virtualx-engine/tests/scene/test_camera_3d.h
2024-02-13 18:53:21 +09:00

370 lines
18 KiB
C++

/**************************************************************************/
/* test_camera_3d.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TEST_CAMERA_3D_H
#define TEST_CAMERA_3D_H
#include "scene/3d/camera_3d.h"
#include "scene/main/viewport.h"
#include "scene/main/window.h"
#include "tests/test_macros.h"
// Constants.
#define SQRT3 (1.7320508f)
TEST_CASE("[SceneTree][Camera3D] Getters and setters") {
Camera3D *test_camera = memnew(Camera3D);
SUBCASE("Cull mask") {
constexpr int cull_mask = (1 << 5) | (1 << 7) | (1 << 9);
constexpr int set_enable_layer = 3;
constexpr int set_disable_layer = 5;
test_camera->set_cull_mask(cull_mask);
CHECK(test_camera->get_cull_mask() == cull_mask);
test_camera->set_cull_mask_value(set_enable_layer, true);
CHECK(test_camera->get_cull_mask_value(set_enable_layer));
test_camera->set_cull_mask_value(set_disable_layer, false);
CHECK_FALSE(test_camera->get_cull_mask_value(set_disable_layer));
}
SUBCASE("Attributes") {
Ref<CameraAttributes> attributes = memnew(CameraAttributes);
test_camera->set_attributes(attributes);
CHECK(test_camera->get_attributes() == attributes);
Ref<CameraAttributesPhysical> physical_attributes = memnew(CameraAttributesPhysical);
test_camera->set_attributes(physical_attributes);
CHECK(test_camera->get_attributes() == physical_attributes);
}
SUBCASE("Camera frustum properties") {
constexpr float depth_near = 0.2f;
constexpr float depth_far = 995.0f;
constexpr float fov = 120.0f;
constexpr float size = 7.0f;
constexpr float h_offset = 1.1f;
constexpr float v_offset = -1.6f;
const Vector2 frustum_offset(5, 7);
test_camera->set_near(depth_near);
CHECK(test_camera->get_near() == depth_near);
test_camera->set_far(depth_far);
CHECK(test_camera->get_far() == depth_far);
test_camera->set_fov(fov);
CHECK(test_camera->get_fov() == fov);
test_camera->set_size(size);
CHECK(test_camera->get_size() == size);
test_camera->set_h_offset(h_offset);
CHECK(test_camera->get_h_offset() == h_offset);
test_camera->set_v_offset(v_offset);
CHECK(test_camera->get_v_offset() == v_offset);
test_camera->set_frustum_offset(frustum_offset);
CHECK(test_camera->get_frustum_offset() == frustum_offset);
test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_HEIGHT);
CHECK(test_camera->get_keep_aspect_mode() == Camera3D::KeepAspect::KEEP_HEIGHT);
test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_WIDTH);
CHECK(test_camera->get_keep_aspect_mode() == Camera3D::KeepAspect::KEEP_WIDTH);
}
SUBCASE("Projection mode") {
test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_ORTHOGONAL);
CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_ORTHOGONAL);
test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_PERSPECTIVE);
CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_PERSPECTIVE);
}
SUBCASE("Helper setters") {
constexpr float fov = 90.0f, size = 6.0f;
constexpr float near1 = 0.1f, near2 = 0.5f;
constexpr float far1 = 1001.0f, far2 = 1005.0f;
test_camera->set_perspective(fov, near1, far1);
CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_PERSPECTIVE);
CHECK(test_camera->get_near() == near1);
CHECK(test_camera->get_far() == far1);
CHECK(test_camera->get_fov() == fov);
test_camera->set_orthogonal(size, near2, far2);
CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_ORTHOGONAL);
CHECK(test_camera->get_near() == near2);
CHECK(test_camera->get_far() == far2);
CHECK(test_camera->get_size() == size);
}
SUBCASE("Doppler tracking") {
test_camera->set_doppler_tracking(Camera3D::DopplerTracking::DOPPLER_TRACKING_IDLE_STEP);
CHECK(test_camera->get_doppler_tracking() == Camera3D::DopplerTracking::DOPPLER_TRACKING_IDLE_STEP);
test_camera->set_doppler_tracking(Camera3D::DopplerTracking::DOPPLER_TRACKING_PHYSICS_STEP);
CHECK(test_camera->get_doppler_tracking() == Camera3D::DopplerTracking::DOPPLER_TRACKING_PHYSICS_STEP);
test_camera->set_doppler_tracking(Camera3D::DopplerTracking::DOPPLER_TRACKING_DISABLED);
CHECK(test_camera->get_doppler_tracking() == Camera3D::DopplerTracking::DOPPLER_TRACKING_DISABLED);
}
memdelete(test_camera);
}
TEST_CASE("[SceneTree][Camera3D] Position queries") {
// Cameras need a viewport to know how to compute their frustums, so we make a fake one here.
Camera3D *test_camera = memnew(Camera3D);
SubViewport *mock_viewport = memnew(SubViewport);
// 4:2.
mock_viewport->set_size(Vector2(400, 200));
SceneTree::get_singleton()->get_root()->add_child(mock_viewport);
mock_viewport->add_child(test_camera);
test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_WIDTH);
REQUIRE_MESSAGE(test_camera->is_current(), "Camera3D should be made current upon entering tree.");
SUBCASE("Orthogonal projection") {
test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_ORTHOGONAL);
// The orthogonal case is simpler, so we test a more random position + rotation combination here.
// For the other cases we'll use zero translation and rotation instead.
test_camera->set_global_position(Vector3(1, 2, 3));
test_camera->look_at(Vector3(-4, 5, 1));
// Width = 5, Aspect Ratio = 400 / 200 = 2, so Height is 2.5.
test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f);
const Basis basis = test_camera->get_global_basis();
// Subtract near so offset starts from the near plane.
const Vector3 offset1 = basis.xform(Vector3(-1.5f, 3.5f, 0.2f - test_camera->get_near()));
const Vector3 offset2 = basis.xform(Vector3(2.0f, -0.5f, -0.6f - test_camera->get_near()));
const Vector3 offset3 = basis.xform(Vector3(-3.0f, 1.0f, -0.6f - test_camera->get_near()));
const Vector3 offset4 = basis.xform(Vector3(-2.0f, 1.5f, -0.6f - test_camera->get_near()));
const Vector3 offset5 = basis.xform(Vector3(0, 0, 10000.0f - test_camera->get_near()));
SUBCASE("is_position_behind") {
CHECK(test_camera->is_position_behind(test_camera->get_global_position() + offset1));
CHECK_FALSE(test_camera->is_position_behind(test_camera->get_global_position() + offset2));
SUBCASE("h/v offset should have no effect on the result of is_position_behind") {
test_camera->set_h_offset(-11.0f);
test_camera->set_v_offset(22.1f);
CHECK(test_camera->is_position_behind(test_camera->get_global_position() + offset1));
test_camera->set_h_offset(4.7f);
test_camera->set_v_offset(-3.0f);
CHECK_FALSE(test_camera->is_position_behind(test_camera->get_global_position() + offset2));
}
// Reset h/v offsets.
test_camera->set_h_offset(0);
test_camera->set_v_offset(0);
}
SUBCASE("is_position_in_frustum") {
// If the point is behind the near plane, it is outside the camera frustum.
// So offset1 is not in frustum.
CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset1));
// If |right| > 5 / 2 or |up| > 2.5 / 2, the point is outside the camera frustum.
// So offset2 is in frustum and offset3 and offset4 are not.
CHECK(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset2));
CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset3));
CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset4));
// offset5 is beyond the far plane, so it is not in frustum.
CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset5));
}
}
SUBCASE("Perspective projection") {
test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_PERSPECTIVE);
// Camera at origin, looking at +Z.
test_camera->set_global_position(Vector3(0, 0, 0));
test_camera->set_global_rotation(Vector3(0, 0, 0));
// Keep width, so horizontal fov = 120.
// Since the near plane distance is 1,
// with trig we know the near plane's width is 2 * sqrt(3), so its height is sqrt(3).
test_camera->set_perspective(120.0f, 1.0f, 1000.0f);
SUBCASE("is_position_behind") {
CHECK_FALSE(test_camera->is_position_behind(Vector3(0, 0, -1.5f)));
CHECK(test_camera->is_position_behind(Vector3(2, 0, -0.2f)));
}
SUBCASE("is_position_in_frustum") {
CHECK(test_camera->is_position_in_frustum(Vector3(-1.3f, 0, -1.1f)));
CHECK_FALSE(test_camera->is_position_in_frustum(Vector3(2, 0, -1.1f)));
CHECK(test_camera->is_position_in_frustum(Vector3(1, 0.5f, -1.1f)));
CHECK_FALSE(test_camera->is_position_in_frustum(Vector3(1, 1, -1.1f)));
CHECK(test_camera->is_position_in_frustum(Vector3(0, 0, -1.5f)));
CHECK_FALSE(test_camera->is_position_in_frustum(Vector3(0, 0, -0.5f)));
}
}
memdelete(test_camera);
memdelete(mock_viewport);
}
TEST_CASE("[SceneTree][Camera3D] Project/Unproject position") {
// Cameras need a viewport to know how to compute their frustums, so we make a fake one here.
Camera3D *test_camera = memnew(Camera3D);
SubViewport *mock_viewport = memnew(SubViewport);
// 4:2.
mock_viewport->set_size(Vector2(400, 200));
SceneTree::get_singleton()->get_root()->add_child(mock_viewport);
mock_viewport->add_child(test_camera);
test_camera->set_global_position(Vector3(0, 0, 0));
test_camera->set_global_rotation(Vector3(0, 0, 0));
test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_HEIGHT);
SUBCASE("project_position") {
SUBCASE("Orthogonal projection") {
test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_position(Vector2(200, 100), 0.5f).is_equal_approx(Vector3(0, 0, -0.5f)));
// Top left.
CHECK(test_camera->project_position(Vector2(0, 0), 1.5f).is_equal_approx(Vector3(-5.0f, 2.5f, -1.5f)));
// Bottom right.
CHECK(test_camera->project_position(Vector2(400, 200), 5.0f).is_equal_approx(Vector3(5.0f, -2.5f, -5.0f)));
}
SUBCASE("Perspective projection") {
test_camera->set_perspective(120.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_position(Vector2(200, 100), 0.5f).is_equal_approx(Vector3(0, 0, -0.5f)));
CHECK(test_camera->project_position(Vector2(200, 100), 100.0f).is_equal_approx(Vector3(0, 0, -100.0f)));
// 3/4th way to Top left.
CHECK(test_camera->project_position(Vector2(100, 50), 0.5f).is_equal_approx(Vector3(-SQRT3 * 0.5f, SQRT3 * 0.25f, -0.5f)));
CHECK(test_camera->project_position(Vector2(100, 50), 1.0f).is_equal_approx(Vector3(-SQRT3, SQRT3 * 0.5f, -1.0f)));
// 3/4th way to Bottom right.
CHECK(test_camera->project_position(Vector2(300, 150), 0.5f).is_equal_approx(Vector3(SQRT3 * 0.5f, -SQRT3 * 0.25f, -0.5f)));
CHECK(test_camera->project_position(Vector2(300, 150), 1.0f).is_equal_approx(Vector3(SQRT3, -SQRT3 * 0.5f, -1.0f)));
}
}
// Uses cases that are the inverse of the above sub-case.
SUBCASE("unproject_position") {
SUBCASE("Orthogonal projection") {
test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f);
// Center
CHECK(test_camera->unproject_position(Vector3(0, 0, -0.5f)).is_equal_approx(Vector2(200, 100)));
// Top left
CHECK(test_camera->unproject_position(Vector3(-5.0f, 2.5f, -1.5f)).is_equal_approx(Vector2(0, 0)));
// Bottom right
CHECK(test_camera->unproject_position(Vector3(5.0f, -2.5f, -5.0f)).is_equal_approx(Vector2(400, 200)));
}
SUBCASE("Perspective projection") {
test_camera->set_perspective(120.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->unproject_position(Vector3(0, 0, -0.5f)).is_equal_approx(Vector2(200, 100)));
CHECK(test_camera->unproject_position(Vector3(0, 0, -100.0f)).is_equal_approx(Vector2(200, 100)));
// 3/4th way to Top left.
WARN(test_camera->unproject_position(Vector3(-SQRT3 * 0.5f, SQRT3 * 0.25f, -0.5f)).is_equal_approx(Vector2(100, 50)));
WARN(test_camera->unproject_position(Vector3(-SQRT3, SQRT3 * 0.5f, -1.0f)).is_equal_approx(Vector2(100, 50)));
// 3/4th way to Bottom right.
CHECK(test_camera->unproject_position(Vector3(SQRT3 * 0.5f, -SQRT3 * 0.25f, -0.5f)).is_equal_approx(Vector2(300, 150)));
CHECK(test_camera->unproject_position(Vector3(SQRT3, -SQRT3 * 0.5f, -1.0f)).is_equal_approx(Vector2(300, 150)));
}
}
memdelete(test_camera);
memdelete(mock_viewport);
}
TEST_CASE("[SceneTree][Camera3D] Project ray") {
// Cameras need a viewport to know how to compute their frustums, so we make a fake one here.
Camera3D *test_camera = memnew(Camera3D);
SubViewport *mock_viewport = memnew(SubViewport);
// 4:2.
mock_viewport->set_size(Vector2(400, 200));
SceneTree::get_singleton()->get_root()->add_child(mock_viewport);
mock_viewport->add_child(test_camera);
test_camera->set_global_position(Vector3(0, 0, 0));
test_camera->set_global_rotation(Vector3(0, 0, 0));
test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_HEIGHT);
SUBCASE("project_ray_origin") {
SUBCASE("Orthogonal projection") {
test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_ray_origin(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -0.5f)));
// Top left.
CHECK(test_camera->project_ray_origin(Vector2(0, 0)).is_equal_approx(Vector3(-5.0f, 2.5f, -0.5f)));
// Bottom right.
CHECK(test_camera->project_ray_origin(Vector2(400, 200)).is_equal_approx(Vector3(5.0f, -2.5f, -0.5f)));
}
SUBCASE("Perspective projection") {
test_camera->set_perspective(120.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_ray_origin(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, 0)));
// Top left.
CHECK(test_camera->project_ray_origin(Vector2(0, 0)).is_equal_approx(Vector3(0, 0, 0)));
// Bottom right.
CHECK(test_camera->project_ray_origin(Vector2(400, 200)).is_equal_approx(Vector3(0, 0, 0)));
}
}
SUBCASE("project_ray_normal") {
SUBCASE("Orthogonal projection") {
test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1)));
// Top left.
CHECK(test_camera->project_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(0, 0, -1)));
// Bottom right.
CHECK(test_camera->project_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(0, 0, -1)));
}
SUBCASE("Perspective projection") {
test_camera->set_perspective(120.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1)));
// Top left.
CHECK(test_camera->project_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(-SQRT3, SQRT3 / 2, -0.5f).normalized()));
// Bottom right.
CHECK(test_camera->project_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(SQRT3, -SQRT3 / 2, -0.5f).normalized()));
}
}
SUBCASE("project_local_ray_normal") {
test_camera->set_rotation_degrees(Vector3(60, 60, 60));
SUBCASE("Orthogonal projection") {
test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_local_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1)));
// Top left.
CHECK(test_camera->project_local_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(0, 0, -1)));
// Bottom right.
CHECK(test_camera->project_local_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(0, 0, -1)));
}
SUBCASE("Perspective projection") {
test_camera->set_perspective(120.0f, 0.5f, 1000.0f);
// Center.
CHECK(test_camera->project_local_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1)));
// Top left.
CHECK(test_camera->project_local_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(-SQRT3, SQRT3 / 2, -0.5f).normalized()));
// Bottom right.
CHECK(test_camera->project_local_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(SQRT3, -SQRT3 / 2, -0.5f).normalized()));
}
}
memdelete(test_camera);
memdelete(mock_viewport);
}
#undef SQRT3
#endif // TEST_CAMERA_3D_H