
bdata.max_quads = max_quads;
// 4 verts per quad
bdata.vertex_buffer_size_units = max_quads * 4;
// the index buffer can be longer than 65535, only the indices need to be within this range
bdata.index_buffer_size_units = max_quads * 6;
const int max_verts = bdata.vertex_buffer_size_units;
// this comes out at approx 64K for non-colored vertex buffer, and 128K for colored vertex buffer
bdata.vertex_buffer_size_bytes = max_verts * sizeof_batch_vert;
bdata.index_buffer_size_bytes = bdata.index_buffer_size_units * 2; // 16 bit inds
// create equal number of normal and (max) unit sized verts (as the normal may need to be translated to a larger FVF)
bdata.vertices.create(max_verts); // 512k
bdata.unit_vertices.create(max_verts, sizeof(BatchVertexLarge));
// extra data per vert needed for larger FVFs
bdata.light_angles.create(max_verts);
bdata.vertex_colors.create(max_verts);
bdata.vertex_modulates.create(max_verts);
bdata.vertex_transforms.create(max_verts);
// num batches will be auto increased dynamically if required
bdata.batches.create(1024);
bdata.batches_temp.create(bdata.batches.max_size());
// batch textures can also be increased dynamically
bdata.batch_textures.create(32);
}
PREAMBLE(bool)::_light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const {
float area_item = p_item_rect.size.x * p_item_rect.size.y; // double check these are always positive
// quick reject .. the area of pixels saved can never be more than the area of the item
if (area_item < bdata.scissor_threshold_area) {
return false;
}
Rect2 cliprect;
if (!_light_find_intersection(p_item_rect, p_light_xform, p_light_rect, cliprect)) {
// should not really occur .. but just in case
cliprect = Rect2(0, 0, 0, 0);
} else {
// some conditions not to scissor
// determine the area (fill rate) that will be saved
float area_cliprect = cliprect.size.x * cliprect.size.y;
float area_saved = area_item - area_cliprect;
// if area saved is too small, don't scissor
if (area_saved < bdata.scissor_threshold_area) {
return false;
}
}
int rh = get_storage()->frame.current_rt->height;
int y = rh - (cliprect.position.y + cliprect.size.y);
if (get_storage()->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP])
y = cliprect.position.y;
get_this()->gl_enable_scissor(cliprect.position.x, y, cliprect.size.width, cliprect.size.height);
return true;
}
PREAMBLE(bool)::_light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const {
// transform light to world space (note this is done in the earlier intersection test, so could
// be made more efficient)
Vector2 pts[4] = {
p_light_xform.xform(p_light_rect.position),
p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y)),
p_light_xform.xform(Vector2(p_light_rect.position.x, p_light_rect.position.y + p_light_rect.size.y)),
p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y + p_light_rect.size.y)),
};
// calculate the light bound rect in world space
Rect2 lrect(pts[0].x, pts[0].y, 0, 0);
for (int n = 1; n < 4; n++) {
lrect.expand_to(pts[n]);
}
// intersection between the 2 rects
// they should probably always intersect, because of earlier check, but just in case...
if (!p_item_rect.intersects(lrect))
return false;
// note this does almost the same as Rect2.clip but slightly more efficient for our use case
r_cliprect.position.x = MAX(p_item_rect.position.x, lrect.position.x);
r_cliprect.position.y = MAX(p_item_rect.position.y, lrect.position.y);
Point2 item_rect_end = p_item_rect.position + p_item_rect.size;
Point2 lrect_end = lrect.position + lrect.size;
r_cliprect.size.x = MIN(item_rect_end.x, lrect_end.x) - r_cliprect.position.x;
r_cliprect.size.y = MIN(item_rect_end.y, lrect_end.y) - r_cliprect.position.y;
return true;
}
PREAMBLE(void)::_calculate_scissor_threshold_area() {
if (!bdata.settings_scissor_lights) {
return;
}
// scissor area threshold is 0.0 to 1.0 in the settings for ease of use.
// we need to translate to an absolute area to determine quickly whether
// to scissor.
if (bdata.settings_scissor_threshold < 0.0001f) {
bdata.scissor_threshold_area = -1.0f; // will always pass
} else {
// in pixels
int w = get_storage()->frame.current_rt->width;
int h = get_storage()->frame.current_rt->height;
int screen_area = w * h;
bdata.scissor_threshold_area = bdata.settings_scissor_threshold * screen_area;
}
}
PREAMBLE(bool)::_prefill_line(RasterizerCanvas::Item::CommandLine *p_line, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item *p_item, bool multiply_final_modulate) {
bool change_batch = false;
// we have separate batch types for non and anti aliased lines.
// You can't batch the different types together.
RasterizerStorageCommon::BatchType line_batch_type = RasterizerStorageCommon::BT_LINE;
uint32_t line_batch_flags = RasterizerStorageCommon::BTF_LINE;
#ifdef GLES_OVER_GL
if (p_line->antialiased) {
line_batch_type = RasterizerStorageCommon::BT_LINE_AA;
line_batch_flags = RasterizerStorageCommon::BTF_LINE_AA;
}
#endif
// conditions for creating a new batch
if (r_fill_state.curr_batch->type != line_batch_type) {
if (r_fill_state.sequence_batch_type_flags & (~line_batch_flags)) {
// don't allow joining to a different sequence type
r_command_start = command_num;
return true;
}
r_fill_state.sequence_batch_type_flags |= line_batch_flags;
change_batch = true;
}
// get the baked line color
Color col = p_line->color;
if (multiply_final_modulate)
col *= r_fill_state.final_modulate;
BatchColor bcol;
bcol.set(col);
// if the color has changed we need a new batch
// (only single color line batches supported so far)
if (r_fill_state.curr_batch->color != bcol)
change_batch = true;
// not sure if needed
r_fill_state.batch_tex_id = -1;
// try to create vertices BEFORE creating a batch,
// because if the vertex buffer is full, we need to finish this
// function, draw what we have so far, and then start a new set of batches
// request multiple vertices at a time, this is more efficient
BatchVertex *bvs = bdata.vertices.request(2);
if (!bvs) {
// run out of space in the vertex buffer .. finish this function and draw what we have so far
// return where we got to
r_command_start = command_num;
return true;
}
if (change_batch) {
// open new batch (this should never fail, it dynamically grows)
r_fill_state.curr_batch = _batch_request_new(false);
r_fill_state.curr_batch->type = line_batch_type;
r_fill_state.curr_batch->color = bcol;
r_fill_state.curr_batch->batch_texture_id = -1;
r_fill_state.curr_batch->first_command = command_num;
r_fill_state.curr_batch->num_commands = 1;
//r_fill_state.curr_batch->first_quad = bdata.total_quads;
r_fill_state.curr_batch->first_vert = bdata.total_verts;
} else {
// we could alternatively do the count when closing a batch .. perhaps more efficient
r_fill_state.curr_batch->num_commands++;
}
// fill the geometry
Vector2 from = p_line->from;
Vector2 to = p_line->to;
if (r_fill_state.transform_mode != TM_NONE) {
_software_transform_vertex(from, r_fill_state.transform_combined);
_software_transform_vertex(to, r_fill_state.transform_combined);
}
bvs[0].pos.set(from);
bvs[0].uv.set(0, 0); // may not be necessary
bvs[1].pos.set(to);
bvs[1].uv.set(0, 0);
bdata.total_verts += 2;
return false;
}
//unsigned int _ninepatch_apply_tiling_modes(RasterizerCanvas::Item::CommandNinePatch *p_np, Rect2 &r_source) {
// unsigned int rect_flags = 0;
// switch (p_np->axis_x) {
// default:
// break;
// case VisualServer::NINE_PATCH_TILE: {
// r_source.size.x = p_np->rect.size.x;
// rect_flags = RasterizerCanvas::CANVAS_RECT_TILE;
// } break;
// case VisualServer::NINE_PATCH_TILE_FIT: {
// // prevent divide by zero (may never happen)
// if (r_source.size.x) {
// int units = p_np->rect.size.x / r_source.size.x;
// if (!units)
// units++;
// r_source.size.x = r_source.size.x * units;
// rect_flags = RasterizerCanvas::CANVAS_RECT_TILE;
// }
// } break;
// }
// switch (p_np->axis_y) {
// default:
// break;
// case VisualServer::NINE_PATCH_TILE: {
// r_source.size.y = p_np->rect.size.y;
// rect_flags = RasterizerCanvas::CANVAS_RECT_TILE;
// } break;
// case VisualServer::NINE_PATCH_TILE_FIT: {
// // prevent divide by zero (may never happen)
// if (r_source.size.y) {
// int units = p_np->rect.size.y / r_source.size.y;
// if (!units)
// units++;
// r_source.size.y = r_source.size.y * units;
// rect_flags = RasterizerCanvas::CANVAS_RECT_TILE;
// }
// } break;
// }
// return rect_flags;
//}
T_PREAMBLE
template <bool SEND_LIGHT_ANGLES>
bool C_PREAMBLE::_prefill_ninepatch(RasterizerCanvas::Item::CommandNinePatch *p_np, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item *p_item, bool multiply_final_modulate) {
typename T_STORAGE::Texture *tex = _get_canvas_texture(p_np->texture);
if (!tex) {
// FIXME: Handle textureless ninepatch gracefully
WARN_PRINT("NinePatch without texture not supported yet, skipping.");
return false;
}
if (tex->width == 0 || tex->height == 0) {
WARN_PRINT("Cannot set empty texture to NinePatch.");
return false;
}
// cope with ninepatch of zero area. These cannot be created by the user interface or gdscript, but can
// be created programmatically from c++, e.g. by the Godot UI for sliders. We will just not draw these.
if ((p_np->rect.size.x * p_np->rect.size.y) <= 0.0f) {
return false;
}
// conditions for creating a new batch
if (r_fill_state.curr_batch->type != RasterizerStorageCommon::BT_RECT) {
// don't allow joining to a different sequence type
if (r_fill_state.sequence_batch_type_flags & (~RasterizerStorageCommon::BTF_RECT)) {
// don't allow joining to a different sequence type
r_command_start = command_num;
return true;
}
}
// first check there are enough verts for this to complete successfully
if (bdata.vertices.size() + (4 * 9) > bdata.vertices.max_size()) {
// return where we got to
r_command_start = command_num;
return true;
}
// create a temporary rect so we can reuse the rect routine
RasterizerCanvas::Item::CommandRect trect;
trect.texture = p_np->texture;
trect.normal_map = p_np->normal_map;
trect.modulate = p_np->color;
trect.flags = RasterizerCanvas::CANVAS_RECT_REGION;
//Size2 texpixel_size(1.0f / tex->width, 1.0f / tex->height);
Rect2 source = p_np->source;
if (source.size.x == 0 && source.size.y == 0) {
source.size.x = tex->width;
source.size.y = tex->height;
}
float screen_scale = 1.0f;
// optional crazy ninepatch scaling mode
if ((bdata.settings_ninepatch_mode == 1) && (source.size.x != 0) && (source.size.y != 0)) {
screen_scale = MIN(p_np->rect.size.x / source.size.x, p_np->rect.size.y / source.size.y);
screen_scale = MIN(1.0, screen_scale);
}
// deal with nine patch texture wrapping modes
// this is switched off because it may not be possible with batching
// trect.flags |= _ninepatch_apply_tiling_modes(p_np, source);
// translate to rects
Rect2 &rt = trect.rect;
Rect2 &src = trect.source;
float tex_margin_left = p_np->margin[MARGIN_LEFT];
float tex_margin_right = p_np->margin[MARGIN_RIGHT];
float tex_margin_top = p_np->margin[MARGIN_TOP];
float tex_margin_bottom = p_np->margin[MARGIN_BOTTOM];
float x[4];
x[0] = p_np->rect.position.x;
x[1] = x[0] + (p_np->margin[MARGIN_LEFT] * screen_scale);
x[3] = x[0] + (p_np->rect.size.x);
x[2] = x[3] - (p_np->margin[MARGIN_RIGHT] * screen_scale);
float y[4];
y[0] = p_np->rect.position.y;
y[1] = y[0] + (p_np->margin[MARGIN_TOP] * screen_scale);
y[3] = y[0] + (p_np->rect.size.y);
y[2] = y[3] - (p_np->margin[MARGIN_BOTTOM] * screen_scale);
float u[4];
u[0] = source.position.x;
u[1] = u[0] + tex_margin_left;
u[3] = u[0] + source.size.x;
u[2] = u[3] - tex_margin_right;
float v[4];
v[0] = source.position.y;
v[1] = v[0] + tex_margin_top;
v[3] = v[0] + source.size.y;
v[2] = v[3] - tex_margin_bottom;
// Some protection for the use of ninepatches with rect size smaller than margin size.
// Note these cannot be produced by the UI, only programmatically, and the results
// are somewhat undefined, because the margins overlap.
// Ninepatch get_minimum_size() forces minimum size to be the sum of the margins.
// So this should occur very rarely if ever. Consider commenting these 4 lines out for higher speed
// in ninepatches.
x[1] = MIN(x[1], x[3]);
x[2] = MIN(x[2], x[3]);
y[1] = MIN(y[1], y[3]);
y[2] = MIN(y[2], y[3]);
// temporarily override to prevent single rect fallback
bool single_rect_fallback = bdata.settings_use_single_rect_fallback;
bdata.settings_use_single_rect_fallback = false;
// each line of the ninepatch
for (int line = 0; line < 3; line++) {
rt.position = Vector2(x[0], y[line]);
rt.size = Vector2(x[1] - x[0], y[line + 1] - y[line]);
src.position = Vector2(u[0], v[line]);
src.size = Vector2(u[1] - u[0], v[line + 1] - v[line]);
_prefill_rect<SEND_LIGHT_ANGLES>(&trect, r_fill_state, r_command_start, command_num, command_count, nullptr, p_item, multiply_final_modulate);
if ((line == 1) && (!p_np->draw_center))
;
else {
rt.position.x = x[1];
rt.size.x = x[2] - x[1];
src.position.x = u[1];
src.size.x = u[2] - u[1];
_prefill_rect<SEND_LIGHT_ANGLES>(&trect, r_fill_state, r_command_start, command_num, command_count, nullptr, p_item, multiply_final_modulate);
}
rt.position.x = x[2];
rt.size.x = x[3] - x[2];
src.position.x = u[2];
src.size.x = u[3] - u[2];
_prefill_rect<SEND_LIGHT_ANGLES>(&trect, r_fill_state, r_command_start, command_num, command_count, nullptr, p_item, multiply_final_modulate);
}
// restore single rect fallback
bdata.settings_use_single_rect_fallback = single_rect_fallback;
return false;
}
T_PREAMBLE
template <bool SEND_LIGHT_ANGLES>
bool C_PREAMBLE::_prefill_polygon(RasterizerCanvas::Item::CommandPolygon *p_poly, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item *p_item, bool multiply_final_modulate) {
bool change_batch = false;
// conditions for creating a new batch
if (r_fill_state.curr_batch->type != RasterizerStorageCommon::BT_POLY) {
// don't allow joining to a different sequence type
if (r_fill_state.sequence_batch_type_flags & (~RasterizerStorageCommon::BTF_POLY)) {
// don't allow joining to a different sequence type
r_command_start = command_num;
return true;
}
r_fill_state.sequence_batch_type_flags |= RasterizerStorageCommon::BTF_POLY;
change_batch = true;
}
int num_inds = p_poly->indices.size();
// nothing to draw?
if (!num_inds)
return false;
// we aren't using indices, so will transform verts more than once .. less efficient.
// could be done with a temporary vertex buffer
BatchVertex *bvs = bdata.vertices.request(num_inds);
if (!bvs) {
// run out of space in the vertex buffer .. finish this function and draw what we have so far
// return where we got to
r_command_start = command_num;
return true;
}
BatchColor *vertex_colors = bdata.vertex_colors.request(num_inds);
RAST_DEBUG_ASSERT(vertex_colors);
// are we using large FVF?
////////////////////////////////////
const bool use_large_verts = bdata.use_large_verts;
const bool use_modulate = bdata.use_modulate;
BatchColor *vertex_modulates = nullptr;
if (use_modulate) {
vertex_modulates = bdata.vertex_modulates.request(num_inds);
RAST_DEBUG_ASSERT(vertex_modulates);
// precalc the vertex modulate (will be shared by all verts)
// we store the modulate as an attribute in the fvf rather than a uniform
vertex_modulates[0].set(r_fill_state.final_modulate);
}
BatchTransform *pBT = nullptr;
if (use_large_verts) {
pBT = bdata.vertex_transforms.request(num_inds);
RAST_DEBUG_ASSERT(pBT);
// precalc the batch transform (will be shared by all verts)
// we store the transform as an attribute in the fvf rather than a uniform
const Transform2D &tr = r_fill_state.transform_combined;
pBT[0].translate.set(tr.elements[2]);
// could do swizzling in shader?
pBT[0].basis[0].set(tr.elements[0][0], tr.elements[1][0]);
pBT[0].basis[1].set(tr.elements[0][1], tr.elements[1][1]);
}
////////////////////////////////////
// the modulate is always baked
Color modulate;
if (!use_large_verts && !use_modulate && multiply_final_modulate)
modulate = r_fill_state.final_modulate;
else
modulate = Color(1, 1, 1, 1);
int old_batch_tex_id = r_fill_state.batch_tex_id;
r_fill_state.batch_tex_id = _batch_find_or_create_tex(p_poly->texture, p_poly->normal_map, false, old_batch_tex_id);
// conditions for creating a new batch
if (old_batch_tex_id != r_fill_state.batch_tex_id) {
change_batch = true;
}
// N.B. polygons don't have color thus don't need a batch change with color
// This code is left as reference in case of problems.
// if (!r_fill_state.curr_batch->color.equals(modulate)) {
// change_batch = true;
// bdata.total_color_changes++;
// }
if (change_batch) {
// put the tex pixel size in a local (less verbose and can be a register)
const BatchTex &batchtex = bdata.batch_textures[r_fill_state.batch_tex_id];
batchtex.tex_pixel_size.to(r_fill_state.texpixel_size);
if (bdata.settings_uv_contract) {
r_fill_state.contract_uvs = (batchtex.flags & VS::TEXTURE_FLAG_FILTER) == 0;
}
// open new batch (this should never fail, it dynamically grows)
r_fill_state.curr_batch = _batch_request_new(false);
r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_POLY;
// modulate unused except for debugging?
r_fill_state.curr_batch->color.set(modulate);
r_fill_state.curr_batch->batch_texture_id = r_fill_state.batch_tex_id;
r_fill_state.curr_batch->first_command = command_num;
r_fill_state.curr_batch->num_commands = num_inds;
// r_fill_state.curr_batch->num_elements = num_inds;
r_fill_state.curr_batch->first_vert = bdata.total_verts;
} else {
// we could alternatively do the count when closing a batch .. perhaps more efficient
r_fill_state.curr_batch->num_commands += num_inds;
}
// PRECALCULATE THE COLORS (as there may be less colors than there are indices
// in either hardware or software paths)
BatchColor vcol;
int num_verts = p_poly->points.size();
// in special cases, only 1 color is specified by convention, so we want to preset this
// to use in all verts.
if (p_poly->colors.size())
vcol.set(p_poly->colors[0] * modulate);
else
// color is undefined, use modulate color straight
vcol.set(modulate);
BatchColor *precalced_colors = (BatchColor *)alloca(num_verts * sizeof(BatchColor));
// two stage, super efficient setup of precalculated colors
int num_colors_specified = p_poly->colors.size();
for (int n = 0; n < num_colors_specified; n++) {
vcol.set(p_poly->colors[n] * modulate);
precalced_colors[n] = vcol;
}
for (int n = num_colors_specified; n < num_verts; n++) {
precalced_colors[n] = vcol;
}
if (!_software_skin_poly(p_poly, p_item, bvs, vertex_colors, r_fill_state, precalced_colors)) {
for (int n = 0; n < num_inds; n++) {
int ind = p_poly->indices[n];
RAST_DEV_DEBUG_ASSERT(ind < p_poly->points.size());
// this could be moved outside the loop
if (r_fill_state.transform_mode != TM_NONE) {
Vector2 pos = p_poly->points[ind];
_software_transform_vertex(pos, r_fill_state.transform_combined);
bvs[n].pos.set(pos.x, pos.y);
} else {
const Point2 &pos = p_poly->points[ind];
bvs[n].pos.set(pos.x, pos.y);
}
if (ind < p_poly->uvs.size()) {
const Point2 &uv = p_poly->uvs[ind];
bvs[n].uv.set(uv.x, uv.y);
} else {
bvs[n].uv.set(0.0f, 0.0f);
}
vertex_colors[n] = precalced_colors[ind];
if (use_modulate) {
vertex_modulates[n] = vertex_modulates[0];
}
if (use_large_verts) {
// reuse precalced transform (same for each vertex within polygon)
pBT[n] = pBT[0];
}
}
} // if not software skinning
else {
// software skinning extra passes
if (use_modulate) {
for (int n = 0; n < num_inds; n++) {
vertex_modulates[n] = vertex_modulates[0];
}
}
// not sure if this will produce garbage if software skinning is changing vertex pos
// in the shader, but is included for completeness
if (use_large_verts) {
for (int n = 0; n < num_inds; n++) {
pBT[n] = pBT[0];
}
}
}
// increment total vert count
bdata.total_verts += num_inds;
return false;
}
PREAMBLE(bool)::_software_skin_poly(RasterizerCanvas::Item::CommandPolygon *p_poly, RasterizerCanvas::Item *p_item, BatchVertex *bvs, BatchColor *vertex_colors, const FillState &p_fill_state, const BatchColor *p_precalced_colors) {
// alternatively could check get_this()->state.using_skeleton
if (p_item->skeleton == RID())
return false;
int num_inds = p_poly->indices.size();
int num_verts = p_poly->points.size();
RID skeleton = p_item->skeleton;
int bone_count = RasterizerStorage::base_singleton->skeleton_get_bone_count(skeleton);
// we want a temporary buffer of positions to transform
Vector2 *pTemps = (Vector2 *)alloca(num_verts * sizeof(Vector2));
memset((void *)pTemps, 0, num_verts * sizeof(Vector2));
// these are used in the shader but don't appear to be needed for software transform
// const Transform2D &skel_trans = get_this()->state.skeleton_transform;
// const Transform2D &skel_trans_inv = get_this()->state.skeleton_transform_inverse;
// get the bone transforms.
// this is not ideal because we don't know in advance which bones are needed
// for any particular poly, but depends how cheap the skeleton_bone_get_transform_2d call is
Transform2D *bone_transforms = (Transform2D *)alloca(bone_count * sizeof(Transform2D));
for (int b = 0; b < bone_count; b++) {
bone_transforms[b] = RasterizerStorage::base_singleton->skeleton_bone_get_transform_2d(skeleton, b);
}
if (num_verts && (p_poly->bones.size() == num_verts * 4) && (p_poly->weights.size() == p_poly->bones.size())) {
const Transform2D &item_transform = p_item->xform;
Transform2D item_transform_inv = item_transform.affine_inverse();
for (int n = 0; n < num_verts; n++) {
const Vector2 &src_pos = p_poly->points[n];
Vector2 &dst_pos = pTemps[n];
// there can be an offset on the polygon at rigging time, this has to be accounted for
// note it may be possible that this could be concatenated with the bone transforms to save extra transforms - not sure yet
Vector2 src_pos_back_transformed = item_transform.xform(src_pos);
float total_weight = 0.0f;
for (int k = 0; k < 4; k++) {
int bone_id = p_poly->bones[n * 4 + k];
float weight = p_poly->weights[n * 4 + k];
if (weight == 0.0f)
continue;
total_weight += weight;
RAST_DEBUG_ASSERT(bone_id < bone_count);
const Transform2D &bone_tr = bone_transforms[bone_id];
Vector2 pos = bone_tr.xform(src_pos_back_transformed);
dst_pos += pos * weight;
}
// this is some unexplained weirdness with verts with no weights,
// but it seemed to work for the example project ... watch for regressions
if (total_weight < 0.01f)
dst_pos = src_pos;
else {
dst_pos /= total_weight;
// retransform back from the poly offset space
dst_pos = item_transform_inv.xform(dst_pos);
}
}
// software transform with combined matrix?
if (p_fill_state.transform_mode != TM_NONE) {
for (int n = 0; n < num_verts; n++) {
Vector2 &dst_pos = pTemps[n];
_software_transform_vertex(dst_pos, p_fill_state.transform_combined);
}
}
} // if bone format matches
else {
// not supported
}
// output to the batch verts
for (int n = 0; n < num_inds; n++) {
int ind = p_poly->indices[n];
RAST_DEV_DEBUG_ASSERT(ind < num_verts);
const Point2 &pos = pTemps[ind];
bvs[n].pos.set(pos.x, pos.y);
if (ind < p_poly->uvs.size()) {
const Point2 &uv = p_poly->uvs[ind];
bvs[n].uv.set(uv.x, uv.y);
} else {
bvs[n].uv.set(0.0f, 0.0f);
}
vertex_colors[n] = p_precalced_colors[ind];
}
return true;
}
T_PREAMBLE
template <bool SEND_LIGHT_ANGLES>
bool C_PREAMBLE::_prefill_rect(RasterizerCanvas::Item::CommandRect *rect, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RasterizerCanvas::Item::Command *const *commands, RasterizerCanvas::Item *p_item, bool multiply_final_modulate) {
bool change_batch = false;
// conditions for creating a new batch
if (r_fill_state.curr_batch->type != RasterizerStorageCommon::BT_RECT) {
// don't allow joining to a different sequence type
if (r_fill_state.sequence_batch_type_flags & (~RasterizerStorageCommon::BTF_RECT)) {
// don't allow joining to a different sequence type
r_command_start = command_num;
return true;
}
r_fill_state.sequence_batch_type_flags |= RasterizerStorageCommon::BTF_RECT;
change_batch = true;
// check for special case if there is only a single or small number of rects,
// in which case we will use the legacy default rect renderer
// because it is faster for single rects
// we only want to do this if not a joined item with more than 1 item,
// because joined items with more than 1, the command * will be incorrect
// NOTE - this is assuming that use_hardware_transform means that it is a non-joined item!!
// If that assumption is incorrect this will go horribly wrong.
if (bdata.settings_use_single_rect_fallback && r_fill_state.use_hardware_transform) {
bool is_single_rect = false;
int command_num_next = command_num + 1;
if (command_num_next < command_count) {
RasterizerCanvas::Item::Command *command_next = commands[command_num_next];
if ((command_next->type != RasterizerCanvas::Item::Command::TYPE_RECT) && (command_next->type != RasterizerCanvas::Item::Command::TYPE_TRANSFORM)) {
is_single_rect = true;
}
} else {
is_single_rect = true;
}
// if it is a rect on its own, do exactly the same as the default routine
if (is_single_rect) {
_prefill_default_batch(r_fill_state, command_num, *p_item);
return false;
}
} // if use hardware transform
}
// try to create vertices BEFORE creating a batch,
// because if the vertex buffer is full, we need to finish this
// function, draw what we have so far, and then start a new set of batches
// request FOUR vertices at a time, this is more efficient
BatchVertex *bvs = bdata.vertices.request(4);
if (!bvs) {
// run out of space in the vertex buffer .. finish this function and draw what we have so far
// return where we got to
r_command_start = command_num;
return true;
}
// are we using large FVF?
const bool use_large_verts = bdata.use_large_verts;
const bool use_modulate = bdata.use_modulate;
Color col = rect->modulate;
if (!use_large_verts) {
if (multiply_final_modulate) {
col *= r_fill_state.final_modulate;
}
}
// instead of doing all the texture preparation for EVERY rect,
// we build a list of texture combinations and do this once off.
// This means we have a potentially rather slow step to identify which texture combo
// using the RIDs.
int old_batch_tex_id = r_fill_state.batch_tex_id;
r_fill_state.batch_tex_id = _batch_find_or_create_tex(rect->texture, rect->normal_map, rect->flags & RasterizerCanvas::CANVAS_RECT_TILE, old_batch_tex_id);
//r_fill_state.use_light_angles = send_light_angles;
if (SEND_LIGHT_ANGLES) {
bdata.use_light_angles = true;
}
// conditions for creating a new batch
if (old_batch_tex_id != r_fill_state.batch_tex_id) {
change_batch = true;
}
// we need to treat color change separately because we need to count these
// to decide whether to switch on the fly to colored vertices.
if (!r_fill_state.curr_batch->color.equals(col)) {
change_batch = true;
bdata.total_color_changes++;
}
if (change_batch) {
// put the tex pixel size in a local (less verbose and can be a register)
const BatchTex &batchtex = bdata.batch_textures[r_fill_state.batch_tex_id];
batchtex.tex_pixel_size.to(r_fill_state.texpixel_size);
if (bdata.settings_uv_contract) {
r_fill_state.contract_uvs = (batchtex.flags & VS::TEXTURE_FLAG_FILTER) == 0;
}
// need to preserve texpixel_size between items
//r_fill_state.texpixel_size = r_fill_state.texpixel_size;
// open new batch (this should never fail, it dynamically grows)
r_fill_state.curr_batch = _batch_request_new(false);
r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_RECT;
r_fill_state.curr_batch->color.set(col);
r_fill_state.curr_batch->batch_texture_id = r_fill_state.batch_tex_id;
r_fill_state.curr_batch->first_command = command_num;
r_fill_state.curr_batch->num_commands = 1;
//r_fill_state.curr_batch->first_quad = bdata.total_quads;
r_fill_state.curr_batch->first_vert = bdata.total_verts;
} else {
// we could alternatively do the count when closing a batch .. perhaps more efficient
r_fill_state.curr_batch->num_commands++;
}
// fill the quad geometry
Vector2 mins = rect->rect.position;
if (r_fill_state.transform_mode == TM_TRANSLATE) {
if (!use_large_verts) {
_software_transform_vertex(mins, r_fill_state.transform_combined);
}
}
Vector2 maxs = mins + rect->rect.size;
// just aliases
BatchVertex *bA = &bvs[0];
BatchVertex *bB = &bvs[1];
BatchVertex *bC = &bvs[2];
BatchVertex *bD = &bvs[3];
bA->pos.x = mins.x;
bA->pos.y = mins.y;
bB->pos.x = maxs.x;
bB->pos.y = mins.y;
bC->pos.x = maxs.x;
bC->pos.y = maxs.y;
bD->pos.x = mins.x;
bD->pos.y = maxs.y;
// possibility of applying flips here for normal mapping .. but they don't seem to be used
if (rect->rect.size.x < 0) {
SWAP(bA->pos, bB->pos);
SWAP(bC->pos, bD->pos);
}
if (rect->rect.size.y < 0) {
SWAP(bA->pos, bD->pos);
SWAP(bB->pos, bC->pos);
}
if (r_fill_state.transform_mode == TM_ALL) {
if (!use_large_verts) {
_software_transform_vertex(bA->pos, r_fill_state.transform_combined);
_software_transform_vertex(bB->pos, r_fill_state.transform_combined);
_software_transform_vertex(bC->pos, r_fill_state.transform_combined);
_software_transform_vertex(bD->pos, r_fill_state.transform_combined);
}
}
// uvs
Vector2 src_min;
Vector2 src_max;
if (rect->flags & RasterizerCanvas::CANVAS_RECT_REGION) {
src_min = rect->source.position;
src_max = src_min + rect->source.size;
src_min *= r_fill_state.texpixel_size;
src_max *= r_fill_state.texpixel_size;
const float uv_epsilon = bdata.settings_uv_contract_amount;
// nudge offset for the maximum to prevent precision error on GPU reading into line outside the source rect
// this is very difficult to get right.
if (r_fill_state.contract_uvs) {
src_min.x += uv_epsilon;
src_min.y += uv_epsilon;
src_max.x -= uv_epsilon;
src_max.y -= uv_epsilon;
}
} else {
src_min = Vector2(0, 0);
src_max = Vector2(1, 1);
}
// 10% faster calculating the max first
Vector2 uvs[4] = {
src_min,
Vector2(src_max.x, src_min.y),
src_max,
Vector2(src_min.x, src_max.y),
};
// for encoding in light angle
// flips should be optimized out when not being used for light angle.
bool flip_h = false;
bool flip_v = false;
if (rect->flags & RasterizerCanvas::CANVAS_RECT_TRANSPOSE) {
SWAP(uvs[1], uvs[3]);
}
if (rect->flags & RasterizerCanvas::CANVAS_RECT_FLIP_H) {
SWAP(uvs[0], uvs[1]);
SWAP(uvs[2], uvs[3]);
flip_h = !flip_h;
flip_v = !flip_v;
}
if (rect->flags & RasterizerCanvas::CANVAS_RECT_FLIP_V) {
SWAP(uvs[0], uvs[3]);
SWAP(uvs[1], uvs[2]);
flip_v = !flip_v;
}
bA->uv.set(uvs[0]);
bB->uv.set(uvs[1]);
bC->uv.set(uvs[2]);
bD->uv.set(uvs[3]);
// modulate
if (use_modulate) {
// store the final modulate separately from the rect modulate
BatchColor *pBC = bdata.vertex_modulates.request(4);
RAST_DEBUG_ASSERT(pBC);
pBC[0].set(r_fill_state.final_modulate);
pBC[1] = pBC[0];
pBC[2] = pBC[0];
pBC[3] = pBC[0];
}
if (use_large_verts) {
// store the transform separately
BatchTransform *pBT = bdata.vertex_transforms.request(4);
RAST_DEBUG_ASSERT(pBT);
const Transform2D &tr = r_fill_state.transform_combined;
pBT[0].translate.set(tr.elements[2]);
// could do swizzling in shader?
pBT[0].basis[0].set(tr.elements[0][0], tr.elements[1][0]);
pBT[0].basis[1].set(tr.elements[0][1], tr.elements[1][1]);
pBT[1] = pBT[0];
pBT[2] = pBT[0];
pBT[3] = pBT[0];
}
if (SEND_LIGHT_ANGLES) {
// we can either keep the light angles in sync with the verts when writing,
// or sync them up during translation. We are syncing in translation.
// N.B. There may be batches that don't require light_angles between batches that do.
float *angles = bdata.light_angles.request(4);
RAST_DEBUG_ASSERT(angles);
float angle = 0.0f;
const float TWO_PI = Math_PI * 2;
if (r_fill_state.transform_mode != TM_NONE) {
const Transform2D &tr = r_fill_state.transform_combined;
// apply to an x axis
// the x axis and y axis can be taken directly from the transform (no need to xform identity vectors)
Vector2 x_axis(tr.elements[0][0], tr.elements[1][0]);
// have to do a y axis to check for scaling flips
// this is hassle and extra slowness. We could only allow flips via the flags.
Vector2 y_axis(tr.elements[0][1], tr.elements[1][1]);
// has the x / y axis flipped due to scaling?
float cross = x_axis.cross(y_axis);
if (cross < 0.0f) {
flip_v = !flip_v;
}
// passing an angle is smaller than a vector, it can be reconstructed in the shader
angle = x_axis.angle();
// we don't want negative angles, as negative is used to encode flips.
// This moves range from -PI to PI to 0 to TWO_PI
if (angle < 0.0f)
angle += TWO_PI;
} // if transform needed
// if horizontal flip, angle is shifted by 180 degrees
if (flip_h) {
angle += Math_PI;
// mod to get back to 0 to TWO_PI range
angle = fmodf(angle, TWO_PI);
}
// add 1 (to take care of zero floating point error with sign)
angle += 1.0f;
// flip if necessary to indicate a vertical flip in the shader
if (flip_v)
angle *= -1.0f;
// light angle must be sent for each vert, instead as a single uniform in the uniform draw method
// this has the benefit of enabling batching with light angles.
for (int n = 0; n < 4; n++) {
angles[n] = angle;
}
}
// increment quad count
bdata.total_quads++;
bdata.total_verts += 4;
return false;
}
// This function may be called MULTIPLE TIMES for each item, so needs to record how far it has got
PREAMBLE(bool)::prefill_joined_item(FillState &r_fill_state, int &r_command_start, RasterizerCanvas::Item *p_item, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material) {
// we will prefill batches and vertices ready for sending in one go to the vertex buffer
int command_count = p_item->commands.size();
RasterizerCanvas::Item::Command *const *commands = p_item->commands.ptr();
// checking the color for not being white makes it 92/90 times faster in the case where it is white
bool multiply_final_modulate = false;
if (!r_fill_state.use_hardware_transform && (r_fill_state.final_modulate != Color(1, 1, 1, 1))) {
multiply_final_modulate = true;
}
// start batch is a dummy batch (tex id -1) .. could be made more efficient
if (!r_fill_state.curr_batch) {
// OLD METHOD, but left dangling zero length default batches
// r_fill_state.curr_batch = _batch_request_new();
// r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT;
// r_fill_state.curr_batch->first_command = r_command_start;
// should tex_id be set to -1? check this
// allocate dummy batch on the stack, it should always get replaced
// note that the rest of the structure is uninitialized, this should not matter
// if the type is checked before anything else.
r_fill_state.curr_batch = (Batch *)alloca(sizeof(Batch));
r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DUMMY;
// this is assumed to be the case
//CRASH_COND (r_fill_state.transform_extra_command_number_p1);
}
// we need to return which command we got up to, so
// store this outside the loop
int command_num;
// do as many commands as possible until the vertex buffer will be full up
for (command_num = r_command_start; command_num < command_count; command_num++) {
RasterizerCanvas::Item::Command *command = commands[command_num];
switch (command->type) {
default: {
_prefill_default_batch(r_fill_state, command_num, *p_item);
} break;
case RasterizerCanvas::Item::Command::TYPE_TRANSFORM: {
// if the extra matrix has been sent already,
// break this extra matrix software path (as we don't want to unset it on the GPU etc)
if (r_fill_state.extra_matrix_sent) {
_prefill_default_batch(r_fill_state, command_num, *p_item);
// keep track of the combined matrix on the CPU in parallel, in case we use large vertex format
RasterizerCanvas::Item::CommandTransform *transform = static_cast<RasterizerCanvas::Item::CommandTransform *>(command);
const Transform2D &extra_matrix = transform->xform;
r_fill_state.transform_combined = p_item->final_transform * extra_matrix;
} else {
// Extra matrix fast path.
// Instead of sending the command immediately, we store the modified transform (in combined)
// for software transform, and only flush this transform command if we NEED to (i.e. we want to
// render some default commands)
RasterizerCanvas::Item::CommandTransform *transform = static_cast<RasterizerCanvas::Item::CommandTransform *>(command);
const Transform2D &extra_matrix = transform->xform;
if (r_fill_state.use_hardware_transform) {
// if we are using hardware transform mode, we have already sent the final transform,
// so we only want to software transform the extra matrix
r_fill_state.transform_combined = extra_matrix;
} else {
r_fill_state.transform_combined = p_item->final_transform * extra_matrix;
}
// after a transform command, always use some form of software transform (either the combined final + extra, or just the extra)
// until we flush this dirty extra matrix because we need to render default commands.
r_fill_state.transform_mode = _find_transform_mode(r_fill_state.transform_combined);
// make a note of which command the dirty extra matrix is store in, so we can send it later
// if necessary
r_fill_state.transform_extra_command_number_p1 = command_num + 1; // plus 1 so we can test against zero
}
} break;
case RasterizerCanvas::Item::Command::TYPE_RECT: {
RasterizerCanvas::Item::CommandRect *rect = static_cast<RasterizerCanvas::Item::CommandRect *>(command);
// unoptimized - could this be done once per batch / batch texture?
bool send_light_angles = rect->normal_map != RID();
bool buffer_full = false;
// the template params must be explicit for compilation,
// this forces building the multiple versions of the function.
if (send_light_angles) {
buffer_full = _prefill_rect<true>(rect, r_fill_state, r_command_start, command_num, command_count, commands, p_item, multiply_final_modulate);
} else {
buffer_full = _prefill_rect<false>(rect, r_fill_state, r_command_start, command_num, command_count, commands, p_item, multiply_final_modulate);
}
if (buffer_full)
return true;
} break;
case RasterizerCanvas::Item::Command::TYPE_NINEPATCH: {
RasterizerCanvas::Item::CommandNinePatch *np = static_cast<RasterizerCanvas::Item::CommandNinePatch *>(command);
if ((np->axis_x != VisualServer::NINE_PATCH_STRETCH) || (np->axis_y != VisualServer::NINE_PATCH_STRETCH)) {
// not accelerated
_prefill_default_batch(r_fill_state, command_num, *p_item);
continue;
}
// unoptimized - could this be done once per batch / batch texture?
bool send_light_angles = np->normal_map != RID();
bool buffer_full = false;
if (send_light_angles)
buffer_full = _prefill_ninepatch<true>(np, r_fill_state, r_command_start, command_num, command_count, p_item, multiply_final_modulate);
else
buffer_full = _prefill_ninepatch<false>(np, r_fill_state, r_command_start, command_num, command_count, p_item, multiply_final_modulate);
if (buffer_full)
return true;
} break;
case RasterizerCanvas::Item::Command::TYPE_LINE: {
RasterizerCanvas::Item::CommandLine *line = static_cast<RasterizerCanvas::Item::CommandLine *>(command);
if (line->width <= 1) {
bool buffer_full = _prefill_line(line, r_fill_state, r_command_start, command_num, command_count, p_item, multiply_final_modulate);
if (buffer_full)
return true;
} else {
// not accelerated
_prefill_default_batch(r_fill_state, command_num, *p_item);
}
} break;
case RasterizerCanvas::Item::Command::TYPE_POLYGON: {
RasterizerCanvas::Item::CommandPolygon *polygon = static_cast<RasterizerCanvas::Item::CommandPolygon *>(command);
#ifdef GLES_OVER_GL
// anti aliasing not accelerated .. it is problematic because it requires a 2nd line drawn around the outside of each
// poly, which would require either a second list of indices or a second list of vertices for this step
if (polygon->antialiased) {
// not accelerated
_prefill_default_batch(r_fill_state, command_num, *p_item);
} else {
#endif
// not using software skinning?
if (!bdata.settings_use_software_skinning && get_this()->state.using_skeleton) {
// not accelerated
_prefill_default_batch(r_fill_state, command_num, *p_item);
} else {
// unoptimized - could this be done once per batch / batch texture?
bool send_light_angles = polygon->normal_map != RID();
bool buffer_full = false;
if (send_light_angles) {
// NYI
_prefill_default_batch(r_fill_state, command_num, *p_item);
//buffer_full = prefill_polygon<true>(polygon, r_fill_state, r_command_start, command_num, command_count, p_item, multiply_final_modulate);
} else
buffer_full = _prefill_polygon<false>(polygon, r_fill_state, r_command_start, command_num, command_count, p_item, multiply_final_modulate);
if (buffer_full)
return true;
} // if not using hardware skinning path
#ifdef GLES_OVER_GL
} // if not anti-aliased poly
#endif
} break;
}
}
// VERY IMPORTANT to return where we got to, because this func may be called multiple
// times per item.
// Don't miss out on this step by calling return earlier in the function without setting r_command_start.
r_command_start = command_num;
return false;
}
PREAMBLE(void)::flush_render_batches(RasterizerCanvas::Item *p_first_item, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, uint32_t p_sequence_batch_type_flags) {
// some heuristic to decide whether to use colored verts.
// feel free to tweak this.
// this could use hysteresis, to prevent jumping between methods
// .. however probably not necessary
bdata.use_colored_vertices = false;
RasterizerStorageCommon::FVF backup_fvf = bdata.fvf;
// the batch type in this flush can override the fvf from the joined item.
// The joined item uses the material to determine fvf, assuming a rect...
// however with custom drawing, lines or polys may be drawn.
// lines contain no color (this is stored in the batch), and polys contain vertex and color only.
if (p_sequence_batch_type_flags & (RasterizerStorageCommon::BTF_LINE | RasterizerStorageCommon::BTF_LINE_AA)) {
// do nothing, use the default regular FVF
bdata.fvf = RasterizerStorageCommon::FVF_REGULAR;
} else {
// switch from regular to colored?
if (bdata.fvf == RasterizerStorageCommon::FVF_REGULAR) {
// only check whether to convert if there are quads (prevent divide by zero)
// and we haven't decided to prevent color baking (due to e.g. MODULATE
// being used in a shader)
if (bdata.total_quads && !(bdata.joined_item_batch_flags & RasterizerStorageCommon::PREVENT_COLOR_BAKING)) {
// minus 1 to prevent single primitives (ratio 1.0) always being converted to colored..
// in that case it is slightly cheaper to just have the color as part of the batch
float ratio = (float)(bdata.total_color_changes - 1) / (float)bdata.total_quads;
// use bigger than or equal so that 0.0 threshold can force always using colored verts
if (ratio >= bdata.settings_colored_vertex_format_threshold) {
bdata.use_colored_vertices = true;
bdata.fvf = RasterizerStorageCommon::FVF_COLOR;
}
}
// if we used vertex colors
if (bdata.vertex_colors.size()) {
bdata.use_colored_vertices = true;
bdata.fvf = RasterizerStorageCommon::FVF_COLOR;
}
// needs light angles?
if (bdata.use_light_angles) {
bdata.fvf = RasterizerStorageCommon::FVF_LIGHT_ANGLE;
}
}
backup_fvf = bdata.fvf;
} // if everything else except lines
// translate if required to larger FVFs
switch (bdata.fvf) {
case RasterizerStorageCommon::FVF_UNBATCHED: // should not happen
break;
case RasterizerStorageCommon::FVF_REGULAR: // no change
break;
case RasterizerStorageCommon::FVF_COLOR: {
// special case, where vertex colors are used (polys)
if (!bdata.vertex_colors.size())
_translate_batches_to_larger_FVF<BatchVertexColored, false, false, false>(p_sequence_batch_type_flags);
else
// normal, reduce number of batches by baking batch colors
_translate_batches_to_vertex_colored_FVF();
} break;
case RasterizerStorageCommon::FVF_LIGHT_ANGLE:
_translate_batches_to_larger_FVF<BatchVertexLightAngled, true, false, false>(p_sequence_batch_type_flags);
break;
case RasterizerStorageCommon::FVF_MODULATED:
_translate_batches_to_larger_FVF<BatchVertexModulated, true, true, false>(p_sequence_batch_type_flags);
break;
case RasterizerStorageCommon::FVF_LARGE:
_translate_batches_to_larger_FVF<BatchVertexLarge, true, true, true>(p_sequence_batch_type_flags);
break;
}
// send buffers to opengl
get_this()->_batch_upload_buffers();
RasterizerCanvas::Item::Command *const *commands = p_first_item->commands.ptr();
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
if (bdata.diagnose_frame) {
diagnose_batches(commands);
}
#endif
get_this()->render_batches(commands, p_current_clip, r_reclip, p_material);
// if we overrode the fvf for lines, set it back to the joined item fvf
bdata.fvf = backup_fvf;
// overwrite source buffers with garbage if error checking
#ifdef RASTERIZER_EXTRA_CHECKS
_debug_write_garbage();
#endif
}
PREAMBLE(void)::render_joined_item_commands(const BItemJoined &p_bij, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit) {
RasterizerCanvas::Item *item = 0;
RasterizerCanvas::Item *first_item = bdata.item_refs[p_bij.first_item_ref].item;
// fill_state and bdata have once off setup per joined item, and a smaller reset on flush
FillState fill_state;
fill_state.reset_joined_item(p_bij.use_hardware_transform());
bdata.reset_joined_item();
// should this joined item be using large FVF?
if (p_bij.flags & RasterizerStorageCommon::USE_MODULATE_FVF) {
bdata.use_modulate = true;
bdata.fvf = RasterizerStorageCommon::FVF_MODULATED;
}
if (p_bij.flags & RasterizerStorageCommon::USE_LARGE_FVF) {
bdata.use_modulate = true;
bdata.use_large_verts = true;
bdata.fvf = RasterizerStorageCommon::FVF_LARGE;
}
// in the special case of custom shaders that read from VERTEX (i.e. vertex position)
// we want to disable software transform of extra matrix
if (bdata.joined_item_batch_flags & RasterizerStorageCommon::PREVENT_VERTEX_BAKING) {
fill_state.extra_matrix_sent = true;
}
for (unsigned int i = 0; i < p_bij.num_item_refs; i++) {
const BItemRef &ref = bdata.item_refs[p_bij.first_item_ref + i];
item = ref.item;
if (!p_lit) {
// if not lit we use the complex calculated final modulate
fill_state.final_modulate = ref.final_modulate;
} else {
// if lit we ignore canvas modulate and just use the item modulate
fill_state.final_modulate = item->final_modulate;
}
int command_count = item->commands.size();
int command_start = 0;
// ONCE OFF fill state setup, that will be retained over multiple calls to
// prefill_joined_item()
fill_state.transform_combined = item->final_transform;
// decide the initial transform mode, and make a backup
// in orig_transform_mode in case we need to switch back
if (!fill_state.use_hardware_transform) {
fill_state.transform_mode = _find_transform_mode(fill_state.transform_combined);
} else {
fill_state.transform_mode = TM_NONE;
}
fill_state.orig_transform_mode = fill_state.transform_mode;
// keep track of when we added an extra matrix
// so we can defer sending until we see a default command
fill_state.transform_extra_command_number_p1 = 0;
while (command_start < command_count) {
// fill as many batches as possible (until all done, or the vertex buffer is full)
bool bFull = get_this()->prefill_joined_item(fill_state, command_start, item, p_current_clip, r_reclip, p_material);
if (bFull) {
// always pass first item (commands for default are always first item)
flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags);
// zero all the batch data ready for a new run
bdata.reset_flush();
// don't zero all the fill state, some may need to be preserved
fill_state.reset_flush();
}
}
}
// flush if any left
flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags);
// zero all the batch data ready for a new run
bdata.reset_flush();
}
PREAMBLE(void)::_legacy_canvas_item_render_commands(RasterizerCanvas::Item *p_item, RasterizerCanvas::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material) {
int command_count = p_item->commands.size();
RasterizerCanvas::Item::Command *const *commands = p_item->commands.ptr();
// legacy .. just create one massive batch and render everything as before
bdata.batches.reset();
Batch *batch = _batch_request_new();
batch->type = RasterizerStorageCommon::BT_DEFAULT;
batch->num_commands = command_count;
get_this()->render_batches(commands, p_current_clip, r_reclip, p_material);
bdata.reset_flush();
}
PREAMBLE(void)::record_items(RasterizerCanvas::Item *p_item_list, int p_z) {
while (p_item_list) {
BSortItem *s = bdata.sort_items.request_with_grow();
s->item = p_item_list;
s->z_index = p_z;
p_item_list = p_item_list->next;
}
}
PREAMBLE(void)::join_sorted_items() {
sort_items();
int z = VS::CANVAS_ITEM_Z_MIN;
_render_item_state.item_group_z = z;
for (int s = 0; s < bdata.sort_items.size(); s++) {
const BSortItem &si = bdata.sort_items[s];
RasterizerCanvas::Item *ci = si.item;
// change z?
if (si.z_index != z) {
z = si.z_index;
// may not be required
_render_item_state.item_group_z = z;
// if z ranged lights are present, sometimes we have to disable joining over z_indices.
// we do this here.
// Note this restriction may be able to be relaxed with light bitfields, investigate!
if (!bdata.join_across_z_indices) {
_render_item_state.join_batch_break = true;
}
}
bool join;
if (_render_item_state.join_batch_break) {
// always start a new batch for this item
join = false;
// could be another batch break (i.e. prevent NEXT item from joining this)
// so we still need to run try_join_item
// even though we know join is false.
// also we need to run try_join_item for every item because it keeps the state up to date,
// if we didn't run it the state would be out of date.
get_this()->try_join_item(ci, _render_item_state, _render_item_state.join_batch_break);
} else {
join = get_this()->try_join_item(ci, _render_item_state, _render_item_state.join_batch_break);
}
// assume the first item will always return no join
if (!join) {
_render_item_state.joined_item = bdata.items_joined.request_with_grow();
_render_item_state.joined_item->first_item_ref = bdata.item_refs.size();
_render_item_state.joined_item->num_item_refs = 1;
_render_item_state.joined_item->bounding_rect = ci->global_rect_cache;
_render_item_state.joined_item->z_index = z;
_render_item_state.joined_item->flags = bdata.joined_item_batch_flags;
// we need some logic to prevent joining items that have vastly different batch types
_render_item_state.joined_item_batch_type_flags_prev = _render_item_state.joined_item_batch_type_flags_curr;
// add the reference
BItemRef *r = bdata.item_refs.request_with_grow();
r->item = ci;
// we are storing final_modulate in advance per item reference
// for baking into vertex colors.
// this may not be ideal... as we are increasing the size of item reference,
// but it is stupidly complex to calculate later, which would probably be slower.
r->final_modulate = _render_item_state.final_modulate;
} else {
RAST_DEBUG_ASSERT(_render_item_state.joined_item != 0);
_render_item_state.joined_item->num_item_refs += 1;
_render_item_state.joined_item->bounding_rect = _render_item_state.joined_item->bounding_rect.merge(ci->global_rect_cache);
BItemRef *r = bdata.item_refs.request_with_grow();
r->item = ci;
r->final_modulate = _render_item_state.final_modulate;
}
} // for s through sort items
}
PREAMBLE(void)::sort_items() {
// turned off?
if (!bdata.settings_item_reordering_lookahead) {
return;
}
for (int s = 0; s < bdata.sort_items.size() - 2; s++) {
if (sort_items_from(s)) {
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
bdata.stats_items_sorted++;
#endif
}
}
}
PREAMBLE(bool)::_sort_items_match(const BSortItem &p_a, const BSortItem &p_b) const {
const RasterizerCanvas::Item *a = p_a.item;
const RasterizerCanvas::Item *b = p_b.item;
if (b->commands.size() != 1)
return false;
// tested outside function
// if (a->commands.size() != 1)
// return false;
const RasterizerCanvas::Item::Command &cb = *b->commands[0];
if (cb.type != RasterizerCanvas::Item::Command::TYPE_RECT)
return false;
const RasterizerCanvas::Item::Command &ca = *a->commands[0];
// tested outside function
// if (ca.type != Item::Command::TYPE_RECT)
// return false;
const RasterizerCanvas::Item::CommandRect *rect_a = static_cast<const RasterizerCanvas::Item::CommandRect *>(&ca);
const RasterizerCanvas::Item::CommandRect *rect_b = static_cast<const RasterizerCanvas::Item::CommandRect *>(&cb);
if (rect_a->texture != rect_b->texture)
return false;
/* ALTERNATIVE APPROACH NOT LIMITED TO RECTS
const RasterizerCanvas::Item::Command &ca = *a->commands[0];
const RasterizerCanvas::Item::Command &cb = *b->commands[0];
if (ca.type != cb.type)
return false;
// do textures match?
switch (ca.type)
{
default:
break;
case RasterizerCanvas::Item::Command::TYPE_RECT:
{
const RasterizerCanvas::Item::CommandRect *comm_a = static_cast<const RasterizerCanvas::Item::CommandRect *>(&ca);
const RasterizerCanvas::Item::CommandRect *comm_b = static_cast<const RasterizerCanvas::Item::CommandRect *>(&cb);
if (comm_a->texture != comm_b->texture)
return false;
}
break;
case RasterizerCanvas::Item::Command::TYPE_POLYGON:
{
const RasterizerCanvas::Item::CommandPolygon *comm_a = static_cast<const RasterizerCanvas::Item::CommandPolygon *>(&ca);
const RasterizerCanvas::Item::CommandPolygon *comm_b = static_cast<const RasterizerCanvas::Item::CommandPolygon *>(&cb);
if (comm_a->texture != comm_b->texture)
return false;
}
break;
}
*/
return true;
}
PREAMBLE(bool)::sort_items_from(int p_start) {
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
ERR_FAIL_COND_V((p_start + 1) >= bdata.sort_items.size(), false)
#endif
const BSortItem &start = bdata.sort_items[p_start];
int start_z = start.z_index;
// check start is the right type for sorting
if (start.item->commands.size() != 1) {
return false;
}
const RasterizerCanvas::Item::Command &command_start = *start.item->commands[0];
if (command_start.type != RasterizerCanvas::Item::Command::TYPE_RECT) {
return false;
}
BSortItem &second = bdata.sort_items[p_start + 1];
if (second.z_index != start_z) {
// no sorting across z indices (for now)
return false;
}
// if the neighbours are already a good match
if (_sort_items_match(start, second)) // order is crucial, start first
{
return false;
}
// local cached aabb
Rect2 second_AABB = second.item->global_rect_cache;
// if the start and 2nd items overlap, can do no more
if (start.item->global_rect_cache.intersects(second_AABB)) {
return false;
}
// which neighbour to test
int test_last = 2 + bdata.settings_item_reordering_lookahead;
for (int test = 2; test < test_last; test++) {
int test_sort_item_id = p_start + test;
// if we've got to the end of the list, can't sort any more, give up
if (test_sort_item_id >= bdata.sort_items.size()) {
return false;
}
BSortItem *test_sort_item = &bdata.sort_items[test_sort_item_id];
// across z indices?
if (test_sort_item->z_index != start_z) {
return false;
}
RasterizerCanvas::Item *test_item = test_sort_item->item;
// if the test item overlaps the second item, we can't swap, AT ALL
// because swapping an item OVER this one would cause artefacts
if (second_AABB.intersects(test_item->global_rect_cache)) {
return false;
}
// do they match?
if (!_sort_items_match(start, *test_sort_item)) // order is crucial, start first
{
continue;
}
// we can only swap if there are no AABB overlaps with sandwiched neighbours
bool ok = true;
// start from 2, no need to check 1 as the second has already been checked against this item
// in the intersection test above
for (int sn = 2; sn < test; sn++) {
BSortItem *sandwich_neighbour = &bdata.sort_items[p_start + sn];
if (test_item->global_rect_cache.intersects(sandwich_neighbour->item->global_rect_cache)) {
ok = false;
break;
}
}
if (!ok) {
continue;
}
// it is ok to exchange them!
BSortItem temp;
temp.assign(second);
second.assign(*test_sort_item);
test_sort_item->assign(temp);
return true;
} // for test
return false;
}
PREAMBLE(void)::_software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const {
Vector2 vc(r_v.x, r_v.y);
vc = p_tr.xform(vc);
r_v.set(vc);
}
PREAMBLE(void)::_software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const {
r_v = p_tr.xform(r_v);
}
PREAMBLE(void)::_translate_batches_to_vertex_colored_FVF() {
// zeros the size and sets up how big each unit is
bdata.unit_vertices.prepare(sizeof(BatchVertexColored));
const BatchColor *source_vertex_colors = &bdata.vertex_colors[0];
RAST_DEBUG_ASSERT(bdata.vertex_colors.size() == bdata.vertices.size());
int num_verts = bdata.vertices.size();
for (int n = 0; n < num_verts; n++) {
const BatchVertex &bv = bdata.vertices[n];
BatchVertexColored *cv = (BatchVertexColored *)bdata.unit_vertices.request();
cv->pos = bv.pos;
cv->uv = bv.uv;
cv->col = *source_vertex_colors++;
}
}
// Translation always involved adding color to the FVF, which enables
// joining of batches that have different colors.
// There is a trade off. Non colored verts are smaller so work faster, but
// there comes a point where it is better to just use colored verts to avoid lots of
// batches.
// In addition this can optionally add light angles to the FVF, necessary for normal mapping.
T_PREAMBLE
template <class BATCH_VERTEX_TYPE, bool INCLUDE_LIGHT_ANGLES, bool INCLUDE_MODULATE, bool INCLUDE_LARGE>
void C_PREAMBLE::_translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags) {
bool include_poly_color = false;
// we ONLY want to include the color verts in translation when using polys,
// as rects do not write vertex colors, only colors per batch.
if (p_sequence_batch_type_flags & RasterizerStorageCommon::BTF_POLY) {
include_poly_color = INCLUDE_LIGHT_ANGLES | INCLUDE_MODULATE | INCLUDE_LARGE;
}
// zeros the size and sets up how big each unit is
bdata.unit_vertices.prepare(sizeof(BATCH_VERTEX_TYPE));
bdata.batches_temp.reset();
// As the vertices_colored and batches_temp are 'mirrors' of the non-colored version,
// the sizes should be equal, and allocations should never fail. Hence the use of debug
// asserts to check program flow, these should not occur at runtime unless the allocation
// code has been altered.
RAST_DEBUG_ASSERT(bdata.unit_vertices.max_size() == bdata.vertices.max_size());
RAST_DEBUG_ASSERT(bdata.batches_temp.max_size() == bdata.batches.max_size());
Color curr_col(-1.0f, -1.0f, -1.0f, -1.0f);
Batch *dest_batch = nullptr;
const BatchColor *source_vertex_colors = &bdata.vertex_colors[0];
const float *source_light_angles = &bdata.light_angles[0];
const BatchColor *source_vertex_modulates = &bdata.vertex_modulates[0];
const BatchTransform *source_vertex_transforms = &bdata.vertex_transforms[0];
// translate the batches into vertex colored batches
for (int n = 0; n < bdata.batches.size(); n++) {
const Batch &source_batch = bdata.batches[n];
// does source batch use light angles?
const BatchTex &btex = bdata.batch_textures[source_batch.batch_texture_id];
bool source_batch_uses_light_angles = btex.RID_normal != RID();
bool needs_new_batch = true;
if (dest_batch) {
if (dest_batch->type == source_batch.type) {
if (source_batch.type == RasterizerStorageCommon::BT_RECT) {
if (dest_batch->batch_texture_id == source_batch.batch_texture_id) {
// add to previous batch
dest_batch->num_commands += source_batch.num_commands;
needs_new_batch = false;
// create the colored verts (only if not default)
//int first_vert = source_batch.first_quad * 4;
//int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands);
int first_vert = source_batch.first_vert;
int end_vert = first_vert + (4 * source_batch.num_commands);
for (int v = first_vert; v < end_vert; v++) {
RAST_DEV_DEBUG_ASSERT(bdata.vertices.size());
const BatchVertex &bv = bdata.vertices[v];
BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request();
RAST_DEBUG_ASSERT(cv);
cv->pos = bv.pos;
cv->uv = bv.uv;
cv->col = source_batch.color;
if (INCLUDE_LIGHT_ANGLES) {
RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size());
// this is required to allow compilation with non light angle vertex.
// it should be compiled out.
BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv;
if (source_batch_uses_light_angles)
lv->light_angle = *source_light_angles++;
else
lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea)
} // if including light angles
if (INCLUDE_MODULATE) {
RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size());
BatchVertexModulated *mv = (BatchVertexModulated *)cv;
mv->modulate = *source_vertex_modulates++;
} // including modulate
if (INCLUDE_LARGE) {
RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size());
BatchVertexLarge *lv = (BatchVertexLarge *)cv;
lv->transform = *source_vertex_transforms++;
} // if including large
}
} // textures match
} else {
// default
// we can still join, but only under special circumstances
// does this ever happen? not sure at this stage, but left for future expansion
uint32_t source_last_command = source_batch.first_command + source_batch.num_commands;
if (source_last_command == dest_batch->first_command) {
dest_batch->num_commands += source_batch.num_commands;
needs_new_batch = false;
} // if the commands line up exactly
}
} // if both batches are the same type
} // if dest batch is valid
if (needs_new_batch) {
dest_batch = bdata.batches_temp.request();
RAST_DEBUG_ASSERT(dest_batch);
*dest_batch = source_batch;
// create the colored verts (only if not default)
if (source_batch.type != RasterizerStorageCommon::BT_DEFAULT) {
// int first_vert = source_batch.first_quad * 4;
// int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands);
int first_vert = source_batch.first_vert;
int end_vert = first_vert + (4 * source_batch.num_commands);
for (int v = first_vert; v < end_vert; v++) {
RAST_DEV_DEBUG_ASSERT(bdata.vertices.size());
const BatchVertex &bv = bdata.vertices[v];
BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request();
RAST_DEBUG_ASSERT(cv);
cv->pos = bv.pos;
cv->uv = bv.uv;
// polys are special, they can have per vertex colors
if (!include_poly_color) {
cv->col = source_batch.color;
} else {
RAST_DEV_DEBUG_ASSERT(bdata.vertex_colors.size());
cv->col = *source_vertex_colors++;
}
if (INCLUDE_LIGHT_ANGLES) {
RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size());
// this is required to allow compilation with non light angle vertex.
// it should be compiled out.
BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv;
if (source_batch_uses_light_angles)
lv->light_angle = *source_light_angles++;
else
lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea)
} // if using light angles
if (INCLUDE_MODULATE) {
RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size());
BatchVertexModulated *mv = (BatchVertexModulated *)cv;
mv->modulate = *source_vertex_modulates++;
} // including modulate
if (INCLUDE_LARGE) {
RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size());
BatchVertexLarge *lv = (BatchVertexLarge *)cv;
lv->transform = *source_vertex_transforms++;
} // if including large
}
}
}
}
// copy the temporary batches to the master batch list (this could be avoided but it makes the code cleaner)
bdata.batches.copy_from(bdata.batches_temp);
}
PREAMBLE(bool)::_disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed) {
r_ris.joined_item_batch_type_flags_curr |= btf_allowed;
bool disallow = false;
if (r_ris.joined_item_batch_type_flags_prev & (~btf_allowed))
disallow = true;
return disallow;
}
PREAMBLE(bool)::_detect_item_batch_break(RenderItemState &r_ris, RasterizerCanvas::Item *p_ci, bool &r_batch_break) {
int command_count = p_ci->commands.size();
// Any item that contains commands that are default
// (i.e. not handled by software transform and the batching renderer) should not be joined.
// ALSO batched types that differ in what the vertex format is needed to be should not be
// joined.
// In order to work this out, it does a lookahead through the commands,
// which could potentially be very expensive. As such it makes sense to put a limit on this
// to some small number, which will catch nearly all cases which need joining,
// but not be overly expensive in the case of items with large numbers of commands.
// It is hard to know what this number should be, empirically,
// and this has not been fully investigated. It works to join single sprite items when set to 1 or above.
// Note that there is a cost to increasing this because it has to look in advance through
// the commands.
// On the other hand joining items where possible will usually be better up to a certain
// number where the cost of software transform is higher than separate drawcalls with hardware
// transform.
// if there are more than this number of commands in the item, we
// don't allow joining (separate state changes, and hardware transform)
// This is set to quite a conservative (low) number until investigated properly.
// const int MAX_JOIN_ITEM_COMMANDS = 16;
r_ris.joined_item_batch_type_flags_curr = 0;
if (command_count > bdata.settings_max_join_item_commands) {
return true;
} else {
RasterizerCanvas::Item::Command *const *commands = p_ci->commands.ptr();
// run through the commands looking for one that could prevent joining
for (int command_num = 0; command_num < command_count; command_num++) {
RasterizerCanvas::Item::Command *command = commands[command_num];
RAST_DEBUG_ASSERT(command);
switch (command->type) {
default: {
//r_batch_break = true;
return true;
} break;
case RasterizerCanvas::Item::Command::TYPE_LINE: {
// special case, only batches certain lines
RasterizerCanvas::Item::CommandLine *line = static_cast<RasterizerCanvas::Item::CommandLine *>(command);
if (line->width > 1) {
//r_batch_break = true;
return true;
}
if (_disallow_item_join_if_batch_types_too_different(r_ris, RasterizerStorageCommon::BTF_LINE | RasterizerStorageCommon::BTF_LINE_AA)) {
return true;
}
} break;
case RasterizerCanvas::Item::Command::TYPE_POLYGON: {
// only allow polygons to join if they aren't skeleton
RasterizerCanvas::Item::CommandPolygon *poly = static_cast<RasterizerCanvas::Item::CommandPolygon *>(command);
#ifdef GLES_OVER_GL
// anti aliasing not accelerated
if (poly->antialiased)
return true;
#endif
// light angles not yet implemented, treat as default
if (poly->normal_map != RID())
return true;
if (!get_this()->bdata.settings_use_software_skinning && poly->bones.size())
return true;
if (_disallow_item_join_if_batch_types_too_different(r_ris, RasterizerStorageCommon::BTF_POLY)) {
//r_batch_break = true;
return true;
}
} break;
case RasterizerCanvas::Item::Command::TYPE_RECT: {
if (_disallow_item_join_if_batch_types_too_different(r_ris, RasterizerStorageCommon::BTF_RECT))
return true;
} break;
case RasterizerCanvas::Item::Command::TYPE_NINEPATCH: {
// do not handle tiled ninepatches, these can't be batched and need to use legacy method
RasterizerCanvas::Item::CommandNinePatch *np = static_cast<RasterizerCanvas::Item::CommandNinePatch *>(command);
if ((np->axis_x != VisualServer::NINE_PATCH_STRETCH) || (np->axis_y != VisualServer::NINE_PATCH_STRETCH))
return true;
if (_disallow_item_join_if_batch_types_too_different(r_ris, RasterizerStorageCommon::BTF_RECT))
return true;
} break;
case RasterizerCanvas::Item::Command::TYPE_TRANSFORM: {
// compatible with all types
} break;
} // switch
} // for through commands
} // else
// special case, back buffer copy, so don't join
if (p_ci->copy_back_buffer) {
return true;
}
return false;
}
#undef PREAMBLE
#undef T_PREAMBLE
#undef C_PREAMBLE
#endif // RASTERIZER_CANVAS_BATCHER_H