virtualx-engine/servers/visual/rasterizer_rd/rasterizer_canvas_rd.cpp
2020-02-11 11:53:29 +01:00

2549 lines
90 KiB
C++

#include "rasterizer_canvas_rd.h"
#include "core/math/math_funcs.h"
#include "core/project_settings.h"
void RasterizerCanvasRD::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.elements[0][0];
p_mat4[1] = p_transform.elements[0][1];
p_mat4[2] = 0;
p_mat4[3] = 0;
p_mat4[4] = p_transform.elements[1][0];
p_mat4[5] = p_transform.elements[1][1];
p_mat4[6] = 0;
p_mat4[7] = 0;
p_mat4[8] = 0;
p_mat4[9] = 0;
p_mat4[10] = 1;
p_mat4[11] = 0;
p_mat4[12] = p_transform.elements[2][0];
p_mat4[13] = p_transform.elements[2][1];
p_mat4[14] = 0;
p_mat4[15] = 1;
}
void RasterizerCanvasRD::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) {
p_mat2x4[0] = p_transform.elements[0][0];
p_mat2x4[1] = p_transform.elements[1][0];
p_mat2x4[2] = 0;
p_mat2x4[3] = p_transform.elements[2][0];
p_mat2x4[4] = p_transform.elements[0][1];
p_mat2x4[5] = p_transform.elements[1][1];
p_mat2x4[6] = 0;
p_mat2x4[7] = p_transform.elements[2][1];
}
void RasterizerCanvasRD::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) {
p_mat2x3[0] = p_transform.elements[0][0];
p_mat2x3[1] = p_transform.elements[0][1];
p_mat2x3[2] = p_transform.elements[1][0];
p_mat2x3[3] = p_transform.elements[1][1];
p_mat2x3[4] = p_transform.elements[2][0];
p_mat2x3[5] = p_transform.elements[2][1];
}
void RasterizerCanvasRD::_update_transform_to_mat4(const Transform &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.basis.elements[0][0];
p_mat4[1] = p_transform.basis.elements[1][0];
p_mat4[2] = p_transform.basis.elements[2][0];
p_mat4[3] = 0;
p_mat4[4] = p_transform.basis.elements[0][1];
p_mat4[5] = p_transform.basis.elements[1][1];
p_mat4[6] = p_transform.basis.elements[2][1];
p_mat4[7] = 0;
p_mat4[8] = p_transform.basis.elements[0][2];
p_mat4[9] = p_transform.basis.elements[1][2];
p_mat4[10] = p_transform.basis.elements[2][2];
p_mat4[11] = 0;
p_mat4[12] = p_transform.origin.x;
p_mat4[13] = p_transform.origin.y;
p_mat4[14] = p_transform.origin.z;
p_mat4[15] = 1;
}
void RasterizerCanvasRD::_update_specular_shininess(const Color &p_transform, uint32_t *r_ss) {
*r_ss = uint32_t(CLAMP(p_transform.a * 255.0, 0, 255)) << 24;
*r_ss |= uint32_t(CLAMP(p_transform.b * 255.0, 0, 255)) << 16;
*r_ss |= uint32_t(CLAMP(p_transform.g * 255.0, 0, 255)) << 8;
*r_ss |= uint32_t(CLAMP(p_transform.r * 255.0, 0, 255));
}
RID RasterizerCanvasRD::_create_texture_binding(RID p_texture, RID p_normalmap, RID p_specular, VisualServer::CanvasItemTextureFilter p_filter, VisualServer::CanvasItemTextureRepeat p_repeat, RID p_multimesh) {
Vector<RD::Uniform> uniform_set;
{ // COLOR TEXTURE
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
RID texture = storage->texture_get_rd_texture(p_texture);
if (!texture.is_valid()) {
//use default white texture
texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE);
}
u.ids.push_back(texture);
uniform_set.push_back(u);
}
{ // NORMAL TEXTURE
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
RID texture = storage->texture_get_rd_texture(p_normalmap);
if (!texture.is_valid()) {
//use default normal texture
texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_NORMAL);
}
u.ids.push_back(texture);
uniform_set.push_back(u);
}
{ // SPECULAR TEXTURE
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 3;
RID texture = storage->texture_get_rd_texture(p_specular);
if (!texture.is_valid()) {
//use default white texture
texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE);
}
u.ids.push_back(texture);
uniform_set.push_back(u);
}
{ // SAMPLER
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 4;
RID sampler = storage->sampler_rd_get_default(p_filter, p_repeat);
ERR_FAIL_COND_V(sampler.is_null(), RID());
u.ids.push_back(sampler);
uniform_set.push_back(u);
}
{ // MULTIMESH TEXTURE BUFFER
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE_BUFFER;
u.binding = 5;
u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER));
uniform_set.push_back(u);
}
return RD::get_singleton()->uniform_set_create(uniform_set, shader.default_version_rd_shader, 0);
}
RasterizerCanvas::TextureBindingID RasterizerCanvasRD::request_texture_binding(RID p_texture, RID p_normalmap, RID p_specular, VisualServer::CanvasItemTextureFilter p_filter, VisualServer::CanvasItemTextureRepeat p_repeat, RID p_multimesh) {
if (p_filter == VS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT) {
p_filter = default_samplers.default_filter;
}
if (p_repeat == VS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT) {
p_repeat = default_samplers.default_repeat;
}
TextureBindingKey key;
key.texture = p_texture;
key.normalmap = p_normalmap;
key.specular = p_specular;
key.multimesh = p_multimesh;
key.texture_filter = p_filter;
key.texture_repeat = p_repeat;
TextureBinding *binding;
TextureBindingID id;
{
TextureBindingID *idptr = bindings.texture_key_bindings.getptr(key);
if (!idptr) {
id = bindings.id_generator++;
bindings.texture_key_bindings[key] = id;
binding = memnew(TextureBinding);
binding->key = key;
binding->id = id;
bindings.texture_bindings[id] = binding;
} else {
id = *idptr;
binding = bindings.texture_bindings[id];
}
}
binding->reference_count++;
if (binding->to_dispose.in_list()) {
//was queued for disposal previously, but ended up reused.
bindings.to_dispose_list.remove(&binding->to_dispose);
}
if (binding->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(binding->uniform_set)) {
binding->uniform_set = _create_texture_binding(p_texture, p_normalmap, p_specular, p_filter, p_repeat, p_multimesh);
}
return id;
}
void RasterizerCanvasRD::free_texture_binding(TextureBindingID p_binding) {
TextureBinding **binding_ptr = bindings.texture_bindings.getptr(p_binding);
ERR_FAIL_COND(!binding_ptr);
TextureBinding *binding = *binding_ptr;
ERR_FAIL_COND(binding->reference_count == 0);
binding->reference_count--;
if (binding->reference_count == 0) {
bindings.to_dispose_list.add(&binding->to_dispose);
}
}
void RasterizerCanvasRD::_dispose_bindings() {
while (bindings.to_dispose_list.first()) {
TextureBinding *binding = bindings.to_dispose_list.first()->self();
if (binding->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(binding->uniform_set)) {
RD::get_singleton()->free(binding->uniform_set);
}
bindings.texture_key_bindings.erase(binding->key);
bindings.texture_bindings.erase(binding->id);
bindings.to_dispose_list.remove(&binding->to_dispose);
memdelete(binding);
}
}
RasterizerCanvas::PolygonID RasterizerCanvasRD::request_polygon(const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, const Vector<int> &p_bones, const Vector<float> &p_weights) {
// Care must be taken to generate array formats
// in ways where they could be reused, so we will
// put single-occuring elements first, and repeated
// elements later. This way the generated formats are
// the same no matter the length of the arrays.
// This dramatically reduces the amount of pipeline objects
// that need to be created for these formats.
uint32_t vertex_count = p_points.size();
uint32_t stride = 2; //vertices always repeat
if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) {
stride += 4;
}
if ((uint32_t)p_uvs.size() == vertex_count) {
stride += 2;
}
if ((uint32_t)p_bones.size() == vertex_count * 4) {
stride += 4;
}
if ((uint32_t)p_weights.size() == vertex_count * 4) {
stride += 4;
}
uint32_t buffer_size = stride * p_points.size();
PoolVector<uint8_t> polygon_buffer;
polygon_buffer.resize(buffer_size * sizeof(float));
Vector<RD::VertexDescription> descriptions;
descriptions.resize(5);
Vector<RID> buffers;
buffers.resize(5);
{
PoolVector<uint8_t>::Read r = polygon_buffer.read();
float *fptr = (float *)r.ptr();
uint32_t *uptr = (uint32_t *)r.ptr();
uint32_t base_offset = 0;
{ //vertices
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = VS::ARRAY_VERTEX;
vd.stride = stride * sizeof(float);
descriptions.write[0] = vd;
const Vector2 *points_ptr = p_points.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = points_ptr[i].x;
fptr[base_offset + i * stride + 1] = points_ptr[i].y;
}
base_offset += 2;
}
//colors
if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = VS::ARRAY_COLOR;
vd.stride = stride * sizeof(float);
descriptions.write[1] = vd;
if (p_colors.size() == 1) {
Color color = p_colors[0];
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = color.r;
fptr[base_offset + i * stride + 1] = color.g;
fptr[base_offset + i * stride + 2] = color.b;
fptr[base_offset + i * stride + 3] = color.a;
}
} else {
const Color *color_ptr = p_colors.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = color_ptr[i].r;
fptr[base_offset + i * stride + 1] = color_ptr[i].g;
fptr[base_offset + i * stride + 2] = color_ptr[i].b;
fptr[base_offset + i * stride + 3] = color_ptr[i].a;
}
}
base_offset += 4;
} else {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = 0;
vd.location = VS::ARRAY_COLOR;
vd.stride = 0;
descriptions.write[1] = vd;
buffers.write[1] = polygon_buffers.default_color_buffer;
}
//uvs
if ((uint32_t)p_uvs.size() == vertex_count) {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = VS::ARRAY_TEX_UV;
vd.stride = stride * sizeof(float);
descriptions.write[2] = vd;
const Vector2 *uv_ptr = p_uvs.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = uv_ptr[i].x;
fptr[base_offset + i * stride + 1] = uv_ptr[i].y;
}
base_offset += 2;
} else {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = 0;
vd.location = VS::ARRAY_TEX_UV;
vd.stride = 0;
descriptions.write[2] = vd;
buffers.write[2] = polygon_buffers.default_uv_buffer;
}
//bones
if ((uint32_t)p_indices.size() == vertex_count * 4) {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
vd.offset = base_offset * sizeof(float);
vd.location = VS::ARRAY_BONES;
vd.stride = stride * sizeof(float);
descriptions.write[3] = vd;
const int *bone_ptr = p_bones.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
uptr[base_offset + i * stride + 0] = bone_ptr[i * 4 + 0];
uptr[base_offset + i * stride + 1] = bone_ptr[i * 4 + 1];
uptr[base_offset + i * stride + 2] = bone_ptr[i * 4 + 2];
uptr[base_offset + i * stride + 3] = bone_ptr[i * 4 + 3];
}
base_offset += 4;
} else {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
vd.offset = 0;
vd.location = VS::ARRAY_BONES;
vd.stride = 0;
descriptions.write[3] = vd;
buffers.write[3] = polygon_buffers.default_bone_buffer;
}
//bones
if ((uint32_t)p_weights.size() == vertex_count * 4) {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = VS::ARRAY_WEIGHTS;
vd.stride = stride * sizeof(float);
descriptions.write[4] = vd;
const float *weight_ptr = p_weights.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = weight_ptr[i * 4 + 0];
fptr[base_offset + i * stride + 1] = weight_ptr[i * 4 + 1];
fptr[base_offset + i * stride + 2] = weight_ptr[i * 4 + 2];
fptr[base_offset + i * stride + 3] = weight_ptr[i * 4 + 3];
}
base_offset += 4;
} else {
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = 0;
vd.location = VS::ARRAY_WEIGHTS;
vd.stride = 0;
descriptions.write[4] = vd;
buffers.write[4] = polygon_buffers.default_weight_buffer;
}
//check that everything is as it should be
ERR_FAIL_COND_V(base_offset != stride, 0); //bug
}
RD::VertexFormatID vertex_id = RD::get_singleton()->vertex_format_create(descriptions);
ERR_FAIL_COND_V(vertex_id == RD::INVALID_ID, 0);
PolygonBuffers pb;
pb.vertex_buffer = RD::get_singleton()->vertex_buffer_create(polygon_buffer.size(), polygon_buffer);
for (int i = 0; i < descriptions.size(); i++) {
if (buffers[i] == RID()) { //if put in vertex, use as vertex
buffers.write[i] = pb.vertex_buffer;
}
}
pb.vertex_array = RD::get_singleton()->vertex_array_create(p_points.size(), vertex_id, buffers);
if (p_indices.size()) {
//create indices, as indices were requested
PoolVector<uint8_t> index_buffer;
index_buffer.resize(p_indices.size() * sizeof(int32_t));
{
PoolVector<uint8_t>::Write w = index_buffer.write();
copymem(w.ptr(), p_indices.ptr(), sizeof(int32_t) * p_indices.size());
}
pb.index_buffer = RD::get_singleton()->index_buffer_create(p_indices.size(), RD::INDEX_BUFFER_FORMAT_UINT32, index_buffer);
pb.indices = RD::get_singleton()->index_array_create(pb.index_buffer, 0, p_indices.size());
}
pb.vertex_format_id = vertex_id;
PolygonID id = polygon_buffers.last_id++;
polygon_buffers.polygons[id] = pb;
return id;
}
void RasterizerCanvasRD::free_polygon(PolygonID p_polygon) {
PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon);
ERR_FAIL_COND(!pb_ptr);
PolygonBuffers &pb = *pb_ptr;
if (pb.indices.is_valid()) {
RD::get_singleton()->free(pb.indices);
}
if (pb.index_buffer.is_valid()) {
RD::get_singleton()->free(pb.index_buffer);
}
RD::get_singleton()->free(pb.vertex_array);
RD::get_singleton()->free(pb.vertex_buffer);
polygon_buffers.polygons.erase(p_polygon);
}
Size2i RasterizerCanvasRD::_bind_texture_binding(TextureBindingID p_binding, RD::DrawListID p_draw_list, uint32_t &flags) {
TextureBinding **texture_binding_ptr = bindings.texture_bindings.getptr(p_binding);
ERR_FAIL_COND_V(!texture_binding_ptr, Size2i());
TextureBinding *texture_binding = *texture_binding_ptr;
if (texture_binding->key.normalmap.is_valid()) {
flags |= FLAGS_DEFAULT_NORMAL_MAP_USED;
}
if (texture_binding->key.specular.is_valid()) {
flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
if (!RD::get_singleton()->uniform_set_is_valid(texture_binding->uniform_set)) {
//texture may have changed (erased or replaced, see if we can fix)
texture_binding->uniform_set = _create_texture_binding(texture_binding->key.texture, texture_binding->key.normalmap, texture_binding->key.specular, texture_binding->key.texture_filter, texture_binding->key.texture_repeat, texture_binding->key.multimesh);
ERR_FAIL_COND_V(!texture_binding->uniform_set.is_valid(), Size2i(1, 1));
}
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, texture_binding->uniform_set, 0);
if (texture_binding->key.texture.is_valid()) {
return storage->texture_2d_get_size(texture_binding->key.texture);
} else {
return Size2i(1, 1);
}
}
////////////////////
void RasterizerCanvasRD::_render_item(RD::DrawListID p_draw_list, const Item *p_item, RD::FramebufferFormatID p_framebuffer_format, const Transform2D &p_canvas_transform_inverse, Item *&current_clip, Light *p_lights, PipelineVariants *p_pipeline_variants) {
//create an empty push constant
PushConstant push_constant;
Transform2D base_transform = p_canvas_transform_inverse * p_item->final_transform;
_update_transform_2d_to_mat2x3(base_transform, push_constant.world);
Color base_color = p_item->final_modulate;
for (int i = 0; i < 4; i++) {
push_constant.modulation[i] = 0;
push_constant.ninepatch_margins[i] = 0;
push_constant.src_rect[i] = 0;
push_constant.dst_rect[i] = 0;
}
push_constant.flags = 0;
push_constant.color_texture_pixel_size[0] = 0;
push_constant.color_texture_pixel_size[1] = 0;
push_constant.pad[1] = 0;
push_constant.pad[2] = 0;
push_constant.pad[3] = 0;
push_constant.lights[0] = 0;
push_constant.lights[1] = 0;
push_constant.lights[2] = 0;
push_constant.lights[3] = 0;
uint32_t base_flags = 0;
bool light_uniform_set_dirty = false;
if (!p_item->custom_data) {
p_item->custom_data = memnew(ItemStateData);
light_uniform_set_dirty = true;
}
ItemStateData *state_data = (ItemStateData *)p_item->custom_data;
Light *light_cache[DEFAULT_MAX_LIGHTS_PER_ITEM];
uint16_t light_count = 0;
PipelineLightMode light_mode;
{
Light *light = p_lights;
while (light) {
if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) {
uint32_t light_index = light->render_index_cache;
push_constant.lights[light_count >> 2] |= light_index << ((light_count & 3) * 8);
if (!light_uniform_set_dirty && (state_data->light_cache[light_count].light != light || state_data->light_cache[light_count].light_version != light->version)) {
light_uniform_set_dirty = true;
}
light_cache[light_count] = light;
light_count++;
if (light->mode == VS::CANVAS_LIGHT_MODE_MASK) {
base_flags |= FLAGS_USING_LIGHT_MASK;
}
if (light_count == state.max_lights_per_item) {
break;
}
}
light = light->next_ptr;
}
if (light_count != state_data->light_cache_count) {
light_uniform_set_dirty = true;
}
base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT;
}
{
RID &canvas_item_state = light_count ? state_data->state_uniform_set_with_light : state_data->state_uniform_set;
bool invalid_uniform = canvas_item_state.is_valid() && !RD::get_singleton()->uniform_set_is_valid(canvas_item_state);
if (canvas_item_state.is_null() || invalid_uniform || (light_count > 0 && light_uniform_set_dirty)) {
//re create canvas state
Vector<RD::Uniform> uniforms;
if (state_data->state_uniform_set_with_light.is_valid() && !invalid_uniform) {
RD::get_singleton()->free(canvas_item_state);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 0;
u.ids.push_back(state.canvas_state_buffer);
uniforms.push_back(u);
}
if (false && p_item->skeleton.is_valid()) {
//bind skeleton stuff
} else {
//bind default
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE_BUFFER;
u.binding = 1;
u.ids.push_back(shader.default_skeleton_texture_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 2;
u.ids.push_back(shader.default_skeleton_uniform_buffer);
uniforms.push_back(u);
}
}
//validate and update lighs if they are being used
if (light_count > 0) {
//recreate uniform set
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 3;
u.ids.push_back(state.lights_uniform_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u_lights;
u_lights.type = RD::UNIFORM_TYPE_TEXTURE;
u_lights.binding = 4;
RD::Uniform u_shadows;
u_shadows.type = RD::UNIFORM_TYPE_TEXTURE;
u_shadows.binding = 5;
//lights
for (uint32_t i = 0; i < state.max_lights_per_item; i++) {
if (i < light_count) {
CanvasLight *cl = canvas_light_owner.getornull(light_cache[i]->light_internal);
ERR_CONTINUE(!cl);
RID rd_texture;
if (cl->texture.is_valid()) {
rd_texture = storage->texture_get_rd_texture(cl->texture);
}
if (rd_texture.is_valid()) {
u_lights.ids.push_back(rd_texture);
} else {
u_lights.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
}
if (cl->shadow.texture.is_valid()) {
u_shadows.ids.push_back(cl->shadow.texture);
} else {
u_shadows.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK));
}
} else {
u_lights.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
u_shadows.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK));
}
}
uniforms.push_back(u_lights);
uniforms.push_back(u_shadows);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 6;
u.ids.push_back(state.shadow_sampler);
uniforms.push_back(u);
}
canvas_item_state = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader_light, 2);
} else {
canvas_item_state = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader, 2);
}
}
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, canvas_item_state, 2);
}
light_mode = light_count > 0 ? PIPELINE_LIGHT_MODE_ENABLED : PIPELINE_LIGHT_MODE_DISABLED;
PipelineVariants *pipeline_variants = p_pipeline_variants;
bool reclip = false;
const Item::Command *c = p_item->commands;
while (c) {
push_constant.flags = base_flags; //reset on each command for sanity
push_constant.specular_shininess = 0xFFFFFFFF;
switch (c->type) {
case Item::Command::TYPE_RECT: {
const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c);
//bind pipeline
{
RID pipeline = pipeline_variants->variants[light_mode][PIPELINE_VARIANT_QUAD].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
//bind textures
Size2 texpixel_size;
{
texpixel_size = _bind_texture_binding(rect->texture_binding.binding_id, p_draw_list, push_constant.flags);
texpixel_size.x = 1.0 / texpixel_size.x;
texpixel_size.y = 1.0 / texpixel_size.y;
}
if (rect->specular_shininess.a < 0.999) {
push_constant.flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
_update_specular_shininess(rect->specular_shininess, &push_constant.specular_shininess);
Rect2 src_rect;
Rect2 dst_rect;
if (texpixel_size != Vector2()) {
push_constant.color_texture_pixel_size[0] = texpixel_size.x;
push_constant.color_texture_pixel_size[1] = texpixel_size.y;
src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * texpixel_size, rect->source.size * texpixel_size) : Rect2(0, 0, 1, 1);
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
if (rect->flags & CANVAS_RECT_FLIP_H) {
src_rect.size.x *= -1;
}
if (rect->flags & CANVAS_RECT_FLIP_V) {
src_rect.size.y *= -1;
}
if (rect->flags & CANVAS_RECT_TRANSPOSE) {
dst_rect.size.x *= -1; // Encoding in the dst_rect.z uniform
}
if (rect->flags & CANVAS_RECT_CLIP_UV) {
push_constant.flags |= FLAGS_CLIP_RECT_UV;
}
} else {
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
src_rect = Rect2(0, 0, 1, 1);
texpixel_size = Vector2(1, 1);
}
push_constant.modulation[0] = rect->modulate.r * base_color.r;
push_constant.modulation[1] = rect->modulate.g * base_color.g;
push_constant.modulation[2] = rect->modulate.b * base_color.b;
push_constant.modulation[3] = rect->modulate.a * base_color.a;
push_constant.src_rect[0] = src_rect.position.x;
push_constant.src_rect[1] = src_rect.position.y;
push_constant.src_rect[2] = src_rect.size.width;
push_constant.src_rect[3] = src_rect.size.height;
push_constant.dst_rect[0] = dst_rect.position.x;
push_constant.dst_rect[1] = dst_rect.position.y;
push_constant.dst_rect[2] = dst_rect.size.width;
push_constant.dst_rect[3] = dst_rect.size.height;
push_constant.color_texture_pixel_size[0] = texpixel_size.x;
push_constant.color_texture_pixel_size[1] = texpixel_size.y;
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, shader.quad_index_array);
RD::get_singleton()->draw_list_draw(p_draw_list, true);
} break;
case Item::Command::TYPE_NINEPATCH: {
const Item::CommandNinePatch *np = static_cast<const Item::CommandNinePatch *>(c);
//bind pipeline
{
RID pipeline = pipeline_variants->variants[light_mode][PIPELINE_VARIANT_NINEPATCH].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
//bind textures
Size2 texpixel_size;
{
texpixel_size = _bind_texture_binding(np->texture_binding.binding_id, p_draw_list, push_constant.flags);
texpixel_size.x = 1.0 / texpixel_size.x;
texpixel_size.y = 1.0 / texpixel_size.y;
}
if (np->specular_shininess.a < 0.999) {
push_constant.flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
_update_specular_shininess(np->specular_shininess, &push_constant.specular_shininess);
Rect2 src_rect;
Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y);
if (texpixel_size == Size2()) {
texpixel_size = Size2(1, 1);
src_rect = Rect2(0, 0, 1, 1);
} else {
if (np->source != Rect2()) {
src_rect = Rect2(np->source.position.x * texpixel_size.width, np->source.position.y * texpixel_size.height, np->source.size.x * texpixel_size.width, np->source.size.y * texpixel_size.height);
texpixel_size = Size2(1.0 / np->source.size.width, 1.0 / np->source.size.height);
} else {
src_rect = Rect2(0, 0, 1, 1);
}
}
push_constant.modulation[0] = np->color.r * base_color.r;
push_constant.modulation[1] = np->color.g * base_color.g;
push_constant.modulation[2] = np->color.b * base_color.b;
push_constant.modulation[3] = np->color.a * base_color.a;
push_constant.src_rect[0] = src_rect.position.x;
push_constant.src_rect[1] = src_rect.position.y;
push_constant.src_rect[2] = src_rect.size.width;
push_constant.src_rect[3] = src_rect.size.height;
push_constant.dst_rect[0] = dst_rect.position.x;
push_constant.dst_rect[1] = dst_rect.position.y;
push_constant.dst_rect[2] = dst_rect.size.width;
push_constant.dst_rect[3] = dst_rect.size.height;
push_constant.color_texture_pixel_size[0] = texpixel_size.x;
push_constant.color_texture_pixel_size[1] = texpixel_size.y;
push_constant.flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT;
push_constant.flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT;
if (np->draw_center) {
push_constant.flags |= FLAGS_NINEPACH_DRAW_CENTER;
}
push_constant.ninepatch_margins[0] = np->margin[MARGIN_LEFT];
push_constant.ninepatch_margins[1] = np->margin[MARGIN_TOP];
push_constant.ninepatch_margins[2] = np->margin[MARGIN_RIGHT];
push_constant.ninepatch_margins[3] = np->margin[MARGIN_BOTTOM];
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, shader.quad_index_array);
RD::get_singleton()->draw_list_draw(p_draw_list, true);
} break;
case Item::Command::TYPE_POLYGON: {
const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(c);
PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id);
ERR_CONTINUE(!pb);
//bind pipeline
{
static const PipelineVariant variant[VS::PRIMITIVE_MAX] = { PIPELINE_VARIANT_ATTRIBUTE_POINTS, PIPELINE_VARIANT_ATTRIBUTE_LINES, PIPELINE_VARIANT_ATTRIBUTE_TRIANGLES };
ERR_CONTINUE(polygon->primitive < 0 || polygon->primitive >= VS::PRIMITIVE_MAX);
RID pipeline = pipeline_variants->variants[light_mode][variant[polygon->primitive]].get_render_pipeline(pb->vertex_format_id, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
if (polygon->primitive == VS::PRIMITIVE_LINES) {
//not supported in most hardware, so pointless
//RD::get_singleton()->draw_list_set_line_width(p_draw_list, polygon->line_width);
}
//bind textures
Size2 texpixel_size;
{
texpixel_size = _bind_texture_binding(polygon->texture_binding.binding_id, p_draw_list, push_constant.flags);
texpixel_size.x = 1.0 / texpixel_size.x;
texpixel_size.y = 1.0 / texpixel_size.y;
}
if (polygon->specular_shininess.a < 0.999) {
push_constant.flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
_update_specular_shininess(polygon->specular_shininess, &push_constant.specular_shininess);
push_constant.modulation[0] = base_color.r;
push_constant.modulation[1] = base_color.g;
push_constant.modulation[2] = base_color.b;
push_constant.modulation[3] = base_color.a;
for (int j = 0; j < 4; j++) {
push_constant.src_rect[j] = 0;
push_constant.dst_rect[j] = 0;
push_constant.ninepatch_margins[j] = 0;
}
push_constant.color_texture_pixel_size[0] = texpixel_size.x;
push_constant.color_texture_pixel_size[1] = texpixel_size.y;
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_vertex_array(p_draw_list, pb->vertex_array);
if (pb->indices.is_valid()) {
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, pb->indices);
}
RD::get_singleton()->draw_list_draw(p_draw_list, pb->indices.is_valid());
} break;
case Item::Command::TYPE_PRIMITIVE: {
const Item::CommandPrimitive *primitive = static_cast<const Item::CommandPrimitive *>(c);
//bind pipeline
{
static const PipelineVariant variant[4] = { PIPELINE_VARIANT_PRIMITIVE_POINTS, PIPELINE_VARIANT_PRIMITIVE_LINES, PIPELINE_VARIANT_PRIMITIVE_TRIANGLES, PIPELINE_VARIANT_PRIMITIVE_TRIANGLES };
ERR_CONTINUE(primitive->point_count == 0 || primitive->point_count > 4);
RID pipeline = pipeline_variants->variants[light_mode][variant[primitive->point_count - 1]].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
//bind textures
{
_bind_texture_binding(primitive->texture_binding.binding_id, p_draw_list, push_constant.flags);
}
if (primitive->specular_shininess.a < 0.999) {
push_constant.flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
_update_specular_shininess(primitive->specular_shininess, &push_constant.specular_shininess);
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, primitive_arrays.index_array[MIN(3, primitive->point_count) - 1]);
for (uint32_t j = 0; j < MIN(3, primitive->point_count); j++) {
push_constant.points[j * 2 + 0] = primitive->points[j].x;
push_constant.points[j * 2 + 1] = primitive->points[j].y;
push_constant.uvs[j * 2 + 0] = primitive->uvs[j].x;
push_constant.uvs[j * 2 + 1] = primitive->uvs[j].y;
Color col = primitive->colors[j] * base_color;
push_constant.colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
push_constant.colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_draw(p_draw_list, true);
if (primitive->point_count == 4) {
for (uint32_t j = 1; j < 3; j++) {
//second half of triangle
push_constant.points[j * 2 + 0] = primitive->points[j + 1].x;
push_constant.points[j * 2 + 1] = primitive->points[j + 1].y;
push_constant.uvs[j * 2 + 0] = primitive->uvs[j + 1].x;
push_constant.uvs[j * 2 + 1] = primitive->uvs[j + 1].y;
Color col = primitive->colors[j + 1] * base_color;
push_constant.colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
push_constant.colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_draw(p_draw_list, true);
}
} break;
#if 0
case Item::Command::TYPE_MESH: {
Item::CommandMesh *mesh = static_cast<Item::CommandMesh *>(c);
_set_texture_rect_mode(false);
RasterizerStorageGLES3::Texture *texture = _bind_canvas_texture(mesh->texture, mesh->normal_map);
if (texture) {
Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height);
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, texpixel_size);
}
state.canvas_shader.set_uniform(CanvasShaderGLES3::MODELVIEW_MATRIX, state.final_transform * mesh->transform);
RasterizerStorageGLES3::Mesh *mesh_data = storage->mesh_owner.getornull(mesh->mesh);
if (mesh_data) {
for (int j = 0; j < mesh_data->surfaces.size(); j++) {
RasterizerStorageGLES3::Surface *s = mesh_data->surfaces[j];
// materials are ignored in 2D meshes, could be added but many things (ie, lighting mode, reading from screen, etc) would break as they are not meant be set up at this point of drawing
glBindVertexArray(s->array_id);
glVertexAttrib4f(VS::ARRAY_COLOR, mesh->modulate.r, mesh->modulate.g, mesh->modulate.b, mesh->modulate.a);
if (s->index_array_len) {
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
} else {
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
}
glBindVertexArray(0);
}
}
state.canvas_shader.set_uniform(CanvasShaderGLES3::MODELVIEW_MATRIX, state.final_transform);
} break;
case Item::Command::TYPE_MULTIMESH: {
Item::CommandMultiMesh *mmesh = static_cast<Item::CommandMultiMesh *>(c);
RasterizerStorageGLES3::MultiMesh *multi_mesh = storage->multimesh_owner.getornull(mmesh->multimesh);
if (!multi_mesh)
break;
RasterizerStorageGLES3::Mesh *mesh_data = storage->mesh_owner.getornull(multi_mesh->mesh);
if (!mesh_data)
break;
RasterizerStorageGLES3::Texture *texture = _bind_canvas_texture(mmesh->texture, mmesh->normal_map);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, multi_mesh->custom_data_format != VS::MULTIMESH_CUSTOM_DATA_NONE);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, true);
//reset shader and force rebind
state.using_texture_rect = true;
_set_texture_rect_mode(false);
if (texture) {
Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height);
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, texpixel_size);
}
int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
if (amount == -1) {
amount = multi_mesh->size;
}
for (int j = 0; j < mesh_data->surfaces.size(); j++) {
RasterizerStorageGLES3::Surface *s = mesh_data->surfaces[j];
// materials are ignored in 2D meshes, could be added but many things (ie, lighting mode, reading from screen, etc) would break as they are not meant be set up at this point of drawing
glBindVertexArray(s->instancing_array_id);
glBindBuffer(GL_ARRAY_BUFFER, multi_mesh->buffer); //modify the buffer
int stride = (multi_mesh->xform_floats + multi_mesh->color_floats + multi_mesh->custom_data_floats) * 4;
glEnableVertexAttribArray(8);
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(0));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9);
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(4 * 4));
glVertexAttribDivisor(9, 1);
int color_ofs;
if (multi_mesh->transform_format == VS::MULTIMESH_TRANSFORM_3D) {
glEnableVertexAttribArray(10);
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(8 * 4));
glVertexAttribDivisor(10, 1);
color_ofs = 12 * 4;
} else {
glDisableVertexAttribArray(10);
glVertexAttrib4f(10, 0, 0, 1, 0);
color_ofs = 8 * 4;
}
int custom_data_ofs = color_ofs;
switch (multi_mesh->color_format) {
case VS::MULTIMESH_COLOR_NONE: {
glDisableVertexAttribArray(11);
glVertexAttrib4f(11, 1, 1, 1, 1);
} break;
case VS::MULTIMESH_COLOR_8BIT: {
glEnableVertexAttribArray(11);
glVertexAttribPointer(11, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(color_ofs));
glVertexAttribDivisor(11, 1);
custom_data_ofs += 4;
} break;
case VS::MULTIMESH_COLOR_FLOAT: {
glEnableVertexAttribArray(11);
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(color_ofs));
glVertexAttribDivisor(11, 1);
custom_data_ofs += 4 * 4;
} break;
}
switch (multi_mesh->custom_data_format) {
case VS::MULTIMESH_CUSTOM_DATA_NONE: {
glDisableVertexAttribArray(12);
glVertexAttrib4f(12, 1, 1, 1, 1);
} break;
case VS::MULTIMESH_CUSTOM_DATA_8BIT: {
glEnableVertexAttribArray(12);
glVertexAttribPointer(12, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(custom_data_ofs));
glVertexAttribDivisor(12, 1);
} break;
case VS::MULTIMESH_CUSTOM_DATA_FLOAT: {
glEnableVertexAttribArray(12);
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(custom_data_ofs));
glVertexAttribDivisor(12, 1);
} break;
}
if (s->index_array_len) {
glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount);
} else {
glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount);
}
glBindVertexArray(0);
}
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, false);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, false);
state.using_texture_rect = true;
_set_texture_rect_mode(false);
} break;
case Item::Command::TYPE_PARTICLES: {
Item::CommandParticles *particles_cmd = static_cast<Item::CommandParticles *>(c);
RasterizerStorageGLES3::Particles *particles = storage->particles_owner.getornull(particles_cmd->particles);
if (!particles)
break;
if (particles->inactive && !particles->emitting)
break;
glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); //not used, so keep white
VisualServerRaster::redraw_request();
storage->particles_request_process(particles_cmd->particles);
//enable instancing
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, true);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_PARTICLES, true);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, true);
//reset shader and force rebind
state.using_texture_rect = true;
_set_texture_rect_mode(false);
RasterizerStorageGLES3::Texture *texture = _bind_canvas_texture(particles_cmd->texture, particles_cmd->normal_map);
if (texture) {
Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height);
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, texpixel_size);
} else {
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, Vector2(1.0, 1.0));
}
if (!particles->use_local_coords) {
Transform2D inv_xf;
inv_xf.set_axis(0, Vector2(particles->emission_transform.basis.get_axis(0).x, particles->emission_transform.basis.get_axis(0).y));
inv_xf.set_axis(1, Vector2(particles->emission_transform.basis.get_axis(1).x, particles->emission_transform.basis.get_axis(1).y));
inv_xf.set_origin(Vector2(particles->emission_transform.get_origin().x, particles->emission_transform.get_origin().y));
inv_xf.affine_invert();
state.canvas_shader.set_uniform(CanvasShaderGLES3::MODELVIEW_MATRIX, state.final_transform * inv_xf);
}
glBindVertexArray(data.particle_quad_array); //use particle quad array
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[0]); //bind particle buffer
int stride = sizeof(float) * 4 * 6;
int amount = particles->amount;
if (particles->draw_order != VS::PARTICLES_DRAW_ORDER_LIFETIME) {
glEnableVertexAttribArray(8); //xform x
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 3));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9); //xform y
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 4));
glVertexAttribDivisor(9, 1);
glEnableVertexAttribArray(10); //xform z
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 5));
glVertexAttribDivisor(10, 1);
glEnableVertexAttribArray(11); //color
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, NULL);
glVertexAttribDivisor(11, 1);
glEnableVertexAttribArray(12); //custom
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 2));
glVertexAttribDivisor(12, 1);
glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, amount);
} else {
//split
int split = int(Math::ceil(particles->phase * particles->amount));
if (amount - split > 0) {
glEnableVertexAttribArray(8); //xform x
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 3));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9); //xform y
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 4));
glVertexAttribDivisor(9, 1);
glEnableVertexAttribArray(10); //xform z
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 5));
glVertexAttribDivisor(10, 1);
glEnableVertexAttribArray(11); //color
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + 0));
glVertexAttribDivisor(11, 1);
glEnableVertexAttribArray(12); //custom
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 2));
glVertexAttribDivisor(12, 1);
glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, amount - split);
}
if (split > 0) {
glEnableVertexAttribArray(8); //xform x
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 3));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9); //xform y
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 4));
glVertexAttribDivisor(9, 1);
glEnableVertexAttribArray(10); //xform z
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 5));
glVertexAttribDivisor(10, 1);
glEnableVertexAttribArray(11); //color
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, NULL);
glVertexAttribDivisor(11, 1);
glEnableVertexAttribArray(12); //custom
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 2));
glVertexAttribDivisor(12, 1);
glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, split);
}
}
glBindVertexArray(0);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, false);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_PARTICLES, false);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, false);
state.using_texture_rect = true;
_set_texture_rect_mode(false);
} break;
#endif
case Item::Command::TYPE_TRANSFORM: {
const Item::CommandTransform *transform = static_cast<const Item::CommandTransform *>(c);
_update_transform_2d_to_mat2x3(base_transform * transform->xform, push_constant.world);
} break;
case Item::Command::TYPE_CLIP_IGNORE: {
const Item::CommandClipIgnore *ci = static_cast<const Item::CommandClipIgnore *>(c);
if (current_clip) {
if (ci->ignore != reclip) {
if (ci->ignore) {
RD::get_singleton()->draw_list_disable_scissor(p_draw_list);
reclip = true;
} else {
RD::get_singleton()->draw_list_enable_scissor(p_draw_list, current_clip->final_clip_rect);
reclip = false;
}
}
}
} break;
}
c = c->next;
}
if (current_clip && reclip) {
//will make it re-enable clipping if needed afterwards
current_clip = NULL;
}
}
void RasterizerCanvasRD::_render_items(RID p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, RID p_screen_uniform_set) {
Item *current_clip = NULL;
Transform2D canvas_transform_inverse = p_canvas_transform_inverse;
RID framebuffer = storage->render_target_get_rd_framebuffer(p_to_render_target);
Vector<Color> clear_colors;
bool clear = false;
if (storage->render_target_is_clear_requested(p_to_render_target)) {
clear = true;
clear_colors.push_back(storage->render_target_get_clear_request_color(p_to_render_target));
storage->render_target_disable_clear_request(p_to_render_target);
}
#warning TODO obtain from framebuffer format eventually when this is implemented
RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, clear ? RD::INITIAL_ACTION_CLEAR : RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, clear_colors);
if (p_screen_uniform_set.is_valid()) {
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, p_screen_uniform_set, 3);
}
RID prev_material;
PipelineVariants *pipeline_variants = &shader.pipeline_variants;
for (int i = 0; i < p_item_count; i++) {
Item *ci = items[i];
if (current_clip != ci->final_clip_owner) {
current_clip = ci->final_clip_owner;
//setup clip
if (current_clip) {
RD::get_singleton()->draw_list_enable_scissor(draw_list, current_clip->final_clip_rect);
} else {
RD::get_singleton()->draw_list_disable_scissor(draw_list);
}
}
if (ci->material != prev_material) {
MaterialData *material_data = NULL;
if (ci->material.is_valid()) {
material_data = (MaterialData *)storage->material_get_data(ci->material, RasterizerStorageRD::SHADER_TYPE_2D);
}
if (material_data) {
if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) {
pipeline_variants = &material_data->shader_data->pipeline_variants;
if (material_data->uniform_set.is_valid()) {
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, material_data->uniform_set, 1);
}
} else {
pipeline_variants = &shader.pipeline_variants;
}
} else {
pipeline_variants = &shader.pipeline_variants;
}
}
_render_item(draw_list, ci, fb_format, canvas_transform_inverse, current_clip, p_lights, pipeline_variants);
prev_material = ci->material;
}
RD::get_singleton()->draw_list_end();
}
void RasterizerCanvasRD::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, const Transform2D &p_canvas_transform) {
int item_count = 0;
//setup canvas state uniforms if needed
Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse();
{
//update canvas state uniform buffer
State::Buffer state_buffer;
Size2i ssize = storage->render_target_get_size(p_to_render_target);
Transform screen_transform;
screen_transform.translate(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f);
screen_transform.scale(Vector3(2.0f / ssize.width, 2.0f / ssize.height, 1.0f));
_update_transform_to_mat4(screen_transform, state_buffer.screen_transform);
_update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform);
Transform2D normal_transform = p_canvas_transform;
normal_transform.elements[0].normalize();
normal_transform.elements[1].normalize();
normal_transform.elements[2] = Vector2();
_update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform);
state_buffer.canvas_modulate[0] = p_modulate.r;
state_buffer.canvas_modulate[1] = p_modulate.g;
state_buffer.canvas_modulate[2] = p_modulate.b;
state_buffer.canvas_modulate[3] = p_modulate.a;
Size2 render_target_size = storage->render_target_get_size(p_to_render_target);
state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x;
state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y;
state_buffer.time = state.time;
RD::get_singleton()->buffer_update(state.canvas_state_buffer, 0, sizeof(State::Buffer), &state_buffer, true);
}
//setup lights if exist
{
Light *l = p_light_list;
uint32_t index = 0;
while (l) {
if (index == state.max_lights_per_render) {
l->render_index_cache = -1;
l = l->next_ptr;
continue;
}
CanvasLight *clight = canvas_light_owner.getornull(l->light_internal);
if (!clight) { //unused or invalid texture
l->render_index_cache = -1;
l = l->next_ptr;
ERR_CONTINUE(!clight);
}
Transform2D to_light_xform = (p_canvas_transform * l->light_shader_xform).affine_inverse();
Vector2 canvas_light_pos = p_canvas_transform.xform(l->xform.get_origin()); //convert light position to canvas coordinates, as all computation is done in canvas coords to avoid precision loss
state.light_uniforms[index].position[0] = canvas_light_pos.x;
state.light_uniforms[index].position[1] = canvas_light_pos.y;
_update_transform_2d_to_mat2x4(to_light_xform, state.light_uniforms[index].matrix);
_update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix);
state.light_uniforms[index].height = l->height * (p_canvas_transform.elements[0].length() + p_canvas_transform.elements[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss
for (int i = 0; i < 4; i++) {
state.light_uniforms[index].shadow_color[i] = l->shadow_color[i];
state.light_uniforms[index].color[i] = l->color[i];
}
state.light_uniforms[index].color[3] = l->energy; //use alpha for energy, so base color can go separate
if (clight->shadow.texture.is_valid()) {
state.light_uniforms[index].shadow_pixel_size = (1.0 / clight->shadow.size) * (1.0 + l->shadow_smooth);
} else {
state.light_uniforms[index].shadow_pixel_size = 1.0;
}
state.light_uniforms[index].flags |= l->mode << LIGHT_FLAGS_BLEND_SHIFT;
state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT;
if (clight->shadow.texture.is_valid()) {
state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW;
}
l->render_index_cache = index;
index++;
l = l->next_ptr;
}
if (index > 0) {
RD::get_singleton()->buffer_update(state.lights_uniform_buffer, 0, sizeof(LightUniform) * index, &state.light_uniforms[0], true);
}
}
//fill the list until rendering is possible.
bool material_screen_texture_found = false;
Item *ci = p_item_list;
Rect2 back_buffer_rect;
bool backbuffer_copy = false;
RID screen_uniform_set;
while (ci) {
if (ci->copy_back_buffer) {
backbuffer_copy = true;
if (ci->copy_back_buffer->full) {
back_buffer_rect = Rect2();
} else {
back_buffer_rect = ci->copy_back_buffer->rect;
}
}
if (ci->material.is_valid()) {
MaterialData *md = (MaterialData *)storage->material_get_data(ci->material, RasterizerStorageRD::SHADER_TYPE_2D);
if (md && md->shader_data->valid && md->shader_data->uses_screen_texture) {
if (!material_screen_texture_found) {
backbuffer_copy = true;
back_buffer_rect = Rect2();
}
if (screen_uniform_set.is_null()) {
RID backbuffer_shader = shader.canvas_shader.version_get_shader(md->shader_data->version, 0); //any version is fine
screen_uniform_set = storage->render_target_get_back_buffer_uniform_set(p_to_render_target, backbuffer_shader);
}
}
}
if (backbuffer_copy) {
//render anything pending, including clearing if no items
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, screen_uniform_set);
item_count = 0;
storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect);
backbuffer_copy = false;
material_screen_texture_found = true; //after a backbuffer copy, screen texture makes no further copies
}
items[item_count++] = ci;
if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) {
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, screen_uniform_set);
//then reset
item_count = 0;
}
ci = ci->next;
}
}
RID RasterizerCanvasRD::light_create() {
CanvasLight canvas_light;
canvas_light.shadow.size = 0;
return canvas_light_owner.make_rid(canvas_light);
}
void RasterizerCanvasRD::light_set_texture(RID p_rid, RID p_texture) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND(!cl);
if (cl->texture == p_texture) {
return;
}
cl->texture = p_texture;
}
void RasterizerCanvasRD::light_set_use_shadow(RID p_rid, bool p_enable, int p_resolution) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND(!cl);
ERR_FAIL_COND(p_resolution < 64);
if (cl->shadow.texture.is_valid() == p_enable && p_resolution == cl->shadow.size) {
return;
}
if (cl->shadow.texture.is_valid()) {
RD::get_singleton()->free(cl->shadow.fb);
RD::get_singleton()->free(cl->shadow.depth);
RD::get_singleton()->free(cl->shadow.texture);
cl->shadow.fb = RID();
cl->shadow.texture = RID();
cl->shadow.depth = RID();
}
if (p_enable) {
Vector<RID> fb_textures;
{ //texture
RD::TextureFormat tf;
tf.type = RD::TEXTURE_TYPE_2D;
tf.width = p_resolution;
tf.height = 1;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
cl->shadow.texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
fb_textures.push_back(cl->shadow.texture);
}
{
RD::TextureFormat tf;
tf.type = RD::TEXTURE_TYPE_2D;
tf.width = p_resolution;
tf.height = 1;
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_X8_D24_UNORM_PACK32, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_X8_D24_UNORM_PACK32 : RD::DATA_FORMAT_D32_SFLOAT;
//chunks to write
cl->shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
fb_textures.push_back(cl->shadow.depth);
}
cl->shadow.fb = RD::get_singleton()->framebuffer_create(fb_textures);
}
cl->shadow.size = p_resolution;
}
void RasterizerCanvasRD::light_update_shadow(RID p_rid, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND(cl->shadow.texture.is_null());
for (int i = 0; i < 4; i++) {
//make sure it remains orthogonal, makes easy to read angle later
//light.basis.scale(Vector3(to_light.elements[0].length(),to_light.elements[1].length(),1));
Vector<Color> cc;
cc.push_back(Color(p_far, p_far, p_far, 1.0));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(cl->shadow.fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, cc, Rect2i((cl->shadow.size / 4) * i, 0, (cl->shadow.size / 4), 1));
CameraMatrix projection;
{
real_t fov = 90;
real_t nearp = p_near;
real_t farp = p_far;
real_t aspect = 1.0;
real_t ymax = nearp * Math::tan(Math::deg2rad(fov * 0.5));
real_t ymin = -ymax;
real_t xmin = ymin * aspect;
real_t xmax = ymax * aspect;
projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp);
}
Vector3 cam_target = Basis(Vector3(0, 0, Math_PI * 2 * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0));
projection = projection * CameraMatrix(Transform().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse());
ShadowRenderPushConstant push_constant;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
push_constant.projection[y * 4 + x] = projection.matrix[y][x];
}
}
static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) };
push_constant.direction[0] = directions[i].x;
push_constant.direction[1] = directions[i].y;
push_constant.pad[0] = 0;
push_constant.pad[1] = 0;
/*if (i == 0)
*p_xform_cache = projection;*/
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.getornull(instance->occluder);
if (!co || co->index_array.is_null() || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
_update_transform_2d_to_mat2x4(p_light_xform * instance->xform_cache, push_constant.modelview);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.render_pipelines[co->cull_mode]);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, co->index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
instance = instance->next;
}
RD::get_singleton()->draw_list_end();
}
}
RID RasterizerCanvasRD::occluder_polygon_create() {
OccluderPolygon occluder;
occluder.point_count = 0;
occluder.cull_mode = VS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED;
return occluder_polygon_owner.make_rid(occluder);
}
void RasterizerCanvasRD::occluder_polygon_set_shape_as_lines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
OccluderPolygon *oc = occluder_polygon_owner.getornull(p_occluder);
ERR_FAIL_COND(!oc);
if (oc->point_count != p_lines.size() && oc->vertex_array.is_valid()) {
RD::get_singleton()->free(oc->vertex_array);
RD::get_singleton()->free(oc->vertex_buffer);
RD::get_singleton()->free(oc->index_array);
RD::get_singleton()->free(oc->index_buffer);
oc->vertex_array = RID();
oc->vertex_buffer = RID();
oc->index_array = RID();
oc->index_buffer = RID();
}
if (p_lines.size()) {
PoolVector<uint8_t> geometry;
PoolVector<uint8_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6 * sizeof(float));
indices.resize(lc * 3 * sizeof(uint16_t));
{
PoolVector<uint8_t>::Write vw = geometry.write();
float *vwptr = (float *)vw.ptr();
PoolVector<uint8_t>::Write iw = indices.write();
uint16_t *iwptr = (uint16_t *)iw.ptr();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vwptr[i * 12 + 0] = lr[i * 2 + 0].x;
vwptr[i * 12 + 1] = lr[i * 2 + 0].y;
vwptr[i * 12 + 2] = POLY_HEIGHT;
vwptr[i * 12 + 3] = lr[i * 2 + 1].x;
vwptr[i * 12 + 4] = lr[i * 2 + 1].y;
vwptr[i * 12 + 5] = POLY_HEIGHT;
vwptr[i * 12 + 6] = lr[i * 2 + 1].x;
vwptr[i * 12 + 7] = lr[i * 2 + 1].y;
vwptr[i * 12 + 8] = -POLY_HEIGHT;
vwptr[i * 12 + 9] = lr[i * 2 + 0].x;
vwptr[i * 12 + 10] = lr[i * 2 + 0].y;
vwptr[i * 12 + 11] = -POLY_HEIGHT;
iwptr[i * 6 + 0] = i * 4 + 0;
iwptr[i * 6 + 1] = i * 4 + 1;
iwptr[i * 6 + 2] = i * 4 + 2;
iwptr[i * 6 + 3] = i * 4 + 2;
iwptr[i * 6 + 4] = i * 4 + 3;
iwptr[i * 6 + 5] = i * 4 + 0;
}
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (oc->vertex_array.is_null()) {
//create from scratch
//vertices
oc->vertex_buffer = RD::get_singleton()->vertex_buffer_create(lc * 6 * sizeof(real_t), geometry);
Vector<RID> buffer;
buffer.push_back(oc->vertex_buffer);
oc->vertex_array = RD::get_singleton()->vertex_array_create(4 * lc / 2, shadow_render.vertex_format, buffer);
//indices
oc->index_buffer = RD::get_singleton()->index_buffer_create(3 * lc, RD::INDEX_BUFFER_FORMAT_UINT16, indices);
oc->index_array = RD::get_singleton()->index_array_create(oc->index_buffer, 0, 3 * lc);
} else {
//update existing
PoolVector<uint8_t>::Read vr = geometry.read();
RD::get_singleton()->buffer_update(oc->vertex_buffer, 0, geometry.size(), vr.ptr());
PoolVector<uint8_t>::Read ir = indices.read();
RD::get_singleton()->buffer_update(oc->index_buffer, 0, indices.size(), ir.ptr());
}
}
}
void RasterizerCanvasRD::occluder_polygon_set_cull_mode(RID p_occluder, VS::CanvasOccluderPolygonCullMode p_mode) {
OccluderPolygon *oc = occluder_polygon_owner.getornull(p_occluder);
ERR_FAIL_COND(!oc);
oc->cull_mode = p_mode;
}
void RasterizerCanvasRD::ShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
uses_screen_texture = false;
uses_material_samplers = false;
if (code == String()) {
return; //just invalid, but no error
}
ShaderCompilerRD::GeneratedCode gen_code;
int light_mode = LIGHT_MODE_NORMAL;
int blend_mode = BLEND_MODE_MIX;
uses_screen_texture = false;
ShaderCompilerRD::IdentifierActions actions;
actions.render_mode_values["blend_add"] = Pair<int *, int>(&blend_mode, BLEND_MODE_ADD);
actions.render_mode_values["blend_mix"] = Pair<int *, int>(&blend_mode, BLEND_MODE_MIX);
actions.render_mode_values["blend_sub"] = Pair<int *, int>(&blend_mode, BLEND_MODE_SUB);
actions.render_mode_values["blend_mul"] = Pair<int *, int>(&blend_mode, BLEND_MODE_MUL);
actions.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&blend_mode, BLEND_MODE_PMALPHA);
actions.render_mode_values["blend_disabled"] = Pair<int *, int>(&blend_mode, BLEND_MODE_DISABLED);
actions.render_mode_values["unshaded"] = Pair<int *, int>(&light_mode, LIGHT_MODE_UNSHADED);
actions.render_mode_values["light_only"] = Pair<int *, int>(&light_mode, LIGHT_MODE_LIGHT_ONLY);
actions.usage_flag_pointers["SCREEN_TEXTURE"] = &uses_screen_texture;
actions.uniforms = &uniforms;
RasterizerCanvasRD *canvas_singleton = (RasterizerCanvasRD *)RasterizerCanvas::singleton;
Error err = canvas_singleton->shader.compiler.compile(VS::SHADER_CANVAS_ITEM, code, &actions, path, gen_code);
ERR_FAIL_COND(err != OK);
if (version.is_null()) {
version = canvas_singleton->shader.canvas_shader.version_create();
}
if (gen_code.texture_uniforms.size() || uses_screen_texture) { //requires the samplers
gen_code.defines.push_back("\n#define USE_MATERIAL_SAMPLERS\n");
uses_material_samplers = true;
}
#if 0
print_line("**compiling shader:");
print_line("**defines:\n");
for (int i = 0; i < gen_code.defines.size(); i++) {
print_line(gen_code.defines[i]);
}
print_line("\n**uniforms:\n" + gen_code.uniforms);
print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
print_line("\n**vertex_code:\n" + gen_code.vertex);
print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
print_line("\n**fragment_code:\n" + gen_code.fragment);
print_line("\n**light_code:\n" + gen_code.light);
#endif
canvas_singleton->shader.canvas_shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines);
ERR_FAIL_COND(!canvas_singleton->shader.canvas_shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
//update them pipelines
RD::PipelineColorBlendState::Attachment attachment;
switch (blend_mode) {
case BLEND_MODE_DISABLED: {
// nothing to do here, disabled by default
} break;
case BLEND_MODE_MIX: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
} break;
case BLEND_MODE_ADD: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
} break;
case BLEND_MODE_SUB: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_SUBTRACT;
attachment.color_blend_op = RD::BLEND_OP_SUBTRACT;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
} break;
case BLEND_MODE_MUL: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_DST_COLOR;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ZERO;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_DST_ALPHA;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ZERO;
} break;
case BLEND_MODE_PMALPHA: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
} break;
}
RD::PipelineColorBlendState blend_state;
blend_state.attachments.push_back(attachment);
//update pipelines
for (int i = 0; i < PIPELINE_LIGHT_MODE_MAX; i++) {
for (int j = 0; j < PIPELINE_VARIANT_MAX; j++) {
RD::RenderPrimitive primitive[PIPELINE_VARIANT_MAX] = {
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_POINTS,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_POINTS,
};
ShaderVariant shader_variants[PIPELINE_LIGHT_MODE_MAX][PIPELINE_VARIANT_MAX] = {
{ //non lit
SHADER_VARIANT_QUAD,
SHADER_VARIANT_NINEPATCH,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE_POINTS,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES_POINTS },
{ //lit
SHADER_VARIANT_QUAD_LIGHT,
SHADER_VARIANT_NINEPATCH_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_POINTS_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_POINTS_LIGHT },
};
RID shader_variant = canvas_singleton->shader.canvas_shader.version_get_shader(version, shader_variants[i][j]);
pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state, 0);
}
}
valid = true;
}
void RasterizerCanvasRD::ShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
if (!p_texture.is_valid()) {
default_texture_params.erase(p_name);
} else {
default_texture_params[p_name] = p_texture;
}
}
void RasterizerCanvasRD::ShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
if (E->get().texture_order >= 0) {
order[E->get().texture_order + 100000] = E->key();
} else {
order[E->get().order] = E->key();
}
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
pi.name = E->get();
p_param_list->push_back(pi);
}
}
bool RasterizerCanvasRD::ShaderData::is_param_texture(const StringName &p_param) const {
if (!uniforms.has(p_param)) {
return false;
}
return uniforms[p_param].texture_order >= 0;
}
bool RasterizerCanvasRD::ShaderData::is_animated() const {
return false;
}
bool RasterizerCanvasRD::ShaderData::casts_shadows() const {
return false;
}
Variant RasterizerCanvasRD::ShaderData::get_default_parameter(const StringName &p_parameter) const {
if (uniforms.has(p_parameter)) {
ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
}
return Variant();
}
RasterizerCanvasRD::ShaderData::ShaderData() {
valid = false;
uses_screen_texture = false;
uses_material_samplers = false;
}
RasterizerCanvasRD::ShaderData::~ShaderData() {
RasterizerCanvasRD *canvas_singleton = (RasterizerCanvasRD *)RasterizerCanvas::singleton;
ERR_FAIL_COND(!canvas_singleton);
//pipeline variants will clear themselves if shader is gone
if (version.is_valid()) {
canvas_singleton->shader.canvas_shader.version_free(version);
}
}
RasterizerStorageRD::ShaderData *RasterizerCanvasRD::_create_shader_func() {
ShaderData *shader_data = memnew(ShaderData);
return shader_data;
}
void RasterizerCanvasRD::MaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
RasterizerCanvasRD *canvas_singleton = (RasterizerCanvasRD *)RasterizerCanvas::singleton;
if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
p_uniform_dirty = true;
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
uniform_buffer = RID();
}
ubo_data.resize(shader_data->ubo_size);
if (ubo_data.size()) {
uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
}
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
//check whether buffer changed
if (p_uniform_dirty && ubo_data.size()) {
update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
}
uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
if ((uint32_t)texture_cache.size() != tex_uniform_count) {
texture_cache.resize(tex_uniform_count);
p_textures_dirty = true;
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
if (p_textures_dirty && tex_uniform_count) {
update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw());
}
if (shader_data->ubo_size == 0 && !shader_data->uses_material_samplers) {
// This material does not require an uniform set, so don't create it.
return;
}
if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
//no reason to update uniform set, only UBO (or nothing) was needed to update
return;
}
Vector<RD::Uniform> uniforms;
{
if (shader_data->uses_material_samplers) {
//needs samplers for the material (uses custom textures) create them
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 0;
u.ids.resize(12);
RID *ids_ptr = u.ids.ptrw();
ids_ptr[0] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[1] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[2] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[3] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[4] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[5] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[6] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[7] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[8] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[9] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[10] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[11] = canvas_singleton->storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
uniforms.push_back(u);
}
if (shader_data->ubo_size) {
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 1;
u.ids.push_back(uniform_buffer);
uniforms.push_back(u);
}
const RID *textures = texture_cache.ptrw();
for (uint32_t i = 0; i < tex_uniform_count; i++) {
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2 + i;
u.ids.push_back(textures[i]);
uniforms.push_back(u);
}
}
uniform_set = RD::get_singleton()->uniform_set_create(uniforms, canvas_singleton->shader.canvas_shader.version_get_shader(shader_data->version, 0), 1);
}
RasterizerCanvasRD::MaterialData::~MaterialData() {
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
}
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
}
}
RasterizerStorageRD::MaterialData *RasterizerCanvasRD::_create_material_func(ShaderData *p_shader) {
MaterialData *material_data = memnew(MaterialData);
material_data->shader_data = p_shader;
//update will happen later anyway so do nothing.
return material_data;
}
void RasterizerCanvasRD::set_time(double p_time) {
state.time = p_time;
}
void RasterizerCanvasRD::update() {
_dispose_bindings();
}
RasterizerCanvasRD::RasterizerCanvasRD(RasterizerStorageRD *p_storage) {
storage = p_storage;
{ //create default samplers
default_samplers.default_filter = VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR;
default_samplers.default_repeat = VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED;
}
{ //shader variants
uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
String global_defines;
if (textures_per_stage <= 16) {
//ARM pretty much, and very old Intel GPUs under Linux
state.max_lights_per_item = 4; //sad
global_defines += "#define MAX_LIGHT_TEXTURES 4\n";
} else if (textures_per_stage <= 32) {
//Apple (Metal)
state.max_lights_per_item = 8; //sad
global_defines += "#define MAX_LIGHT_TEXTURES 8\n";
} else {
//Anything else (16 lights per item)
state.max_lights_per_item = DEFAULT_MAX_LIGHTS_PER_ITEM;
global_defines += "#define MAX_LIGHT_TEXTURES " + itos(DEFAULT_MAX_LIGHTS_PER_ITEM) + "\n";
}
uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
if (uniform_max_size < 65536) {
//Yes, you guessed right, ARM again
state.max_lights_per_render = 64;
global_defines += "#define MAX_LIGHTS 64\n";
} else {
state.max_lights_per_render = DEFAULT_MAX_LIGHTS_PER_RENDER;
global_defines += "#define MAX_LIGHTS " + itos(DEFAULT_MAX_LIGHTS_PER_RENDER) + "\n";
}
state.light_uniforms = memnew_arr(LightUniform, state.max_lights_per_render);
Vector<String> variants;
//non light variants
variants.push_back(""); //none by default is first variant
variants.push_back("#define USE_NINEPATCH\n"); //ninepatch is the second variant
variants.push_back("#define USE_PRIMITIVE\n"); //primitve is the third
variants.push_back("#define USE_PRIMITIVE\n#define USE_POINT_SIZE\n"); //points need point size
variants.push_back("#define USE_ATTRIBUTES\n"); // attributes for vertex arrays
variants.push_back("#define USE_ATTRIBUTES\n#define USE_POINT_SIZE\n"); //attributes with point size
//light variants
variants.push_back("#define USE_LIGHTING\n"); //none by default is first variant
variants.push_back("#define USE_LIGHTING\n#define USE_NINEPATCH\n"); //ninepatch is the second variant
variants.push_back("#define USE_LIGHTING\n#define USE_PRIMITIVE\n"); //primitve is the third
variants.push_back("#define USE_LIGHTING\n#define USE_PRIMITIVE\n#define USE_POINT_SIZE\n"); //points need point size
variants.push_back("#define USE_LIGHTING\n#define USE_ATTRIBUTES\n"); // attributes for vertex arrays
variants.push_back("#define USE_LIGHTING\n#define USE_ATTRIBUTES\n#define USE_POINT_SIZE\n"); //attributes with point size
shader.canvas_shader.initialize(variants, global_defines);
shader.default_version = shader.canvas_shader.version_create();
shader.default_version_rd_shader = shader.canvas_shader.version_get_shader(shader.default_version, SHADER_VARIANT_QUAD);
shader.default_version_rd_shader_light = shader.canvas_shader.version_get_shader(shader.default_version, SHADER_VARIANT_QUAD_LIGHT);
for (int i = 0; i < PIPELINE_LIGHT_MODE_MAX; i++) {
for (int j = 0; j < PIPELINE_VARIANT_MAX; j++) {
RD::RenderPrimitive primitive[PIPELINE_VARIANT_MAX] = {
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_POINTS,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_POINTS,
};
ShaderVariant shader_variants[PIPELINE_LIGHT_MODE_MAX][PIPELINE_VARIANT_MAX] = {
{ //non lit
SHADER_VARIANT_QUAD,
SHADER_VARIANT_NINEPATCH,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE_POINTS,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES_POINTS },
{ //lit
SHADER_VARIANT_QUAD_LIGHT,
SHADER_VARIANT_NINEPATCH_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_POINTS_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_POINTS_LIGHT },
};
RID shader_variant = shader.canvas_shader.version_get_shader(shader.default_version, shader_variants[i][j]);
shader.pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_blend(), 0);
}
}
}
{
//shader compiler
ShaderCompilerRD::DefaultIdentifierActions actions;
actions.renames["VERTEX"] = "vertex";
actions.renames["LIGHT_VERTEX"] = "light_vertex";
actions.renames["SHADOW_VERTEX"] = "shadow_vertex";
actions.renames["UV"] = "uv";
actions.renames["POINT_SIZE"] = "gl_PointSize";
actions.renames["WORLD_MATRIX"] = "world_matrix";
actions.renames["CANVAS_MATRIX"] = "canvas_data.canvas_transform";
actions.renames["SCREEN_MATRIX"] = "canvas_data.screen_transform";
actions.renames["TIME"] = "canvas_data.time";
actions.renames["AT_LIGHT_PASS"] = "false";
actions.renames["INSTANCE_CUSTOM"] = "instance_custom";
actions.renames["COLOR"] = "color";
actions.renames["NORMAL"] = "normal";
actions.renames["NORMALMAP"] = "normal_map";
actions.renames["NORMALMAP_DEPTH"] = "normal_depth";
actions.renames["TEXTURE"] = "color_texture";
actions.renames["TEXTURE_PIXEL_SIZE"] = "draw_data.color_texture_pixel_size";
actions.renames["NORMAL_TEXTURE"] = "normal_texture";
actions.renames["SPECULAR_SHININESS_TEXTURE"] = "specular_texture";
actions.renames["SPECULAR_SHININESS"] = "specular_shininess";
actions.renames["SCREEN_UV"] = "screen_uv";
actions.renames["SCREEN_TEXTURE"] = "screen_texture";
actions.renames["SCREEN_PIXEL_SIZE"] = "canvas_data.screen_pixel_size";
actions.renames["FRAGCOORD"] = "gl_FragCoord";
actions.renames["POINT_COORD"] = "gl_PointCoord";
actions.renames["LIGHT_POSITION"] = "light_pos";
actions.renames["LIGHT_COLOR"] = "light_color";
actions.renames["LIGHT_ENERGY"] = "light_energy";
actions.renames["LIGHT"] = "light";
actions.renames["SHADOW_MODULATE"] = "shadow_modulate";
actions.usage_defines["COLOR"] = "#define COLOR_USED\n";
actions.usage_defines["SCREEN_TEXTURE"] = "#define SCREEN_TEXTURE_USED\n";
actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n";
actions.usage_defines["SCREEN_PIXEL_SIZE"] = "@SCREEN_UV";
actions.usage_defines["NORMAL"] = "#define NORMAL_USED\n";
actions.usage_defines["NORMALMAP"] = "#define NORMALMAP_USED\n";
actions.usage_defines["LIGHT"] = "#define LIGHT_SHADER_CODE_USED\n";
actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n";
actions.custom_samplers["TEXTURE"] = "texture_sampler";
actions.custom_samplers["NORMAL_TEXTURE"] = "texture_sampler";
actions.custom_samplers["SPECULAR_SHININESS_TEXTURE"] = "texture_sampler";
actions.custom_samplers["SCREEN_TEXTURE"] = "material_samplers[3]"; //mipmap and filter for screen texture
actions.sampler_array_name = "material_samplers";
actions.base_texture_binding_index = 2;
actions.texture_layout_set = 1;
actions.base_uniform_string = "material.";
actions.default_filter = ShaderLanguage::FILTER_LINEAR;
actions.default_repeat = ShaderLanguage::REPEAT_DISABLE;
shader.compiler.initialize(actions);
}
{ //shadow rendering
Vector<String> versions;
versions.push_back(String()); //no versions
shadow_render.shader.initialize(versions);
{
Vector<RD::AttachmentFormat> attachments;
RD::AttachmentFormat af_color;
af_color.format = RD::DATA_FORMAT_R32_SFLOAT;
af_color.usage_flags = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
attachments.push_back(af_color);
RD::AttachmentFormat af_depth;
af_depth.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_X8_D24_UNORM_PACK32, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_X8_D24_UNORM_PACK32 : RD::DATA_FORMAT_D32_SFLOAT;
af_depth.usage_flags = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
attachments.push_back(af_depth);
shadow_render.framebuffer_format = RD::get_singleton()->framebuffer_format_create(attachments);
}
//pipelines
Vector<RD::VertexDescription> vf;
RD::VertexDescription vd;
vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
vd.location = 0;
vd.offset = 0;
vd.stride = sizeof(float) * 3;
vf.push_back(vd);
shadow_render.vertex_format = RD::get_singleton()->vertex_format_create(vf);
shadow_render.shader_version = shadow_render.shader.version_create();
for (int i = 0; i < 3; i++) {
RD::PipelineRasterizationState rs;
rs.cull_mode = i == 0 ? RD::POLYGON_CULL_DISABLED : (i == 1 ? RD::POLYGON_CULL_FRONT : RD::POLYGON_CULL_BACK);
RD::PipelineDepthStencilState ds;
ds.enable_depth_write = true;
ds.enable_depth_test = true;
ds.depth_compare_operator = RD::COMPARE_OP_LESS;
shadow_render.render_pipelines[i] = RD::get_singleton()->render_pipeline_create(shadow_render.shader.version_get_shader(shadow_render.shader_version, 0), shadow_render.framebuffer_format, shadow_render.vertex_format, RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
}
}
{ //bindings
bindings.id_generator = 0;
//generate for 0
bindings.default_empty = request_texture_binding(RID(), RID(), RID(), VS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT, VS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT, RID());
{ //state allocate
state.canvas_state_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(State::Buffer));
state.lights_uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(LightUniform) * state.max_lights_per_render);
RD::SamplerState shadow_sampler_state;
shadow_sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
shadow_sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
shadow_sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT; //shadow wrap around
shadow_sampler_state.compare_op = RD::COMPARE_OP_GREATER;
state.shadow_sampler = RD::get_singleton()->sampler_create(shadow_sampler_state);
}
}
{
{
PoolVector<uint8_t> colors;
colors.resize(sizeof(float) * 4);
{
PoolVector<uint8_t>::Write w = colors.write();
float *fptr = (float *)w.ptr();
fptr[0] = 1.0;
fptr[1] = 1.0;
fptr[2] = 1.0;
fptr[3] = 1.0;
}
polygon_buffers.default_color_buffer = RD::get_singleton()->vertex_buffer_create(colors.size(), colors);
}
{
PoolVector<uint8_t> uvs;
uvs.resize(sizeof(float) * 2);
{
PoolVector<uint8_t>::Write w = uvs.write();
float *fptr = (float *)w.ptr();
fptr[0] = 0.0;
fptr[1] = 0.0;
}
polygon_buffers.default_uv_buffer = RD::get_singleton()->vertex_buffer_create(uvs.size(), uvs);
}
{
PoolVector<uint8_t> bones;
bones.resize(sizeof(uint32_t) * 4);
{
PoolVector<uint8_t>::Write w = bones.write();
uint32_t *iptr = (uint32_t *)w.ptr();
iptr[0] = 0;
iptr[1] = 0;
iptr[2] = 0;
iptr[3] = 0;
}
polygon_buffers.default_bone_buffer = RD::get_singleton()->vertex_buffer_create(bones.size(), bones);
}
{
PoolVector<uint8_t> weights;
weights.resize(sizeof(float) * 4);
{
PoolVector<uint8_t>::Write w = weights.write();
float *fptr = (float *)w.ptr();
fptr[0] = 0.0;
fptr[1] = 0.0;
fptr[2] = 0.0;
fptr[3] = 0.0;
}
polygon_buffers.default_weight_buffer = RD::get_singleton()->vertex_buffer_create(weights.size(), weights);
}
//polygon buffers
polygon_buffers.last_id = 1;
}
{ // default index buffer
PoolVector<uint8_t> pv;
pv.resize(6 * 4);
{
PoolVector<uint8_t>::Write w = pv.write();
int *p32 = (int *)w.ptr();
p32[0] = 0;
p32[1] = 1;
p32[2] = 2;
p32[3] = 0;
p32[4] = 2;
p32[5] = 3;
}
shader.quad_index_buffer = RD::get_singleton()->index_buffer_create(6, RenderingDevice::INDEX_BUFFER_FORMAT_UINT32, pv);
shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6);
}
{ //primitive
primitive_arrays.index_array[0] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 1);
primitive_arrays.index_array[1] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 2);
primitive_arrays.index_array[2] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 3);
primitive_arrays.index_array[3] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6);
}
{ //default skeleton buffer
shader.default_skeleton_uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SkeletonUniform));
SkeletonUniform su;
_update_transform_2d_to_mat4(Transform2D(), su.skeleton_inverse);
_update_transform_2d_to_mat4(Transform2D(), su.skeleton_transform);
RD::get_singleton()->buffer_update(shader.default_skeleton_uniform_buffer, 0, sizeof(SkeletonUniform), &su);
shader.default_skeleton_texture_buffer = RD::get_singleton()->texture_buffer_create(32, RD::DATA_FORMAT_R32G32B32A32_SFLOAT);
}
//create functions for shader and material
storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_2D, _create_shader_funcs);
storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_2D, _create_material_funcs);
state.time = 0;
ERR_FAIL_COND(sizeof(PushConstant) != 128);
}
bool RasterizerCanvasRD::free(RID p_rid) {
if (canvas_light_owner.owns(p_rid)) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND_V(!cl, false);
light_set_use_shadow(p_rid, false, 64);
canvas_light_owner.free(p_rid);
} else if (occluder_polygon_owner.owns(p_rid)) {
occluder_polygon_set_shape_as_lines(p_rid, PoolVector<Vector2>());
occluder_polygon_owner.free(p_rid);
} else {
return false;
}
return true;
}
RasterizerCanvasRD::~RasterizerCanvasRD() {
//canvas state
if (state.canvas_state_buffer.is_valid()) {
RD::get_singleton()->free(state.canvas_state_buffer);
}
//bindings
{
free_texture_binding(bindings.default_empty);
//dispose pending
_dispose_bindings();
//anything remains?
if (bindings.texture_bindings.size()) {
ERR_PRINT("Some texture bindings were not properly freed (leaked canvasitems?");
const TextureBindingID *key = NULL;
while ((key = bindings.texture_bindings.next(key))) {
TextureBinding *tb = bindings.texture_bindings[*key];
tb->reference_count = 1;
free_texture_binding(*key);
}
//dispose pending
_dispose_bindings();
}
}
//shaders
shader.canvas_shader.version_free(shader.default_version);
//buffers
RD::get_singleton()->free(shader.quad_index_array);
RD::get_singleton()->free(shader.quad_index_buffer);
//pipelines don't need freeing, they are all gone after shaders are gone
}