bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
258 lines
7.4 KiB
C++
258 lines
7.4 KiB
C++
// This code is in the public domain -- castano@gmail.com
|
|
|
|
#pragma once
|
|
#ifndef NV_MATH_FTOI_H
|
|
#define NV_MATH_FTOI_H
|
|
|
|
#include "nvmath/nvmath.h"
|
|
|
|
#include <math.h>
|
|
|
|
namespace nv
|
|
{
|
|
// Optimized float to int conversions. See:
|
|
// http://cbloomrants.blogspot.com/2009/01/01-17-09-float-to-int.html
|
|
// http://www.stereopsis.com/sree/fpu2006.html
|
|
// http://assemblyrequired.crashworks.org/2009/01/12/why-you-should-never-cast-floats-to-ints/
|
|
// http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point
|
|
|
|
|
|
union DoubleAnd64 {
|
|
uint64 i;
|
|
double d;
|
|
};
|
|
|
|
static const double floatutil_xs_doublemagic = (6755399441055744.0); // 2^52 * 1.5
|
|
static const double floatutil_xs_doublemagicdelta = (1.5e-8); // almost .5f = .5f + 1e^(number of exp bit)
|
|
static const double floatutil_xs_doublemagicroundeps = (0.5f - floatutil_xs_doublemagicdelta); // almost .5f = .5f - 1e^(number of exp bit)
|
|
|
|
NV_FORCEINLINE int ftoi_round_xs(double val, double magic) {
|
|
#if 1
|
|
DoubleAnd64 dunion;
|
|
dunion.d = val + magic;
|
|
return (int32) dunion.i; // just cast to grab the bottom bits
|
|
#else
|
|
val += magic;
|
|
return ((int*)&val)[0]; // @@ Assumes little endian.
|
|
#endif
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_round_xs(float val) {
|
|
return ftoi_round_xs(val, floatutil_xs_doublemagic);
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_floor_xs(float val) {
|
|
return ftoi_round_xs(val - floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic);
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_ceil_xs(float val) {
|
|
return ftoi_round_xs(val + floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic);
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_trunc_xs(float val) {
|
|
return (val<0) ? ftoi_ceil_xs(val) : ftoi_floor_xs(val);
|
|
}
|
|
|
|
#if NV_CPU_X86 || NV_CPU_X86_64
|
|
|
|
NV_FORCEINLINE int ftoi_round_sse(float f) {
|
|
return _mm_cvt_ss2si(_mm_set_ss(f));
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_trunc_sse(float f) {
|
|
return _mm_cvtt_ss2si(_mm_set_ss(f));
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if NV_USE_SSE
|
|
|
|
NV_FORCEINLINE int ftoi_round(float val) {
|
|
return ftoi_round_sse(val);
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_trunc(float f) {
|
|
return ftoi_trunc_sse(f);
|
|
}
|
|
|
|
// We can probably do better than this. See for example:
|
|
// http://dss.stephanierct.com/DevBlog/?p=8
|
|
NV_FORCEINLINE int ftoi_floor(float val) {
|
|
return ftoi_round(floorf(val));
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_ceil(float val) {
|
|
return ftoi_round(ceilf(val));
|
|
}
|
|
|
|
#else
|
|
|
|
// In theory this should work with any double floating point math implementation, but it appears that MSVC produces incorrect code
|
|
// when SSE2 is targeted and fast math is enabled (/arch:SSE2 & /fp:fast). These problems go away with /fp:precise, which is the default mode.
|
|
|
|
NV_FORCEINLINE int ftoi_round(float val) {
|
|
return ftoi_round_xs(val);
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_floor(float val) {
|
|
return ftoi_floor_xs(val);
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_ceil(float val) {
|
|
return ftoi_ceil_xs(val);
|
|
}
|
|
|
|
NV_FORCEINLINE int ftoi_trunc(float f) {
|
|
return ftoi_trunc_xs(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
inline void test_ftoi() {
|
|
|
|
// Round to nearest integer.
|
|
nvCheck(ftoi_round(0.1f) == 0);
|
|
nvCheck(ftoi_round(0.6f) == 1);
|
|
nvCheck(ftoi_round(-0.2f) == 0);
|
|
nvCheck(ftoi_round(-0.7f) == -1);
|
|
nvCheck(ftoi_round(10.1f) == 10);
|
|
nvCheck(ftoi_round(10.6f) == 11);
|
|
nvCheck(ftoi_round(-90.1f) == -90);
|
|
nvCheck(ftoi_round(-90.6f) == -91);
|
|
|
|
nvCheck(ftoi_round(0) == 0);
|
|
nvCheck(ftoi_round(1) == 1);
|
|
nvCheck(ftoi_round(-1) == -1);
|
|
|
|
nvCheck(ftoi_round(0.5f) == 0); // How are midpoints rounded? Bankers rounding.
|
|
nvCheck(ftoi_round(1.5f) == 2);
|
|
nvCheck(ftoi_round(2.5f) == 2);
|
|
nvCheck(ftoi_round(3.5f) == 4);
|
|
nvCheck(ftoi_round(4.5f) == 4);
|
|
nvCheck(ftoi_round(-0.5f) == 0);
|
|
nvCheck(ftoi_round(-1.5f) == -2);
|
|
|
|
|
|
// Truncation (round down if > 0, round up if < 0).
|
|
nvCheck(ftoi_trunc(0.1f) == 0);
|
|
nvCheck(ftoi_trunc(0.6f) == 0);
|
|
nvCheck(ftoi_trunc(-0.2f) == 0);
|
|
nvCheck(ftoi_trunc(-0.7f) == 0); // @@ When using /arch:SSE2 in Win32, msvc produce wrong code for this one. It is skipping the addition.
|
|
nvCheck(ftoi_trunc(1.99f) == 1);
|
|
nvCheck(ftoi_trunc(-1.2f) == -1);
|
|
|
|
// Floor (round down).
|
|
nvCheck(ftoi_floor(0.1f) == 0);
|
|
nvCheck(ftoi_floor(0.6f) == 0);
|
|
nvCheck(ftoi_floor(-0.2f) == -1);
|
|
nvCheck(ftoi_floor(-0.7f) == -1);
|
|
nvCheck(ftoi_floor(1.99f) == 1);
|
|
nvCheck(ftoi_floor(-1.2f) == -2);
|
|
|
|
nvCheck(ftoi_floor(0) == 0);
|
|
nvCheck(ftoi_floor(1) == 1);
|
|
nvCheck(ftoi_floor(-1) == -1);
|
|
nvCheck(ftoi_floor(2) == 2);
|
|
nvCheck(ftoi_floor(-2) == -2);
|
|
|
|
// Ceil (round up).
|
|
nvCheck(ftoi_ceil(0.1f) == 1);
|
|
nvCheck(ftoi_ceil(0.6f) == 1);
|
|
nvCheck(ftoi_ceil(-0.2f) == 0);
|
|
nvCheck(ftoi_ceil(-0.7f) == 0);
|
|
nvCheck(ftoi_ceil(1.99f) == 2);
|
|
nvCheck(ftoi_ceil(-1.2f) == -1);
|
|
|
|
nvCheck(ftoi_ceil(0) == 0);
|
|
nvCheck(ftoi_ceil(1) == 1);
|
|
nvCheck(ftoi_ceil(-1) == -1);
|
|
nvCheck(ftoi_ceil(2) == 2);
|
|
nvCheck(ftoi_ceil(-2) == -2);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Safe versions using standard casts.
|
|
|
|
inline int iround(float f)
|
|
{
|
|
return ftoi_round(f);
|
|
//return int(floorf(f + 0.5f));
|
|
}
|
|
|
|
inline int iround(double f)
|
|
{
|
|
return int(::floor(f + 0.5));
|
|
}
|
|
|
|
inline int ifloor(float f)
|
|
{
|
|
return ftoi_floor(f);
|
|
//return int(floorf(f));
|
|
}
|
|
|
|
inline int iceil(float f)
|
|
{
|
|
return int(ceilf(f));
|
|
}
|
|
|
|
|
|
|
|
// I'm always confused about which quantizer to use. I think we should choose a quantizer based on how the values are expanded later and this is generally using the 'exact endpoints' rule.
|
|
// Some notes from cbloom: http://cbloomrants.blogspot.com/2011/07/07-26-11-pixel-int-to-float-options.html
|
|
|
|
// Quantize a float in the [0,1] range, using exact end points or uniform bins.
|
|
inline float quantizeFloat(float x, uint bits, bool exactEndPoints = true) {
|
|
nvDebugCheck(bits <= 16);
|
|
|
|
float range = float(1 << bits);
|
|
if (exactEndPoints) {
|
|
return floorf(x * (range-1) + 0.5f) / (range-1);
|
|
}
|
|
else {
|
|
return (floorf(x * range) + 0.5f) / range;
|
|
}
|
|
}
|
|
|
|
|
|
// This is the most common rounding mode:
|
|
//
|
|
// 0 1 2 3
|
|
// |___|_______|_______|___|
|
|
// 0 1
|
|
//
|
|
// You get that if you take the unit floating point number multiply by 'N-1' and round to nearest. That is, `i = round(f * (N-1))`.
|
|
// You reconstruct the original float dividing by 'N-1': `f = i / (N-1)`
|
|
|
|
|
|
// 0 1 2 3
|
|
// |_____|_____|_____|_____|
|
|
// 0 1
|
|
|
|
/*enum BinningMode {
|
|
RoundMode_ExactEndPoints,
|
|
RoundMode_UniformBins,
|
|
};*/
|
|
|
|
template <int N>
|
|
inline uint unitFloatToFixed(float f) {
|
|
return ftoi_round(f * ((1<<N)-1));
|
|
}
|
|
|
|
inline uint8 unitFloatToFixed8(float f) {
|
|
return (uint8)unitFloatToFixed<8>(f);
|
|
}
|
|
|
|
inline uint16 unitFloatToFixed16(float f) {
|
|
return (uint16)unitFloatToFixed<16>(f);
|
|
}
|
|
|
|
|
|
} // nv
|
|
|
|
#endif // NV_MATH_FTOI_H
|