virtualx-engine/modules/mono/glue/Managed/Files/Vector3.cs
Aaron Franke 218f38c7ec
Expose is_equal_approx and restore == to be exact again
This commit changes behavior for GDScript and C#.

Also did some organizing of the order to logically group related methods, mostly for Rect2 and AABB.
2019-10-14 16:48:59 -04:00

549 lines
14 KiB
C#

// file: core/math/vector3.h
// commit: bd282ff43f23fe845f29a3e25c8efc01bd65ffb0
// file: core/math/vector3.cpp
// commit: 7ad14e7a3e6f87ddc450f7e34621eb5200808451
// file: core/variant_call.cpp
// commit: 5ad9be4c24e9d7dc5672fdc42cea896622fe5685
using System;
using System.Runtime.InteropServices;
#if REAL_T_IS_DOUBLE
using real_t = System.Double;
#else
using real_t = System.Single;
#endif
namespace Godot
{
/// <summary>
/// 3-element structure that can be used to represent positions in 3D space or any other pair of numeric values.
/// </summary>
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Vector3 : IEquatable<Vector3>
{
public enum Axis
{
X = 0,
Y,
Z
}
public real_t x;
public real_t y;
public real_t z;
public real_t this[int index]
{
get
{
switch (index)
{
case 0:
return x;
case 1:
return y;
case 2:
return z;
default:
throw new IndexOutOfRangeException();
}
}
set
{
switch (index)
{
case 0:
x = value;
return;
case 1:
y = value;
return;
case 2:
z = value;
return;
default:
throw new IndexOutOfRangeException();
}
}
}
internal void Normalize()
{
real_t lengthsq = LengthSquared();
if (lengthsq == 0)
{
x = y = z = 0f;
}
else
{
real_t length = Mathf.Sqrt(lengthsq);
x /= length;
y /= length;
z /= length;
}
}
public Vector3 Abs()
{
return new Vector3(Mathf.Abs(x), Mathf.Abs(y), Mathf.Abs(z));
}
public real_t AngleTo(Vector3 to)
{
return Mathf.Atan2(Cross(to).Length(), Dot(to));
}
public Vector3 Bounce(Vector3 n)
{
return -Reflect(n);
}
public Vector3 Ceil()
{
return new Vector3(Mathf.Ceil(x), Mathf.Ceil(y), Mathf.Ceil(z));
}
public Vector3 Cross(Vector3 b)
{
return new Vector3
(
y * b.z - z * b.y,
z * b.x - x * b.z,
x * b.y - y * b.x
);
}
public Vector3 CubicInterpolate(Vector3 b, Vector3 preA, Vector3 postB, real_t t)
{
var p0 = preA;
var p1 = this;
var p2 = b;
var p3 = postB;
real_t t2 = t * t;
real_t t3 = t2 * t;
return 0.5f * (
p1 * 2.0f + (-p0 + p2) * t +
(2.0f * p0 - 5.0f * p1 + 4f * p2 - p3) * t2 +
(-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3
);
}
public Vector3 DirectionTo(Vector3 b)
{
return new Vector3(b.x - x, b.y - y, b.z - z).Normalized();
}
public real_t DistanceSquaredTo(Vector3 b)
{
return (b - this).LengthSquared();
}
public real_t DistanceTo(Vector3 b)
{
return (b - this).Length();
}
public real_t Dot(Vector3 b)
{
return x * b.x + y * b.y + z * b.z;
}
public Vector3 Floor()
{
return new Vector3(Mathf.Floor(x), Mathf.Floor(y), Mathf.Floor(z));
}
public Vector3 Inverse()
{
return new Vector3(1.0f / x, 1.0f / y, 1.0f / z);
}
public bool IsNormalized()
{
return Mathf.Abs(LengthSquared() - 1.0f) < Mathf.Epsilon;
}
public real_t Length()
{
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return Mathf.Sqrt(x2 + y2 + z2);
}
public real_t LengthSquared()
{
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return x2 + y2 + z2;
}
public Vector3 LinearInterpolate(Vector3 b, real_t t)
{
return new Vector3
(
x + t * (b.x - x),
y + t * (b.y - y),
z + t * (b.z - z)
);
}
public Vector3 MoveToward(Vector3 to, real_t delta)
{
var v = this;
var vd = to - v;
var len = vd.Length();
return len <= delta || len < Mathf.Epsilon ? to : v + vd / len * delta;
}
public Axis MaxAxis()
{
return x < y ? (y < z ? Axis.Z : Axis.Y) : (x < z ? Axis.Z : Axis.X);
}
public Axis MinAxis()
{
return x < y ? (x < z ? Axis.X : Axis.Z) : (y < z ? Axis.Y : Axis.Z);
}
public Vector3 Normalized()
{
var v = this;
v.Normalize();
return v;
}
public Basis Outer(Vector3 b)
{
return new Basis(
x * b.x, x * b.y, x * b.z,
y * b.x, y * b.y, y * b.z,
z * b.x, z * b.y, z * b.z
);
}
public Vector3 PosMod(real_t mod)
{
Vector3 v;
v.x = Mathf.PosMod(x, mod);
v.y = Mathf.PosMod(y, mod);
v.z = Mathf.PosMod(z, mod);
return v;
}
public Vector3 PosMod(Vector3 modv)
{
Vector3 v;
v.x = Mathf.PosMod(x, modv.x);
v.y = Mathf.PosMod(y, modv.y);
v.z = Mathf.PosMod(z, modv.z);
return v;
}
public Vector3 Project(Vector3 onNormal)
{
return onNormal * (Dot(onNormal) / onNormal.LengthSquared());
}
public Vector3 Reflect(Vector3 n)
{
#if DEBUG
if (!n.IsNormalized())
throw new ArgumentException(String.Format("{0} is not normalized", n), nameof(n));
#endif
return 2.0f * n * Dot(n) - this;
}
public Vector3 Round()
{
return new Vector3(Mathf.Round(x), Mathf.Round(y), Mathf.Round(z));
}
public Vector3 Rotated(Vector3 axis, real_t phi)
{
return new Basis(axis, phi).Xform(this);
}
[Obsolete("Set is deprecated. Use the Vector3(" + nameof(real_t) + ", " + nameof(real_t) + ", " + nameof(real_t) + ") constructor instead.", error: true)]
public void Set(real_t x, real_t y, real_t z)
{
this.x = x;
this.y = y;
this.z = z;
}
[Obsolete("Set is deprecated. Use the Vector3(" + nameof(Vector3) + ") constructor instead.", error: true)]
public void Set(Vector3 v)
{
x = v.x;
y = v.y;
z = v.z;
}
public Vector3 Sign()
{
Vector3 v;
v.x = Mathf.Sign(x);
v.y = Mathf.Sign(y);
v.z = Mathf.Sign(z);
return v;
}
public Vector3 Slerp(Vector3 b, real_t t)
{
real_t theta = AngleTo(b);
return Rotated(Cross(b), theta * t);
}
public Vector3 Slide(Vector3 n)
{
return this - n * Dot(n);
}
public Vector3 Snapped(Vector3 by)
{
return new Vector3
(
Mathf.Stepify(x, by.x),
Mathf.Stepify(y, by.y),
Mathf.Stepify(z, by.z)
);
}
public Basis ToDiagonalMatrix()
{
return new Basis(
x, 0f, 0f,
0f, y, 0f,
0f, 0f, z
);
}
// Constants
private static readonly Vector3 _zero = new Vector3(0, 0, 0);
private static readonly Vector3 _one = new Vector3(1, 1, 1);
private static readonly Vector3 _negOne = new Vector3(-1, -1, -1);
private static readonly Vector3 _inf = new Vector3(Mathf.Inf, Mathf.Inf, Mathf.Inf);
private static readonly Vector3 _up = new Vector3(0, 1, 0);
private static readonly Vector3 _down = new Vector3(0, -1, 0);
private static readonly Vector3 _right = new Vector3(1, 0, 0);
private static readonly Vector3 _left = new Vector3(-1, 0, 0);
private static readonly Vector3 _forward = new Vector3(0, 0, -1);
private static readonly Vector3 _back = new Vector3(0, 0, 1);
public static Vector3 Zero { get { return _zero; } }
public static Vector3 One { get { return _one; } }
public static Vector3 NegOne { get { return _negOne; } }
public static Vector3 Inf { get { return _inf; } }
public static Vector3 Up { get { return _up; } }
public static Vector3 Down { get { return _down; } }
public static Vector3 Right { get { return _right; } }
public static Vector3 Left { get { return _left; } }
public static Vector3 Forward { get { return _forward; } }
public static Vector3 Back { get { return _back; } }
// Constructors
public Vector3(real_t x, real_t y, real_t z)
{
this.x = x;
this.y = y;
this.z = z;
}
public Vector3(Vector3 v)
{
x = v.x;
y = v.y;
z = v.z;
}
public static Vector3 operator +(Vector3 left, Vector3 right)
{
left.x += right.x;
left.y += right.y;
left.z += right.z;
return left;
}
public static Vector3 operator -(Vector3 left, Vector3 right)
{
left.x -= right.x;
left.y -= right.y;
left.z -= right.z;
return left;
}
public static Vector3 operator -(Vector3 vec)
{
vec.x = -vec.x;
vec.y = -vec.y;
vec.z = -vec.z;
return vec;
}
public static Vector3 operator *(Vector3 vec, real_t scale)
{
vec.x *= scale;
vec.y *= scale;
vec.z *= scale;
return vec;
}
public static Vector3 operator *(real_t scale, Vector3 vec)
{
vec.x *= scale;
vec.y *= scale;
vec.z *= scale;
return vec;
}
public static Vector3 operator *(Vector3 left, Vector3 right)
{
left.x *= right.x;
left.y *= right.y;
left.z *= right.z;
return left;
}
public static Vector3 operator /(Vector3 vec, real_t scale)
{
vec.x /= scale;
vec.y /= scale;
vec.z /= scale;
return vec;
}
public static Vector3 operator /(Vector3 left, Vector3 right)
{
left.x /= right.x;
left.y /= right.y;
left.z /= right.z;
return left;
}
public static Vector3 operator %(Vector3 vec, real_t divisor)
{
vec.x %= divisor;
vec.y %= divisor;
vec.z %= divisor;
return vec;
}
public static Vector3 operator %(Vector3 vec, Vector3 divisorv)
{
vec.x %= divisorv.x;
vec.y %= divisorv.y;
vec.z %= divisorv.z;
return vec;
}
public static bool operator ==(Vector3 left, Vector3 right)
{
return left.Equals(right);
}
public static bool operator !=(Vector3 left, Vector3 right)
{
return !left.Equals(right);
}
public static bool operator <(Vector3 left, Vector3 right)
{
if (Mathf.IsEqualApprox(left.x, right.x))
{
if (Mathf.IsEqualApprox(left.y, right.y))
return left.z < right.z;
return left.y < right.y;
}
return left.x < right.x;
}
public static bool operator >(Vector3 left, Vector3 right)
{
if (Mathf.IsEqualApprox(left.x, right.x))
{
if (Mathf.IsEqualApprox(left.y, right.y))
return left.z > right.z;
return left.y > right.y;
}
return left.x > right.x;
}
public static bool operator <=(Vector3 left, Vector3 right)
{
if (Mathf.IsEqualApprox(left.x, right.x))
{
if (Mathf.IsEqualApprox(left.y, right.y))
return left.z <= right.z;
return left.y < right.y;
}
return left.x < right.x;
}
public static bool operator >=(Vector3 left, Vector3 right)
{
if (Mathf.IsEqualApprox(left.x, right.x))
{
if (Mathf.IsEqualApprox(left.y, right.y))
return left.z >= right.z;
return left.y > right.y;
}
return left.x > right.x;
}
public override bool Equals(object obj)
{
if (obj is Vector3)
{
return Equals((Vector3)obj);
}
return false;
}
public bool Equals(Vector3 other)
{
return x == other.x && y == other.y && z == other.z;
}
public bool IsEqualApprox(Vector3 other)
{
return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y) && Mathf.IsEqualApprox(z, other.z);
}
public override int GetHashCode()
{
return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode();
}
public override string ToString()
{
return String.Format("({0}, {1}, {2})", new object[]
{
x.ToString(),
y.ToString(),
z.ToString()
});
}
public string ToString(string format)
{
return String.Format("({0}, {1}, {2})", new object[]
{
x.ToString(format),
y.ToString(format),
z.ToString(format)
});
}
}
}