virtualx-engine/drivers/gles3/storage/particles_storage.cpp

1396 lines
56 KiB
C++

/**************************************************************************/
/* particles_storage.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifdef GLES3_ENABLED
#include "particles_storage.h"
#include "material_storage.h"
#include "mesh_storage.h"
#include "texture_storage.h"
#include "utilities.h"
#include "servers/rendering/rendering_server_default.h"
using namespace GLES3;
ParticlesStorage *ParticlesStorage::singleton = nullptr;
ParticlesStorage *ParticlesStorage::get_singleton() {
return singleton;
}
ParticlesStorage::ParticlesStorage() {
singleton = this;
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
{
String global_defines;
global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now
material_storage->shaders.particles_process_shader.initialize(global_defines, 1);
}
{
// default material and shader for particles shader
particles_shader.default_shader = material_storage->shader_allocate();
material_storage->shader_initialize(particles_shader.default_shader);
material_storage->shader_set_code(particles_shader.default_shader, R"(
// Default particles shader.
shader_type particles;
void process() {
COLOR = vec4(1.0);
}
)");
particles_shader.default_material = material_storage->material_allocate();
material_storage->material_initialize(particles_shader.default_material);
material_storage->material_set_shader(particles_shader.default_material, particles_shader.default_shader);
}
{
particles_shader.copy_shader.initialize();
particles_shader.copy_shader_version = particles_shader.copy_shader.version_create();
}
}
ParticlesStorage::~ParticlesStorage() {
singleton = nullptr;
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
material_storage->material_free(particles_shader.default_material);
material_storage->shader_free(particles_shader.default_shader);
particles_shader.copy_shader.version_free(particles_shader.copy_shader_version);
}
/* PARTICLES */
RID ParticlesStorage::particles_allocate() {
return particles_owner.allocate_rid();
}
void ParticlesStorage::particles_initialize(RID p_rid) {
particles_owner.initialize_rid(p_rid, Particles());
}
void ParticlesStorage::particles_free(RID p_rid) {
update_particles();
Particles *particles = particles_owner.get_or_null(p_rid);
particles->dependency.deleted_notify(p_rid);
_particles_free_data(particles);
particles_owner.free(p_rid);
}
void ParticlesStorage::particles_set_mode(RID p_particles, RS::ParticlesMode p_mode) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
if (particles->mode == p_mode) {
return;
}
_particles_free_data(particles);
particles->mode = p_mode;
}
void ParticlesStorage::particles_set_emitting(RID p_particles, bool p_emitting) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->emitting = p_emitting;
}
bool ParticlesStorage::particles_get_emitting(RID p_particles) {
ERR_FAIL_COND_V_MSG(RSG::threaded, false, "This function should never be used with threaded rendering, as it stalls the renderer.");
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->emitting;
}
void ParticlesStorage::_particles_free_data(Particles *particles) {
particles->userdata_count = 0;
particles->instance_buffer_size_cache = 0;
particles->instance_buffer_stride_cache = 0;
particles->num_attrib_arrays_cache = 0;
particles->process_buffer_stride_cache = 0;
if (particles->front_process_buffer != 0) {
glDeleteVertexArrays(1, &particles->front_vertex_array);
GLES3::Utilities::get_singleton()->buffer_free_data(particles->front_process_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(particles->front_instance_buffer);
particles->front_vertex_array = 0;
particles->front_process_buffer = 0;
particles->front_instance_buffer = 0;
glDeleteVertexArrays(1, &particles->back_vertex_array);
GLES3::Utilities::get_singleton()->buffer_free_data(particles->back_process_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(particles->back_instance_buffer);
particles->back_vertex_array = 0;
particles->back_process_buffer = 0;
particles->back_instance_buffer = 0;
}
if (particles->sort_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(particles->last_frame_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(particles->sort_buffer);
particles->last_frame_buffer = 0;
particles->sort_buffer = 0;
particles->sort_buffer_filled = false;
particles->last_frame_buffer_filled = false;
}
if (particles->frame_params_ubo != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(particles->frame_params_ubo);
particles->frame_params_ubo = 0;
}
}
void ParticlesStorage::particles_set_amount(RID p_particles, int p_amount) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
if (particles->amount == p_amount) {
return;
}
_particles_free_data(particles);
particles->amount = p_amount;
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES);
}
void ParticlesStorage::particles_set_lifetime(RID p_particles, double p_lifetime) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->lifetime = p_lifetime;
}
void ParticlesStorage::particles_set_one_shot(RID p_particles, bool p_one_shot) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->one_shot = p_one_shot;
}
void ParticlesStorage::particles_set_pre_process_time(RID p_particles, double p_time) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->pre_process_time = p_time;
}
void ParticlesStorage::particles_set_explosiveness_ratio(RID p_particles, real_t p_ratio) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->explosiveness = p_ratio;
}
void ParticlesStorage::particles_set_randomness_ratio(RID p_particles, real_t p_ratio) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->randomness = p_ratio;
}
void ParticlesStorage::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->custom_aabb = p_aabb;
particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
void ParticlesStorage::particles_set_speed_scale(RID p_particles, double p_scale) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->speed_scale = p_scale;
}
void ParticlesStorage::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->use_local_coords = p_enable;
particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES);
}
void ParticlesStorage::particles_set_fixed_fps(RID p_particles, int p_fps) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->fixed_fps = p_fps;
_particles_free_data(particles);
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES);
}
void ParticlesStorage::particles_set_interpolate(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->interpolate = p_enable;
}
void ParticlesStorage::particles_set_fractional_delta(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->fractional_delta = p_enable;
}
void ParticlesStorage::particles_set_trails(RID p_particles, bool p_enable, double p_length) {
if (p_enable) {
WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support particle trails.");
}
}
void ParticlesStorage::particles_set_trail_bind_poses(RID p_particles, const Vector<Transform3D> &p_bind_poses) {
if (p_bind_poses.size() != 0) {
WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support particle trails.");
}
}
void ParticlesStorage::particles_set_collision_base_size(RID p_particles, real_t p_size) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->collision_base_size = p_size;
}
void ParticlesStorage::particles_set_transform_align(RID p_particles, RS::ParticlesTransformAlign p_transform_align) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->transform_align = p_transform_align;
}
void ParticlesStorage::particles_set_process_material(RID p_particles, RID p_material) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->process_material = p_material;
particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES); //the instance buffer may have changed
}
RID ParticlesStorage::particles_get_process_material(RID p_particles) const {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND_V(!particles, RID());
return particles->process_material;
}
void ParticlesStorage::particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_order = p_order;
}
void ParticlesStorage::particles_set_draw_passes(RID p_particles, int p_passes) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_passes.resize(p_passes);
}
void ParticlesStorage::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_pass, particles->draw_passes.size());
particles->draw_passes.write[p_pass] = p_mesh;
particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_PARTICLES);
}
void ParticlesStorage::particles_restart(RID p_particles) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->restart_request = true;
}
void ParticlesStorage::particles_set_subemitter(RID p_particles, RID p_subemitter_particles) {
if (p_subemitter_particles.is_valid()) {
WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support particle sub-emitters.");
}
}
void ParticlesStorage::particles_emit(RID p_particles, const Transform3D &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags) {
WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support manually emitting particles.");
}
void ParticlesStorage::particles_request_process(RID p_particles) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
if (!particles->dirty) {
particles->dirty = true;
particles->update_list = particle_update_list;
particle_update_list = particles;
}
}
AABB ParticlesStorage::particles_get_current_aabb(RID p_particles) {
if (RSG::threaded) {
WARN_PRINT_ONCE("Calling this function with threaded rendering enabled stalls the renderer, use with care.");
}
const Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
int total_amount = particles->amount;
// If available, read from the sort buffer which should be 2 frames out of date.
// This will help alleviate GPU stalls.
GLuint read_buffer = particles->sort_buffer_filled ? particles->sort_buffer : particles->back_instance_buffer;
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, read_buffer, total_amount * sizeof(ParticleInstanceData3D));
ERR_FAIL_COND_V(buffer.size() != (int)(total_amount * sizeof(ParticleInstanceData3D)), AABB());
Transform3D inv = particles->emission_transform.affine_inverse();
AABB aabb;
if (buffer.size()) {
bool first = true;
const uint8_t *data_ptr = (const uint8_t *)buffer.ptr();
uint32_t particle_data_size = sizeof(ParticleInstanceData3D) + sizeof(float) * particles->userdata_count;
for (int i = 0; i < total_amount; i++) {
const ParticleInstanceData3D &particle_data = *(const ParticleInstanceData3D *)&data_ptr[particle_data_size * i];
// If scale is 0.0, we assume the particle is inactive.
if (particle_data.xform[0] > 0.0) {
Vector3 pos = Vector3(particle_data.xform[3], particle_data.xform[7], particle_data.xform[11]);
if (!particles->use_local_coords) {
pos = inv.xform(pos);
}
if (first) {
aabb.position = pos;
first = false;
} else {
aabb.expand_to(pos);
}
}
}
}
float longest_axis_size = 0;
for (int i = 0; i < particles->draw_passes.size(); i++) {
if (particles->draw_passes[i].is_valid()) {
AABB maabb = MeshStorage::get_singleton()->mesh_get_aabb(particles->draw_passes[i], RID());
longest_axis_size = MAX(maabb.get_longest_axis_size(), longest_axis_size);
}
}
aabb.grow_by(longest_axis_size);
return aabb;
}
AABB ParticlesStorage::particles_get_aabb(RID p_particles) const {
const Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
return particles->custom_aabb;
}
void ParticlesStorage::particles_set_emission_transform(RID p_particles, const Transform3D &p_transform) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->emission_transform = p_transform;
}
int ParticlesStorage::particles_get_draw_passes(RID p_particles) const {
const Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND_V(!particles, 0);
return particles->draw_passes.size();
}
RID ParticlesStorage::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const {
const Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND_V(!particles, RID());
ERR_FAIL_INDEX_V(p_pass, particles->draw_passes.size(), RID());
return particles->draw_passes[p_pass];
}
void ParticlesStorage::particles_add_collision(RID p_particles, RID p_particles_collision_instance) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->collisions.insert(p_particles_collision_instance);
}
void ParticlesStorage::particles_remove_collision(RID p_particles, RID p_particles_collision_instance) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->collisions.erase(p_particles_collision_instance);
}
void ParticlesStorage::particles_set_canvas_sdf_collision(RID p_particles, bool p_enable, const Transform2D &p_xform, const Rect2 &p_to_screen, GLuint p_texture) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
particles->has_sdf_collision = p_enable;
particles->sdf_collision_transform = p_xform;
particles->sdf_collision_to_screen = p_to_screen;
particles->sdf_collision_texture = p_texture;
}
// Does one step of processing particles by reading from back_process_buffer and writing to front_process_buffer.
void ParticlesStorage::_particles_process(Particles *p_particles, double p_delta) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
double new_phase = Math::fmod(p_particles->phase + (p_delta / p_particles->lifetime) * p_particles->speed_scale, 1.0);
//update current frame
ParticlesFrameParams frame_params;
if (p_particles->clear) {
p_particles->cycle_number = 0;
p_particles->random_seed = Math::rand();
} else if (new_phase < p_particles->phase) {
if (p_particles->one_shot) {
p_particles->emitting = false;
}
p_particles->cycle_number++;
}
frame_params.emitting = p_particles->emitting;
frame_params.system_phase = new_phase;
frame_params.prev_system_phase = p_particles->phase;
p_particles->phase = new_phase;
frame_params.time = RSG::rasterizer->get_total_time();
frame_params.delta = p_delta * p_particles->speed_scale;
frame_params.random_seed = p_particles->random_seed;
frame_params.explosiveness = p_particles->explosiveness;
frame_params.randomness = p_particles->randomness;
if (p_particles->use_local_coords) {
GLES3::MaterialStorage::store_transform(Transform3D(), frame_params.emission_transform);
} else {
GLES3::MaterialStorage::store_transform(p_particles->emission_transform, frame_params.emission_transform);
}
frame_params.cycle = p_particles->cycle_number;
frame_params.frame = p_particles->frame_counter++;
frame_params.pad0 = 0;
frame_params.pad1 = 0;
frame_params.pad2 = 0;
{ //collision and attractors
frame_params.collider_count = 0;
frame_params.attractor_count = 0;
frame_params.particle_size = p_particles->collision_base_size;
GLuint collision_heightmap_texture = 0;
Transform3D to_particles;
if (p_particles->use_local_coords) {
to_particles = p_particles->emission_transform.affine_inverse();
}
if (p_particles->has_sdf_collision && p_particles->sdf_collision_texture != 0) {
//2D collision
Transform2D xform = p_particles->sdf_collision_transform; //will use dotproduct manually so invert beforehand
if (!p_particles->use_local_coords) {
Transform2D emission;
emission.columns[0] = Vector2(p_particles->emission_transform.basis.get_column(0).x, p_particles->emission_transform.basis.get_column(0).y);
emission.columns[1] = Vector2(p_particles->emission_transform.basis.get_column(1).x, p_particles->emission_transform.basis.get_column(1).y);
emission.set_origin(Vector2(p_particles->emission_transform.origin.x, p_particles->emission_transform.origin.y));
xform = xform * emission.affine_inverse();
}
Transform2D revert = xform.affine_inverse();
frame_params.collider_count = 1;
frame_params.colliders[0].transform[0] = xform.columns[0][0];
frame_params.colliders[0].transform[1] = xform.columns[0][1];
frame_params.colliders[0].transform[2] = 0;
frame_params.colliders[0].transform[3] = xform.columns[2][0];
frame_params.colliders[0].transform[4] = xform.columns[1][0];
frame_params.colliders[0].transform[5] = xform.columns[1][1];
frame_params.colliders[0].transform[6] = 0;
frame_params.colliders[0].transform[7] = xform.columns[2][1];
frame_params.colliders[0].transform[8] = revert.columns[0][0];
frame_params.colliders[0].transform[9] = revert.columns[0][1];
frame_params.colliders[0].transform[10] = 0;
frame_params.colliders[0].transform[11] = revert.columns[2][0];
frame_params.colliders[0].transform[12] = revert.columns[1][0];
frame_params.colliders[0].transform[13] = revert.columns[1][1];
frame_params.colliders[0].transform[14] = 0;
frame_params.colliders[0].transform[15] = revert.columns[2][1];
frame_params.colliders[0].extents[0] = p_particles->sdf_collision_to_screen.size.x;
frame_params.colliders[0].extents[1] = p_particles->sdf_collision_to_screen.size.y;
frame_params.colliders[0].extents[2] = p_particles->sdf_collision_to_screen.position.x;
frame_params.colliders[0].scale = p_particles->sdf_collision_to_screen.position.y;
frame_params.colliders[0].type = ParticlesFrameParams::COLLISION_TYPE_2D_SDF;
collision_heightmap_texture = p_particles->sdf_collision_texture;
}
for (const RID &E : p_particles->collisions) {
ParticlesCollisionInstance *pci = particles_collision_instance_owner.get_or_null(E);
if (!pci || !pci->active) {
continue;
}
ParticlesCollision *pc = particles_collision_owner.get_or_null(pci->collision);
ERR_CONTINUE(!pc);
Transform3D to_collider = pci->transform;
if (p_particles->use_local_coords) {
to_collider = to_particles * to_collider;
}
Vector3 scale = to_collider.basis.get_scale();
to_collider.basis.orthonormalize();
if (pc->type <= RS::PARTICLES_COLLISION_TYPE_VECTOR_FIELD_ATTRACT) {
//attractor
if (frame_params.attractor_count >= ParticlesFrameParams::MAX_ATTRACTORS) {
continue;
}
ParticlesFrameParams::Attractor &attr = frame_params.attractors[frame_params.attractor_count];
GLES3::MaterialStorage::store_transform(to_collider, attr.transform);
attr.strength = pc->attractor_strength;
attr.attenuation = pc->attractor_attenuation;
attr.directionality = pc->attractor_directionality;
switch (pc->type) {
case RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT: {
attr.type = ParticlesFrameParams::ATTRACTOR_TYPE_SPHERE;
float radius = pc->radius;
radius *= (scale.x + scale.y + scale.z) / 3.0;
attr.extents[0] = radius;
attr.extents[1] = radius;
attr.extents[2] = radius;
} break;
case RS::PARTICLES_COLLISION_TYPE_BOX_ATTRACT: {
attr.type = ParticlesFrameParams::ATTRACTOR_TYPE_BOX;
Vector3 extents = pc->extents * scale;
attr.extents[0] = extents.x;
attr.extents[1] = extents.y;
attr.extents[2] = extents.z;
} break;
case RS::PARTICLES_COLLISION_TYPE_VECTOR_FIELD_ATTRACT: {
WARN_PRINT_ONCE_ED("Vector field particle attractors are not available in the GL Compatibility rendering backend.");
} break;
default: {
}
}
frame_params.attractor_count++;
} else {
//collider
if (frame_params.collider_count >= ParticlesFrameParams::MAX_COLLIDERS) {
continue;
}
ParticlesFrameParams::Collider &col = frame_params.colliders[frame_params.collider_count];
GLES3::MaterialStorage::store_transform(to_collider, col.transform);
switch (pc->type) {
case RS::PARTICLES_COLLISION_TYPE_SPHERE_COLLIDE: {
col.type = ParticlesFrameParams::COLLISION_TYPE_SPHERE;
float radius = pc->radius;
radius *= (scale.x + scale.y + scale.z) / 3.0;
col.extents[0] = radius;
col.extents[1] = radius;
col.extents[2] = radius;
} break;
case RS::PARTICLES_COLLISION_TYPE_BOX_COLLIDE: {
col.type = ParticlesFrameParams::COLLISION_TYPE_BOX;
Vector3 extents = pc->extents * scale;
col.extents[0] = extents.x;
col.extents[1] = extents.y;
col.extents[2] = extents.z;
} break;
case RS::PARTICLES_COLLISION_TYPE_SDF_COLLIDE: {
WARN_PRINT_ONCE_ED("SDF Particle Colliders are not available in the GL Compatibility rendering backend.");
} break;
case RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE: {
if (collision_heightmap_texture != 0) { //already taken
continue;
}
col.type = ParticlesFrameParams::COLLISION_TYPE_HEIGHT_FIELD;
Vector3 extents = pc->extents * scale;
col.extents[0] = extents.x;
col.extents[1] = extents.y;
col.extents[2] = extents.z;
collision_heightmap_texture = pc->heightfield_texture;
} break;
default: {
}
}
frame_params.collider_count++;
}
}
// Bind heightmap or SDF texture.
GLuint heightmap = collision_heightmap_texture;
if (heightmap == 0) {
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_BLACK));
heightmap = tex->tex_id;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, heightmap);
}
if (p_particles->frame_params_ubo == 0) {
glGenBuffers(1, &p_particles->frame_params_ubo);
glBindBufferBase(GL_UNIFORM_BUFFER, PARTICLES_FRAME_UNIFORM_LOCATION, p_particles->frame_params_ubo);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, p_particles->frame_params_ubo, sizeof(ParticlesFrameParams), &frame_params, GL_STREAM_DRAW, "Particle Frame UBO");
} else {
// Update per-frame UBO.
glBindBufferBase(GL_UNIFORM_BUFFER, PARTICLES_FRAME_UNIFORM_LOCATION, p_particles->frame_params_ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(ParticlesFrameParams), &frame_params, GL_STREAM_DRAW);
}
// Get shader and set shader uniforms;
ParticleProcessMaterialData *m = static_cast<ParticleProcessMaterialData *>(material_storage->material_get_data(p_particles->process_material, RS::SHADER_PARTICLES));
if (!m) {
m = static_cast<ParticleProcessMaterialData *>(material_storage->material_get_data(particles_shader.default_material, RS::SHADER_PARTICLES));
}
ERR_FAIL_COND(!m);
ParticlesShaderGLES3::ShaderVariant variant = ParticlesShaderGLES3::MODE_DEFAULT;
uint32_t specialization = 0;
for (uint32_t i = 0; i < p_particles->userdata_count; i++) {
specialization |= (1 << i);
}
if (p_particles->mode == RS::ParticlesMode::PARTICLES_MODE_3D) {
specialization |= ParticlesShaderGLES3::MODE_3D;
}
RID version = particles_shader.default_shader_version;
if (m->shader_data->version.is_valid() && m->shader_data->valid) {
// Bind material uniform buffer and textures.
m->bind_uniforms();
version = m->shader_data->version;
}
bool success = material_storage->shaders.particles_process_shader.version_bind_shader(version, variant, specialization);
if (!success) {
return;
}
material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::LIFETIME, p_particles->lifetime, version, variant, specialization);
material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::CLEAR, p_particles->clear, version, variant, specialization);
material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::TOTAL_PARTICLES, uint32_t(p_particles->amount), version, variant, specialization);
material_storage->shaders.particles_process_shader.version_set_uniform(ParticlesShaderGLES3::USE_FRACTIONAL_DELTA, p_particles->fractional_delta, version, variant, specialization);
p_particles->clear = false;
p_particles->has_collision_cache = m->shader_data->uses_collision;
glBindVertexArray(p_particles->back_vertex_array);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_particles->front_process_buffer);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, p_particles->amount);
glEndTransformFeedback();
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
glBindVertexArray(0);
SWAP(p_particles->front_process_buffer, p_particles->back_process_buffer);
SWAP(p_particles->front_vertex_array, p_particles->back_vertex_array);
}
void ParticlesStorage::particles_set_view_axis(RID p_particles, const Vector3 &p_axis, const Vector3 &p_up_axis) {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND(!particles);
if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD_Y_TO_VELOCITY) {
return;
}
if (particles->front_process_buffer == 0) {
return; //particles have not processed yet
}
Vector3 axis = -p_axis; // cameras look to z negative
if (particles->use_local_coords) {
axis = particles->emission_transform.basis.xform_inv(axis).normalized();
}
// Sort will be done on CPU since we don't have compute shaders.
// If the sort_buffer has valid data
// Use a buffer that is 2 frames out of date to avoid stalls.
if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->sort_buffer_filled) {
glBindBuffer(GL_ARRAY_BUFFER, particles->sort_buffer);
ParticleInstanceData3D *particle_array;
#ifndef __EMSCRIPTEN__
particle_array = static_cast<ParticleInstanceData3D *>(glMapBufferRange(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(ParticleInstanceData3D), GL_MAP_READ_BIT | GL_MAP_WRITE_BIT));
ERR_FAIL_NULL(particle_array);
#else
LocalVector<ParticleInstanceData3D> particle_vector;
particle_vector.resize(particles->amount);
particle_array = particle_vector.ptr();
glGetBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(ParticleInstanceData3D), particle_array);
#endif
SortArray<ParticleInstanceData3D, ParticlesViewSort> sorter;
sorter.compare.z_dir = axis;
sorter.sort(particle_array, particles->amount);
#ifndef __EMSCRIPTEN__
glUnmapBuffer(GL_ARRAY_BUFFER);
#else
glBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(ParticleInstanceData3D), particle_vector.ptr());
#endif
}
glEnable(GL_RASTERIZER_DISCARD);
_particles_update_instance_buffer(particles, axis, p_up_axis);
glDisable(GL_RASTERIZER_DISCARD);
}
void ParticlesStorage::_particles_update_buffers(Particles *particles) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
uint32_t userdata_count = 0;
if (particles->process_material.is_valid()) {
GLES3::ParticleProcessMaterialData *material_data = static_cast<GLES3::ParticleProcessMaterialData *>(material_storage->material_get_data(particles->process_material, RS::SHADER_PARTICLES));
if (material_data && material_data->shader_data->version.is_valid() && material_data->shader_data->valid) {
userdata_count = material_data->shader_data->userdata_count;
}
}
if (userdata_count != particles->userdata_count) {
// Mismatch userdata, re-create buffers.
_particles_free_data(particles);
}
if (particles->amount > 0 && particles->front_process_buffer == 0) {
int total_amount = particles->amount;
particles->userdata_count = userdata_count;
uint32_t xform_size = particles->mode == RS::PARTICLES_MODE_2D ? 2 : 3;
particles->instance_buffer_stride_cache = sizeof(float) * 4 * (xform_size + 1);
particles->instance_buffer_size_cache = particles->instance_buffer_stride_cache * total_amount;
particles->num_attrib_arrays_cache = 5 + userdata_count + (xform_size - 2);
particles->process_buffer_stride_cache = sizeof(float) * 4 * particles->num_attrib_arrays_cache;
PackedByteArray data;
data.resize_zeroed(particles->process_buffer_stride_cache * total_amount);
PackedByteArray instance_data;
instance_data.resize_zeroed(particles->instance_buffer_size_cache);
{
glGenVertexArrays(1, &particles->front_vertex_array);
glBindVertexArray(particles->front_vertex_array);
glGenBuffers(1, &particles->front_process_buffer);
glGenBuffers(1, &particles->front_instance_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles->front_process_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->front_process_buffer, particles->process_buffer_stride_cache * total_amount, data.ptr(), GL_DYNAMIC_COPY, "Particles front process buffer");
for (uint32_t j = 0; j < particles->num_attrib_arrays_cache; j++) {
glEnableVertexAttribArray(j);
glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, particles->process_buffer_stride_cache, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * j));
}
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, particles->front_instance_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->front_instance_buffer, particles->instance_buffer_size_cache, instance_data.ptr(), GL_DYNAMIC_COPY, "Particles front instance buffer");
}
{
glGenVertexArrays(1, &particles->back_vertex_array);
glBindVertexArray(particles->back_vertex_array);
glGenBuffers(1, &particles->back_process_buffer);
glGenBuffers(1, &particles->back_instance_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles->back_process_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->back_process_buffer, particles->process_buffer_stride_cache * total_amount, data.ptr(), GL_DYNAMIC_COPY, "Particles back process buffer");
for (uint32_t j = 0; j < particles->num_attrib_arrays_cache; j++) {
glEnableVertexAttribArray(j);
glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, particles->process_buffer_stride_cache, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * j));
}
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, particles->back_instance_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->back_instance_buffer, particles->instance_buffer_size_cache, instance_data.ptr(), GL_DYNAMIC_COPY, "Particles back instance buffer");
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
}
void ParticlesStorage::_particles_allocate_history_buffers(Particles *particles) {
if (particles->sort_buffer == 0) {
glGenBuffers(1, &particles->last_frame_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles->last_frame_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->last_frame_buffer, particles->instance_buffer_size_cache, nullptr, GL_DYNAMIC_READ, "Particles last frame buffer");
glGenBuffers(1, &particles->sort_buffer);
glBindBuffer(GL_ARRAY_BUFFER, particles->sort_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, particles->sort_buffer, particles->instance_buffer_size_cache, nullptr, GL_DYNAMIC_READ, "Particles sort buffer");
particles->sort_buffer_filled = false;
particles->last_frame_buffer_filled = false;
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
}
void ParticlesStorage::_particles_update_instance_buffer(Particles *particles, const Vector3 &p_axis, const Vector3 &p_up_axis) {
ParticlesCopyShaderGLES3::ShaderVariant variant = ParticlesCopyShaderGLES3::MODE_DEFAULT;
uint64_t specialization = 0;
if (particles->mode == RS::ParticlesMode::PARTICLES_MODE_3D) {
specialization |= ParticlesCopyShaderGLES3::MODE_3D;
}
bool success = particles_shader.copy_shader.version_bind_shader(particles_shader.copy_shader_version, variant, specialization);
if (!success) {
return;
}
// Affect 2D only.
if (particles->use_local_coords) {
// In local mode, particle positions are calculated locally (relative to the node position)
// and they're also drawn locally.
// It works as expected, so we just pass an identity transform.
particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::INV_EMISSION_TRANSFORM, Transform3D(), particles_shader.copy_shader_version, variant, specialization);
} else {
// In global mode, particle positions are calculated globally (relative to the canvas origin)
// but they're drawn locally.
// So, we need to pass the inverse of the emission transform to bring the
// particles to local coordinates before drawing.
Transform3D inv = particles->emission_transform.affine_inverse();
particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::INV_EMISSION_TRANSFORM, inv, particles_shader.copy_shader_version, variant, specialization);
}
particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::FRAME_REMAINDER, particles->interpolate ? particles->frame_remainder : 0.0, particles_shader.copy_shader_version, variant, specialization);
particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::ALIGN_MODE, uint32_t(particles->transform_align), particles_shader.copy_shader_version, variant, specialization);
particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::ALIGN_UP, p_up_axis, particles_shader.copy_shader_version, variant, specialization);
particles_shader.copy_shader.version_set_uniform(ParticlesCopyShaderGLES3::SORT_DIRECTION, p_axis, particles_shader.copy_shader_version, variant, specialization);
glBindVertexArray(particles->back_vertex_array);
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, particles->front_instance_buffer, 0, particles->instance_buffer_size_cache);
glBeginTransformFeedback(GL_POINTS);
if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_LIFETIME) {
uint32_t lifetime_split = (MIN(int(particles->amount * particles->phase), particles->amount - 1) + 1) % particles->amount;
uint32_t stride = particles->process_buffer_stride_cache;
glBindBuffer(GL_ARRAY_BUFFER, particles->back_process_buffer);
// Offset VBO so you render starting at the newest particle.
if (particles->amount - lifetime_split > 0) {
glEnableVertexAttribArray(0); // Color.
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 0));
glEnableVertexAttribArray(1); // .xyz: velocity. .z: flags.
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 1));
glEnableVertexAttribArray(2); // Custom.
glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 2));
glEnableVertexAttribArray(3); // Xform1.
glVertexAttribPointer(3, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 3));
glEnableVertexAttribArray(4); // Xform2.
glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 4));
if (particles->mode == RS::PARTICLES_MODE_3D) {
glEnableVertexAttribArray(5); // Xform3.
glVertexAttribPointer(5, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * lifetime_split + sizeof(float) * 4 * 5));
}
uint32_t to_draw = particles->amount - lifetime_split;
glDrawArrays(GL_POINTS, 0, to_draw);
}
// Then render from index 0 up intil the newest particle.
if (lifetime_split > 0) {
glEndTransformFeedback();
// Now output to the second portion of the instance buffer.
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, particles->front_instance_buffer, particles->instance_buffer_stride_cache * (particles->amount - lifetime_split), particles->instance_buffer_stride_cache * (lifetime_split));
glBeginTransformFeedback(GL_POINTS);
// Reset back to normal.
for (uint32_t j = 0; j < particles->num_attrib_arrays_cache; j++) {
glEnableVertexAttribArray(j);
glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * j));
}
glDrawArrays(GL_POINTS, 0, lifetime_split);
}
} else {
glDrawArrays(GL_POINTS, 0, particles->amount);
}
glEndTransformFeedback();
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0, 0, 0);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void ParticlesStorage::update_particles() {
glEnable(GL_RASTERIZER_DISCARD);
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
glBindBufferBase(GL_UNIFORM_BUFFER, PARTICLES_GLOBALS_UNIFORM_LOCATION, global_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
while (particle_update_list) {
// Use transform feedback to process particles.
Particles *particles = particle_update_list;
particle_update_list = particles->update_list;
particles->update_list = nullptr;
particles->dirty = false;
_particles_update_buffers(particles);
if (particles->restart_request) {
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
particles->restart_request = false;
}
if (particles->inactive && !particles->emitting) {
//go next
continue;
}
if (particles->emitting) {
if (particles->inactive) {
//restart system from scratch
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
}
particles->inactive = false;
particles->inactive_time = 0;
} else {
particles->inactive_time += particles->speed_scale * RSG::rasterizer->get_frame_delta_time();
if (particles->inactive_time > particles->lifetime * 1.2) {
particles->inactive = true;
continue;
}
}
// Copy the instance buffer that was last used into the last_frame buffer.
// sort_buffer should now be 2 frames out of date.
if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH || particles->draw_order == RS::PARTICLES_DRAW_ORDER_REVERSE_LIFETIME) {
_particles_allocate_history_buffers(particles);
SWAP(particles->last_frame_buffer, particles->sort_buffer);
glBindBuffer(GL_COPY_READ_BUFFER, particles->back_instance_buffer);
glBindBuffer(GL_COPY_WRITE_BUFFER, particles->last_frame_buffer);
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 0, 0, particles->instance_buffer_size_cache);
// Last frame's last_frame turned into this frame's sort buffer.
particles->sort_buffer_filled = particles->last_frame_buffer_filled;
particles->sort_buffer_phase = particles->last_frame_phase;
particles->last_frame_buffer_filled = true;
particles->last_frame_phase = particles->phase;
glBindBuffer(GL_COPY_READ_BUFFER, 0);
glBindBuffer(GL_COPY_WRITE_BUFFER, 0);
}
int fixed_fps = 0;
if (particles->fixed_fps > 0) {
fixed_fps = particles->fixed_fps;
}
bool zero_time_scale = Engine::get_singleton()->get_time_scale() <= 0.0;
if (particles->clear && particles->pre_process_time > 0.0) {
double frame_time;
if (fixed_fps > 0) {
frame_time = 1.0 / fixed_fps;
} else {
frame_time = 1.0 / 30.0;
}
double todo = particles->pre_process_time;
while (todo >= 0) {
_particles_process(particles, frame_time);
todo -= frame_time;
}
}
if (fixed_fps > 0) {
double frame_time;
double decr;
if (zero_time_scale) {
frame_time = 0.0;
decr = 1.0 / fixed_fps;
} else {
frame_time = 1.0 / fixed_fps;
decr = frame_time;
}
double delta = RSG::rasterizer->get_frame_delta_time();
if (delta > 0.1) { //avoid recursive stalls if fps goes below 10
delta = 0.1;
} else if (delta <= 0.0) { //unlikely but..
delta = 0.001;
}
double todo = particles->frame_remainder + delta;
while (todo >= frame_time) {
_particles_process(particles, frame_time);
todo -= decr;
}
particles->frame_remainder = todo;
} else {
if (zero_time_scale) {
_particles_process(particles, 0.0);
} else {
_particles_process(particles, RSG::rasterizer->get_frame_delta_time());
}
}
// Copy particles to instance buffer and pack Color/Custom.
// We don't have camera information here, so don't copy here if we need camera information for view depth or align mode.
if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD && particles->transform_align != RS::PARTICLES_TRANSFORM_ALIGN_Z_BILLBOARD_Y_TO_VELOCITY) {
_particles_update_instance_buffer(particles, Vector3(0.0, 0.0, 0.0), Vector3(0.0, 0.0, 0.0));
if (particles->draw_order == RS::PARTICLES_DRAW_ORDER_REVERSE_LIFETIME && particles->sort_buffer_filled) {
if (particles->mode == RS::ParticlesMode::PARTICLES_MODE_2D) {
_particles_reverse_lifetime_sort<ParticleInstanceData2D>(particles);
} else {
_particles_reverse_lifetime_sort<ParticleInstanceData3D>(particles);
}
}
}
SWAP(particles->front_instance_buffer, particles->back_instance_buffer);
// At the end of update, the back_buffer contains the most up-to-date-information to read from.
particles->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
glDisable(GL_RASTERIZER_DISCARD);
}
template <typename ParticleInstanceData>
void ParticlesStorage::_particles_reverse_lifetime_sort(Particles *particles) {
glBindBuffer(GL_ARRAY_BUFFER, particles->sort_buffer);
ParticleInstanceData *particle_array;
uint32_t buffer_size = particles->amount * sizeof(ParticleInstanceData);
#ifndef __EMSCRIPTEN__
particle_array = static_cast<ParticleInstanceData *>(glMapBufferRange(GL_ARRAY_BUFFER, 0, buffer_size, GL_MAP_READ_BIT | GL_MAP_WRITE_BIT));
ERR_FAIL_NULL(particle_array);
#else
LocalVector<ParticleInstanceData> particle_vector;
particle_vector.resize(particles->amount);
particle_array = particle_vector.ptr();
glGetBufferSubData(GL_ARRAY_BUFFER, 0, buffer_size, particle_array);
#endif
uint32_t lifetime_split = (MIN(int(particles->amount * particles->sort_buffer_phase), particles->amount - 1) + 1) % particles->amount;
for (uint32_t i = 0; i < lifetime_split / 2; i++) {
SWAP(particle_array[i], particle_array[lifetime_split - i - 1]);
}
for (uint32_t i = 0; i < (particles->amount - lifetime_split) / 2; i++) {
SWAP(particle_array[lifetime_split + i], particle_array[particles->amount - 1 - i]);
}
#ifndef __EMSCRIPTEN__
glUnmapBuffer(GL_ARRAY_BUFFER);
#else
glBufferSubData(GL_ARRAY_BUFFER, 0, buffer_size, particle_vector.ptr());
#endif
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
Dependency *ParticlesStorage::particles_get_dependency(RID p_particles) const {
Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_NULL_V(particles, nullptr);
return &particles->dependency;
}
bool ParticlesStorage::particles_is_inactive(RID p_particles) const {
ERR_FAIL_COND_V_MSG(RSG::threaded, false, "This function should never be used with threaded rendering, as it stalls the renderer.");
const Particles *particles = particles_owner.get_or_null(p_particles);
ERR_FAIL_COND_V(!particles, false);
return !particles->emitting && particles->inactive;
}
/* PARTICLES COLLISION API */
RID ParticlesStorage::particles_collision_allocate() {
return particles_collision_owner.allocate_rid();
}
void ParticlesStorage::particles_collision_initialize(RID p_rid) {
particles_collision_owner.initialize_rid(p_rid, ParticlesCollision());
}
void ParticlesStorage::particles_collision_free(RID p_rid) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_rid);
if (particles_collision->heightfield_texture != 0) {
GLES3::Utilities::get_singleton()->texture_free_data(particles_collision->heightfield_texture);
particles_collision->heightfield_texture = 0;
glDeleteFramebuffers(1, &particles_collision->heightfield_fb);
particles_collision->heightfield_fb = 0;
}
particles_collision->dependency.deleted_notify(p_rid);
particles_collision_owner.free(p_rid);
}
GLuint ParticlesStorage::particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, 0);
ERR_FAIL_COND_V(particles_collision->type != RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE, 0);
if (particles_collision->heightfield_texture == 0) {
//create
const int resolutions[RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_MAX] = { 256, 512, 1024, 2048, 4096, 8192 };
Size2i size;
if (particles_collision->extents.x > particles_collision->extents.z) {
size.x = resolutions[particles_collision->heightfield_resolution];
size.y = int32_t(particles_collision->extents.z / particles_collision->extents.x * size.x);
} else {
size.y = resolutions[particles_collision->heightfield_resolution];
size.x = int32_t(particles_collision->extents.x / particles_collision->extents.z * size.y);
}
glGenTextures(1, &particles_collision->heightfield_texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, particles_collision->heightfield_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, size.x, size.y, 0, GL_DEPTH_COMPONENT, GL_FLOAT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glGenFramebuffers(1, &particles_collision->heightfield_fb);
glBindFramebuffer(GL_FRAMEBUFFER, particles_collision->heightfield_fb);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, particles_collision->heightfield_texture, 0);
#ifdef DEBUG_ENABLED
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
WARN_PRINT("Could create heightmap texture status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status));
}
#endif
GLES3::Utilities::get_singleton()->texture_allocated_data(particles_collision->heightfield_texture, size.x * size.y * 4, "Particles collision heightfield texture");
particles_collision->heightfield_fb_size = size;
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
return particles_collision->heightfield_fb;
}
void ParticlesStorage::particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
if (p_type == particles_collision->type) {
return;
}
if (particles_collision->heightfield_texture != 0) {
GLES3::Utilities::get_singleton()->texture_free_data(particles_collision->heightfield_texture);
particles_collision->heightfield_texture = 0;
glDeleteFramebuffers(1, &particles_collision->heightfield_fb);
particles_collision->heightfield_fb = 0;
}
particles_collision->type = p_type;
particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
void ParticlesStorage::particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->cull_mask = p_cull_mask;
}
void ParticlesStorage::particles_collision_set_sphere_radius(RID p_particles_collision, real_t p_radius) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->radius = p_radius;
particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
void ParticlesStorage::particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->extents = p_extents;
particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
void ParticlesStorage::particles_collision_set_attractor_strength(RID p_particles_collision, real_t p_strength) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->attractor_strength = p_strength;
}
void ParticlesStorage::particles_collision_set_attractor_directionality(RID p_particles_collision, real_t p_directionality) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->attractor_directionality = p_directionality;
}
void ParticlesStorage::particles_collision_set_attractor_attenuation(RID p_particles_collision, real_t p_curve) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->attractor_attenuation = p_curve;
}
void ParticlesStorage::particles_collision_set_field_texture(RID p_particles_collision, RID p_texture) {
WARN_PRINT_ONCE_ED("The GL Compatibility rendering backend does not support SDF collisions in 3D particle shaders");
}
void ParticlesStorage::particles_collision_height_field_update(RID p_particles_collision) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
void ParticlesStorage::particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution) {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
ERR_FAIL_INDEX(p_resolution, RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_MAX);
if (particles_collision->heightfield_resolution == p_resolution) {
return;
}
particles_collision->heightfield_resolution = p_resolution;
if (particles_collision->heightfield_texture != 0) {
GLES3::Utilities::get_singleton()->texture_free_data(particles_collision->heightfield_texture);
particles_collision->heightfield_texture = 0;
glDeleteFramebuffers(1, &particles_collision->heightfield_fb);
particles_collision->heightfield_fb = 0;
}
}
AABB ParticlesStorage::particles_collision_get_aabb(RID p_particles_collision) const {
ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, AABB());
switch (particles_collision->type) {
case RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT:
case RS::PARTICLES_COLLISION_TYPE_SPHERE_COLLIDE: {
AABB aabb;
aabb.position = -Vector3(1, 1, 1) * particles_collision->radius;
aabb.size = Vector3(2, 2, 2) * particles_collision->radius;
return aabb;
}
default: {
AABB aabb;
aabb.position = -particles_collision->extents;
aabb.size = particles_collision->extents * 2;
return aabb;
}
}
}
Vector3 ParticlesStorage::particles_collision_get_extents(RID p_particles_collision) const {
const ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, Vector3());
return particles_collision->extents;
}
bool ParticlesStorage::particles_collision_is_heightfield(RID p_particles_collision) const {
const ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, false);
return particles_collision->type == RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE;
}
Dependency *ParticlesStorage::particles_collision_get_dependency(RID p_particles_collision) const {
ParticlesCollision *pc = particles_collision_owner.get_or_null(p_particles_collision);
ERR_FAIL_NULL_V(pc, nullptr);
return &pc->dependency;
}
/* Particles collision instance */
RID ParticlesStorage::particles_collision_instance_create(RID p_collision) {
ParticlesCollisionInstance pci;
pci.collision = p_collision;
return particles_collision_instance_owner.make_rid(pci);
}
void ParticlesStorage::particles_collision_instance_free(RID p_rid) {
particles_collision_instance_owner.free(p_rid);
}
void ParticlesStorage::particles_collision_instance_set_transform(RID p_collision_instance, const Transform3D &p_transform) {
ParticlesCollisionInstance *pci = particles_collision_instance_owner.get_or_null(p_collision_instance);
ERR_FAIL_COND(!pci);
pci->transform = p_transform;
}
void ParticlesStorage::particles_collision_instance_set_active(RID p_collision_instance, bool p_active) {
ParticlesCollisionInstance *pci = particles_collision_instance_owner.get_or_null(p_collision_instance);
ERR_FAIL_COND(!pci);
pci->active = p_active;
}
#endif // GLES3_ENABLED