1bea8e1eac
-Added LocalVector (needed it) -Added stb_rect_pack (It's pretty cool, we could probably use it for other stuff too) -Fixes and changes all around the place -Added library for 128 bits fixed point (required for Delaunay3D)
297 lines
11 KiB
C++
297 lines
11 KiB
C++
/*******************************************************************************
|
|
* Copyright 2016-2018 Intel Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*******************************************************************************/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "c_types_map.hpp"
|
|
#include "type_helpers.hpp"
|
|
#include "math_utils.hpp"
|
|
#include "mkldnn_thread.hpp"
|
|
|
|
#include "ref_eltwise.hpp"
|
|
|
|
namespace mkldnn {
|
|
namespace impl {
|
|
namespace cpu {
|
|
|
|
using namespace alg_kind;
|
|
using namespace math;
|
|
|
|
ref_eltwise_scalar_fwd_t::ref_eltwise_scalar_fwd_t(alg_kind_t alg, float alpha,
|
|
float beta): alg_(alg), alpha_(alpha), beta_(beta) {
|
|
assert(utils::one_of(alg_, eltwise_relu, eltwise_tanh, eltwise_elu,
|
|
eltwise_square, eltwise_abs, eltwise_sqrt, eltwise_linear,
|
|
eltwise_bounded_relu, eltwise_soft_relu, eltwise_logistic));
|
|
}
|
|
|
|
ref_eltwise_scalar_fwd_t::ref_eltwise_scalar_fwd_t(
|
|
const post_ops_t::entry_t::eltwise_t &eltwise)
|
|
: ref_eltwise_scalar_fwd_t(eltwise.alg, eltwise.alpha, eltwise.beta) {}
|
|
|
|
float ref_eltwise_scalar_fwd_t::compute_scalar(float s) {
|
|
switch (alg_) {
|
|
case eltwise_relu: return relu_fwd(s, alpha_);
|
|
case eltwise_tanh: return tanh_fwd(s);
|
|
case eltwise_elu: return elu_fwd(s, alpha_);
|
|
case eltwise_square: return square_fwd(s);
|
|
case eltwise_abs: return abs_fwd(s);
|
|
case eltwise_sqrt: return sqrt_fwd(s);
|
|
case eltwise_linear: return linear_fwd(s, alpha_, beta_);
|
|
case eltwise_bounded_relu: return bounded_relu_fwd(s, alpha_);
|
|
case eltwise_soft_relu: return soft_relu_fwd(s);
|
|
case eltwise_logistic: return logistic_fwd(s);
|
|
default: assert(!"unknown eltwise alg_kind");
|
|
}
|
|
|
|
return 0.f;
|
|
}
|
|
|
|
template <impl::data_type_t data_type>
|
|
void ref_eltwise_fwd_t<data_type>::execute_forward_nCspBc_padded(
|
|
const exec_ctx_t &ctx) const {
|
|
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
|
|
auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
|
|
|
|
const memory_desc_wrapper data_d(pd()->src_md());
|
|
const blocking_desc_t &blk = data_d.blocking_desc();
|
|
const int block = blk.inner_blks[0];
|
|
|
|
const int MB = pd()->MB();
|
|
const int C = pd()->C() / block;
|
|
const int C_PADDED = data_d.padded_dims()[1] / block;
|
|
const int tail = pd()->C() % block;
|
|
const int SP = pd()->D() * pd()->H() * pd()->W();
|
|
const auto alg_kind = pd()->desc()->alg_kind;
|
|
const float alpha = pd()->desc()->alpha;
|
|
const float beta = pd()->desc()->beta;
|
|
|
|
auto ker = [=] (data_t &d, data_t s) {
|
|
switch (alg_kind) {
|
|
case eltwise_linear: d = linear_fwd(s, alpha, beta); break;
|
|
case eltwise_bounded_relu:
|
|
d = bounded_relu_fwd(s, alpha); break;
|
|
case eltwise_soft_relu: d = soft_relu_fwd(s); break;
|
|
case eltwise_logistic: d = logistic_fwd(s); break;
|
|
default: assert(!"unknown eltwise alg_kind");
|
|
}
|
|
};
|
|
|
|
// FIXME: integer overflow?
|
|
|
|
parallel_nd(MB, C_PADDED, SP,
|
|
[&](int n, int c, int sp) {
|
|
auto d_off = (n*C_PADDED*SP + c*SP + sp) * block;
|
|
if (c < C) {
|
|
for (int v = 0; v < block; v++)
|
|
ker(dst[d_off + v], src[d_off + v]);
|
|
} else {
|
|
for (int v = 0; v < tail; v++)
|
|
ker(dst[d_off + v], src[d_off + v]);
|
|
}
|
|
});
|
|
}
|
|
|
|
template <impl::data_type_t data_type>
|
|
void ref_eltwise_fwd_t<data_type>::execute_forward_generic(
|
|
const exec_ctx_t &ctx) const {
|
|
/* fast return */
|
|
if (pd()->has_zero_dim_memory()) return;
|
|
|
|
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
|
|
auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
|
|
|
|
const memory_desc_wrapper data_d(pd()->src_md());
|
|
|
|
const int MB = pd()->MB();
|
|
const int C = pd()->C();
|
|
const int D = pd()->D();
|
|
const int H = pd()->H();
|
|
const int W = pd()->W();
|
|
const auto alg_kind = pd()->desc()->alg_kind;
|
|
const float alpha = pd()->desc()->alpha;
|
|
const float beta = pd()->desc()->beta;
|
|
const bool is_3d = pd()->desc()->data_desc.ndims == 5;
|
|
|
|
parallel_nd(MB, C, D, H, W,
|
|
[&](int n, int c, int id, int h, int w) {
|
|
auto d_off = is_3d
|
|
? data_d.off(n, c, id, h, w) : data_d.off(n, c, h, w);
|
|
data_t s = src[d_off];
|
|
data_t &d = dst[d_off];
|
|
switch (alg_kind) {
|
|
case eltwise_relu: d = relu_fwd(s, alpha); break;
|
|
case eltwise_tanh: d = tanh_fwd(s); break;
|
|
case eltwise_elu: d = elu_fwd(s, alpha); break;
|
|
case eltwise_square: d = square_fwd(s); break;
|
|
case eltwise_abs: d = abs_fwd(s); break;
|
|
case eltwise_sqrt: d = sqrt_fwd(s); break;
|
|
case eltwise_linear: d = linear_fwd(s, alpha, beta); break;
|
|
case eltwise_bounded_relu:
|
|
d = bounded_relu_fwd(s, alpha); break;
|
|
case eltwise_soft_relu: d = soft_relu_fwd(s); break;
|
|
case eltwise_logistic: d = logistic_fwd(s); break;
|
|
default: assert(!"unknown eltwise alg_kind");
|
|
}
|
|
});
|
|
}
|
|
|
|
template <impl::data_type_t data_type>
|
|
void ref_eltwise_fwd_t<data_type>::execute_forward_dense(
|
|
const exec_ctx_t &ctx) const {
|
|
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
|
|
auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
|
|
|
|
const memory_desc_wrapper data_d(pd()->src_md());
|
|
|
|
const ptrdiff_t nelems = static_cast<ptrdiff_t>(data_d.nelems(true));
|
|
const auto alg_kind = pd()->desc()->alg_kind;
|
|
const float alpha = pd()->desc()->alpha;
|
|
const float beta = pd()->desc()->beta;
|
|
|
|
src += data_d.offset0();
|
|
dst += data_d.offset0();
|
|
|
|
if (alg_kind == eltwise_relu) {
|
|
// a fast path for relu as the most popular activation
|
|
parallel_nd(nelems, [&](ptrdiff_t e) {
|
|
dst[e] = relu_fwd(src[e], alpha);
|
|
});
|
|
return;
|
|
}
|
|
|
|
parallel_nd(nelems, [&](ptrdiff_t e) {
|
|
const data_t s = src[e];
|
|
data_t &d = dst[e];
|
|
|
|
switch (alg_kind) {
|
|
case eltwise_tanh: d = tanh_fwd(s); break;
|
|
case eltwise_elu: d = elu_fwd(s, alpha); break;
|
|
case eltwise_square: d = square_fwd(s); break;
|
|
case eltwise_abs: d = abs_fwd(s); break;
|
|
case eltwise_sqrt: d = sqrt_fwd(s); break;
|
|
case eltwise_linear: d = linear_fwd(s, alpha, beta); break;
|
|
case eltwise_bounded_relu: d = bounded_relu_fwd(s, alpha); break;
|
|
case eltwise_soft_relu: d = soft_relu_fwd(s); break;
|
|
case eltwise_logistic: d = logistic_fwd(s); break;
|
|
default: assert(!"unknown eltwise alg_kind");
|
|
}
|
|
});
|
|
}
|
|
|
|
template <impl::data_type_t data_type>
|
|
void ref_eltwise_bwd_t<data_type>::execute_backward_generic(
|
|
const exec_ctx_t &ctx) const {
|
|
/* fast return */
|
|
if (pd()->has_zero_dim_memory()) return;
|
|
|
|
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
|
|
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
|
|
auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
|
|
|
|
const memory_desc_wrapper data_d(pd()->src_md());
|
|
const memory_desc_wrapper diff_data_d(pd()->diff_src_md());
|
|
|
|
const int MB = pd()->MB();
|
|
const int C = pd()->C();
|
|
const int D = pd()->D();
|
|
const int H = pd()->H();
|
|
const int W = pd()->W();
|
|
const auto alg_kind = pd()->desc()->alg_kind;
|
|
const float alpha = pd()->desc()->alpha;
|
|
const float beta = pd()->desc()->beta;
|
|
const bool is_3d = pd()->desc()->data_desc.ndims == 5;
|
|
|
|
parallel_nd(MB, C, D, H, W,
|
|
[&](int n, int c, int d, int h, int w) {
|
|
auto data_off = is_3d
|
|
? data_d.off(n, c, d, h, w) : data_d.off(n, c, h, w);
|
|
auto diff_data_off = is_3d
|
|
? diff_data_d.off(n, c, d, h, w)
|
|
: diff_data_d.off(n, c, h, w);
|
|
data_t s = src[data_off];
|
|
data_t dd = diff_dst[diff_data_off];
|
|
data_t &ds = diff_src[diff_data_off];
|
|
switch (alg_kind) {
|
|
case eltwise_relu: ds = relu_bwd(dd, s, alpha); break;
|
|
case eltwise_tanh: ds = tanh_bwd(dd, s); break;
|
|
case eltwise_elu: ds = elu_bwd(dd, s, alpha); break;
|
|
case eltwise_square: ds = square_bwd(dd, s); break;
|
|
case eltwise_abs: ds = abs_bwd(dd, s); break;
|
|
case eltwise_sqrt: ds = sqrt_bwd(dd, s); break;
|
|
case eltwise_linear:
|
|
ds = linear_bwd(dd, s, alpha, beta); break;
|
|
case eltwise_bounded_relu:
|
|
ds = bounded_relu_bwd(dd, s, alpha); break;
|
|
case eltwise_soft_relu: ds = soft_relu_bwd(dd, s); break;
|
|
case eltwise_logistic: ds = logistic_bwd(dd, s); break;
|
|
default: assert(!"unknown eltwise alg_kind");
|
|
}
|
|
});
|
|
}
|
|
|
|
template <impl::data_type_t data_type>
|
|
void ref_eltwise_bwd_t<data_type>::execute_backward_dense(
|
|
const exec_ctx_t &ctx) const {
|
|
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
|
|
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
|
|
auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
|
|
|
|
const memory_desc_wrapper data_d(pd()->src_md());
|
|
const memory_desc_wrapper diff_data_d(pd()->diff_src_md());
|
|
|
|
const ptrdiff_t nelems = static_cast<ptrdiff_t>(data_d.nelems(true));
|
|
const auto alg_kind = pd()->desc()->alg_kind;
|
|
const float alpha = pd()->desc()->alpha;
|
|
const float beta = pd()->desc()->beta;
|
|
|
|
src += data_d.offset0();
|
|
diff_dst += diff_data_d.offset0();
|
|
diff_src += diff_data_d.offset0();
|
|
|
|
parallel_nd(nelems, [&](ptrdiff_t e) {
|
|
const data_t dd = diff_dst[e];
|
|
const data_t s = src[e];
|
|
data_t &ds = diff_src[e];
|
|
|
|
switch (alg_kind) {
|
|
case eltwise_relu: ds = relu_bwd(dd, s, alpha); break;
|
|
case eltwise_tanh: ds = tanh_bwd(dd, s); break;
|
|
case eltwise_elu: ds = elu_bwd(dd, s, alpha); break;
|
|
case eltwise_square: ds = square_bwd(dd, s); break;
|
|
case eltwise_abs: ds = abs_bwd(dd, s); break;
|
|
case eltwise_sqrt: ds = sqrt_bwd(dd, s); break;
|
|
case eltwise_linear: ds = linear_bwd(dd, s, alpha, beta); break;
|
|
case eltwise_bounded_relu: ds = bounded_relu_bwd(dd, s, alpha); break;
|
|
case eltwise_soft_relu: ds = soft_relu_bwd(dd, s); break;
|
|
case eltwise_logistic: ds = logistic_bwd(dd, s); break;
|
|
default: assert(!"unknown eltwise alg_kind");
|
|
}
|
|
});
|
|
}
|
|
|
|
template struct ref_eltwise_fwd_t<data_type::f32>;
|
|
template struct ref_eltwise_fwd_t<data_type::s32>;
|
|
template struct ref_eltwise_fwd_t<data_type::s8>;
|
|
template struct ref_eltwise_fwd_t<data_type::u8>;
|
|
|
|
template struct ref_eltwise_bwd_t<data_type::f32>;
|
|
template struct ref_eltwise_bwd_t<data_type::s32>;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|