virtualx-engine/thirdparty/zstd/decompress/zstd_decompress_block.c
2020-09-18 21:47:12 +02:00

1432 lines
61 KiB
C

/*
* Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_decompress_block :
* this module takes care of decompressing _compressed_ block */
/*-*******************************************************
* Dependencies
*********************************************************/
#include <string.h> /* memcpy, memmove, memset */
#include "../common/compiler.h" /* prefetch */
#include "../common/cpu.h" /* bmi2 */
#include "../common/mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/zstd_internal.h"
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
#include "zstd_decompress_block.h"
/*_*******************************************************
* Macros
**********************************************************/
/* These two optional macros force the use one way or another of the two
* ZSTD_decompressSequences implementations. You can't force in both directions
* at the same time.
*/
#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
#endif
/*_*******************************************************
* Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
/*-*************************************************************
* Block decoding
***************************************************************/
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr)
{
RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
{ U32 const cBlockHeader = MEM_readLE24(src);
U32 const cSize = cBlockHeader >> 3;
bpPtr->lastBlock = cBlockHeader & 1;
bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
bpPtr->origSize = cSize; /* only useful for RLE */
if (bpPtr->blockType == bt_rle) return 1;
RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
return cSize;
}
}
/* Hidden declaration for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const void* src, size_t srcSize);
/*! ZSTD_decodeLiteralsBlock() :
* @return : nb of bytes read from src (< srcSize )
* note : symbol not declared but exposed for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
{
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
{ const BYTE* const istart = (const BYTE*) src;
symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
switch(litEncType)
{
case set_repeat:
DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
/* fall-through */
case set_compressed:
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
{ size_t lhSize, litSize, litCSize;
U32 singleStream=0;
U32 const lhlCode = (istart[0] >> 2) & 3;
U32 const lhc = MEM_readLE32(istart);
size_t hufSuccess;
switch(lhlCode)
{
case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
/* 2 - 2 - 10 - 10 */
singleStream = !lhlCode;
lhSize = 3;
litSize = (lhc >> 4) & 0x3FF;
litCSize = (lhc >> 14) & 0x3FF;
break;
case 2:
/* 2 - 2 - 14 - 14 */
lhSize = 4;
litSize = (lhc >> 4) & 0x3FFF;
litCSize = lhc >> 18;
break;
case 3:
/* 2 - 2 - 18 - 18 */
lhSize = 5;
litSize = (lhc >> 4) & 0x3FFFF;
litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
break;
}
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
/* prefetch huffman table if cold */
if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
}
if (litEncType==set_repeat) {
if (singleStream) {
hufSuccess = HUF_decompress1X_usingDTable_bmi2(
dctx->litBuffer, litSize, istart+lhSize, litCSize,
dctx->HUFptr, dctx->bmi2);
} else {
hufSuccess = HUF_decompress4X_usingDTable_bmi2(
dctx->litBuffer, litSize, istart+lhSize, litCSize,
dctx->HUFptr, dctx->bmi2);
}
} else {
if (singleStream) {
#if defined(HUF_FORCE_DECOMPRESS_X2)
hufSuccess = HUF_decompress1X_DCtx_wksp(
dctx->entropy.hufTable, dctx->litBuffer, litSize,
istart+lhSize, litCSize, dctx->workspace,
sizeof(dctx->workspace));
#else
hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
dctx->entropy.hufTable, dctx->litBuffer, litSize,
istart+lhSize, litCSize, dctx->workspace,
sizeof(dctx->workspace), dctx->bmi2);
#endif
} else {
hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
dctx->entropy.hufTable, dctx->litBuffer, litSize,
istart+lhSize, litCSize, dctx->workspace,
sizeof(dctx->workspace), dctx->bmi2);
}
}
RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
dctx->litEntropy = 1;
if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case set_basic:
{ size_t litSize, lhSize;
U32 const lhlCode = ((istart[0]) >> 2) & 3;
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
lhSize = 1;
litSize = istart[0] >> 3;
break;
case 1:
lhSize = 2;
litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
lhSize = 3;
litSize = MEM_readLE24(istart) >> 4;
break;
}
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
memcpy(dctx->litBuffer, istart+lhSize, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return lhSize+litSize;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+lhSize;
dctx->litSize = litSize;
return lhSize+litSize;
}
case set_rle:
{ U32 const lhlCode = ((istart[0]) >> 2) & 3;
size_t litSize, lhSize;
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
lhSize = 1;
litSize = istart[0] >> 3;
break;
case 1:
lhSize = 2;
litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
lhSize = 3;
litSize = MEM_readLE24(istart) >> 4;
RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
break;
}
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return lhSize+1;
}
default:
RETURN_ERROR(corruption_detected, "impossible");
}
}
}
/* Default FSE distribution tables.
* These are pre-calculated FSE decoding tables using default distributions as defined in specification :
* https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#default-distributions
* They were generated programmatically with following method :
* - start from default distributions, present in /lib/common/zstd_internal.h
* - generate tables normally, using ZSTD_buildFSETable()
* - printout the content of tables
* - pretify output, report below, test with fuzzer to ensure it's correct */
/* Default FSE distribution table for Literal Lengths */
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 4, 0}, { 16, 0, 4, 0},
{ 32, 0, 5, 1}, { 0, 0, 5, 3},
{ 0, 0, 5, 4}, { 0, 0, 5, 6},
{ 0, 0, 5, 7}, { 0, 0, 5, 9},
{ 0, 0, 5, 10}, { 0, 0, 5, 12},
{ 0, 0, 6, 14}, { 0, 1, 5, 16},
{ 0, 1, 5, 20}, { 0, 1, 5, 22},
{ 0, 2, 5, 28}, { 0, 3, 5, 32},
{ 0, 4, 5, 48}, { 32, 6, 5, 64},
{ 0, 7, 5, 128}, { 0, 8, 6, 256},
{ 0, 10, 6, 1024}, { 0, 12, 6, 4096},
{ 32, 0, 4, 0}, { 0, 0, 4, 1},
{ 0, 0, 5, 2}, { 32, 0, 5, 4},
{ 0, 0, 5, 5}, { 32, 0, 5, 7},
{ 0, 0, 5, 8}, { 32, 0, 5, 10},
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
{ 32, 1, 5, 16}, { 0, 1, 5, 18},
{ 32, 1, 5, 22}, { 0, 2, 5, 24},
{ 32, 3, 5, 32}, { 0, 3, 5, 40},
{ 0, 6, 4, 64}, { 16, 6, 4, 64},
{ 32, 7, 5, 128}, { 0, 9, 6, 512},
{ 0, 11, 6, 2048}, { 48, 0, 4, 0},
{ 16, 0, 4, 1}, { 32, 0, 5, 2},
{ 32, 0, 5, 3}, { 32, 0, 5, 5},
{ 32, 0, 5, 6}, { 32, 0, 5, 8},
{ 32, 0, 5, 9}, { 32, 0, 5, 11},
{ 32, 0, 5, 12}, { 0, 0, 6, 15},
{ 32, 1, 5, 18}, { 32, 1, 5, 20},
{ 32, 2, 5, 24}, { 32, 2, 5, 28},
{ 32, 3, 5, 40}, { 32, 4, 5, 48},
{ 0, 16, 6,65536}, { 0, 15, 6,32768},
{ 0, 14, 6,16384}, { 0, 13, 6, 8192},
}; /* LL_defaultDTable */
/* Default FSE distribution table for Offset Codes */
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 5, 0}, { 0, 6, 4, 61},
{ 0, 9, 5, 509}, { 0, 15, 5,32765},
{ 0, 21, 5,2097149}, { 0, 3, 5, 5},
{ 0, 7, 4, 125}, { 0, 12, 5, 4093},
{ 0, 18, 5,262141}, { 0, 23, 5,8388605},
{ 0, 5, 5, 29}, { 0, 8, 4, 253},
{ 0, 14, 5,16381}, { 0, 20, 5,1048573},
{ 0, 2, 5, 1}, { 16, 7, 4, 125},
{ 0, 11, 5, 2045}, { 0, 17, 5,131069},
{ 0, 22, 5,4194301}, { 0, 4, 5, 13},
{ 16, 8, 4, 253}, { 0, 13, 5, 8189},
{ 0, 19, 5,524285}, { 0, 1, 5, 1},
{ 16, 6, 4, 61}, { 0, 10, 5, 1021},
{ 0, 16, 5,65533}, { 0, 28, 5,268435453},
{ 0, 27, 5,134217725}, { 0, 26, 5,67108861},
{ 0, 25, 5,33554429}, { 0, 24, 5,16777213},
}; /* OF_defaultDTable */
/* Default FSE distribution table for Match Lengths */
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 6, 3}, { 0, 0, 4, 4},
{ 32, 0, 5, 5}, { 0, 0, 5, 6},
{ 0, 0, 5, 8}, { 0, 0, 5, 9},
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
{ 0, 0, 6, 16}, { 0, 0, 6, 19},
{ 0, 0, 6, 22}, { 0, 0, 6, 25},
{ 0, 0, 6, 28}, { 0, 0, 6, 31},
{ 0, 0, 6, 34}, { 0, 1, 6, 37},
{ 0, 1, 6, 41}, { 0, 2, 6, 47},
{ 0, 3, 6, 59}, { 0, 4, 6, 83},
{ 0, 7, 6, 131}, { 0, 9, 6, 515},
{ 16, 0, 4, 4}, { 0, 0, 4, 5},
{ 32, 0, 5, 6}, { 0, 0, 5, 7},
{ 32, 0, 5, 9}, { 0, 0, 5, 10},
{ 0, 0, 6, 12}, { 0, 0, 6, 15},
{ 0, 0, 6, 18}, { 0, 0, 6, 21},
{ 0, 0, 6, 24}, { 0, 0, 6, 27},
{ 0, 0, 6, 30}, { 0, 0, 6, 33},
{ 0, 1, 6, 35}, { 0, 1, 6, 39},
{ 0, 2, 6, 43}, { 0, 3, 6, 51},
{ 0, 4, 6, 67}, { 0, 5, 6, 99},
{ 0, 8, 6, 259}, { 32, 0, 4, 4},
{ 48, 0, 4, 4}, { 16, 0, 4, 5},
{ 32, 0, 5, 7}, { 32, 0, 5, 8},
{ 32, 0, 5, 10}, { 32, 0, 5, 11},
{ 0, 0, 6, 14}, { 0, 0, 6, 17},
{ 0, 0, 6, 20}, { 0, 0, 6, 23},
{ 0, 0, 6, 26}, { 0, 0, 6, 29},
{ 0, 0, 6, 32}, { 0, 16, 6,65539},
{ 0, 15, 6,32771}, { 0, 14, 6,16387},
{ 0, 13, 6, 8195}, { 0, 12, 6, 4099},
{ 0, 11, 6, 2051}, { 0, 10, 6, 1027},
}; /* ML_defaultDTable */
static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
{
void* ptr = dt;
ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
ZSTD_seqSymbol* const cell = dt + 1;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->nbBits = 0;
cell->nextState = 0;
assert(nbAddBits < 255);
cell->nbAdditionalBits = (BYTE)nbAddBits;
cell->baseValue = baseValue;
}
/* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off)
* cannot fail if input is valid =>
* all inputs are presumed validated at this stage */
void
ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
const U32* baseValue, const U32* nbAdditionalBits,
unsigned tableLog)
{
ZSTD_seqSymbol* const tableDecode = dt+1;
U16 symbolNext[MaxSeq+1];
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
assert(maxSymbolValue <= MaxSeq);
assert(tableLog <= MaxFSELog);
/* Init, lay down lowprob symbols */
{ ZSTD_seqSymbol_header DTableH;
DTableH.tableLog = tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].baseValue = s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
assert(normalizedCounter[s]>=0);
symbolNext[s] = (U16)normalizedCounter[s];
} } }
memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
{ U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].baseValue = s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
U32 const symbol = tableDecode[u].baseValue;
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
assert(nbAdditionalBits[symbol] < 255);
tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
tableDecode[u].baseValue = baseValue[symbol];
} }
}
/*! ZSTD_buildSeqTable() :
* @return : nb bytes read from src,
* or an error code if it fails */
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
symbolEncodingType_e type, unsigned max, U32 maxLog,
const void* src, size_t srcSize,
const U32* baseValue, const U32* nbAdditionalBits,
const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
int ddictIsCold, int nbSeq)
{
switch(type)
{
case set_rle :
RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
{ U32 const symbol = *(const BYTE*)src;
U32 const baseline = baseValue[symbol];
U32 const nbBits = nbAdditionalBits[symbol];
ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
}
*DTablePtr = DTableSpace;
return 1;
case set_basic :
*DTablePtr = defaultTable;
return 0;
case set_repeat:
RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
/* prefetch FSE table if used */
if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
const void* const pStart = *DTablePtr;
size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
PREFETCH_AREA(pStart, pSize);
}
return 0;
case set_compressed :
{ unsigned tableLog;
S16 norm[MaxSeq+1];
size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog);
*DTablePtr = DTableSpace;
return headerSize;
}
default :
assert(0);
RETURN_ERROR(GENERIC, "impossible");
}
}
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip = istart;
int nbSeq;
DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
/* check */
RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
/* SeqHead */
nbSeq = *ip++;
if (!nbSeq) {
*nbSeqPtr=0;
RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
return 1;
}
if (nbSeq > 0x7F) {
if (nbSeq == 0xFF) {
RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
} else {
RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
}
}
*nbSeqPtr = nbSeq;
/* FSE table descriptors */
RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
{ symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
ip++;
/* Build DTables */
{ size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
LLtype, MaxLL, LLFSELog,
ip, iend-ip,
LL_base, LL_bits,
LL_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
ip += llhSize;
}
{ size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
OFtype, MaxOff, OffFSELog,
ip, iend-ip,
OF_base, OF_bits,
OF_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
ip += ofhSize;
}
{ size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
MLtype, MaxML, MLFSELog,
ip, iend-ip,
ML_base, ML_bits,
ML_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
ip += mlhSize;
}
}
return ip-istart;
}
typedef struct {
size_t litLength;
size_t matchLength;
size_t offset;
const BYTE* match;
} seq_t;
typedef struct {
size_t state;
const ZSTD_seqSymbol* table;
} ZSTD_fseState;
typedef struct {
BIT_DStream_t DStream;
ZSTD_fseState stateLL;
ZSTD_fseState stateOffb;
ZSTD_fseState stateML;
size_t prevOffset[ZSTD_REP_NUM];
const BYTE* prefixStart;
const BYTE* dictEnd;
size_t pos;
} seqState_t;
/*! ZSTD_overlapCopy8() :
* Copies 8 bytes from ip to op and updates op and ip where ip <= op.
* If the offset is < 8 then the offset is spread to at least 8 bytes.
*
* Precondition: *ip <= *op
* Postcondition: *op - *op >= 8
*/
HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
assert(*ip <= *op);
if (offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[offset];
(*op)[0] = (*ip)[0];
(*op)[1] = (*ip)[1];
(*op)[2] = (*ip)[2];
(*op)[3] = (*ip)[3];
*ip += dec32table[offset];
ZSTD_copy4(*op+4, *ip);
*ip -= sub2;
} else {
ZSTD_copy8(*op, *ip);
}
*ip += 8;
*op += 8;
assert(*op - *ip >= 8);
}
/*! ZSTD_safecopy() :
* Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
* and write up to 16 bytes past oend_w (op >= oend_w is allowed).
* This function is only called in the uncommon case where the sequence is near the end of the block. It
* should be fast for a single long sequence, but can be slow for several short sequences.
*
* @param ovtype controls the overlap detection
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
* - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
* The src buffer must be before the dst buffer.
*/
static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
ptrdiff_t const diff = op - ip;
BYTE* const oend = op + length;
assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
(ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
if (length < 8) {
/* Handle short lengths. */
while (op < oend) *op++ = *ip++;
return;
}
if (ovtype == ZSTD_overlap_src_before_dst) {
/* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
assert(length >= 8);
ZSTD_overlapCopy8(&op, &ip, diff);
assert(op - ip >= 8);
assert(op <= oend);
}
if (oend <= oend_w) {
/* No risk of overwrite. */
ZSTD_wildcopy(op, ip, length, ovtype);
return;
}
if (op <= oend_w) {
/* Wildcopy until we get close to the end. */
assert(oend > oend_w);
ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
ip += oend_w - op;
op = oend_w;
}
/* Handle the leftovers. */
while (op < oend) *op++ = *ip++;
}
/* ZSTD_execSequenceEnd():
* This version handles cases that are near the end of the output buffer. It requires
* more careful checks to make sure there is no overflow. By separating out these hard
* and unlikely cases, we can speed up the common cases.
*
* NOTE: This function needs to be fast for a single long sequence, but doesn't need
* to be optimized for many small sequences, since those fall into ZSTD_execSequence().
*/
FORCE_NOINLINE
size_t ZSTD_execSequenceEnd(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
/* bounds checks : careful of address space overflow in 32-bit mode */
RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
assert(op < op + sequenceLength);
assert(oLitEnd < op + sequenceLength);
/* copy literals */
ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
op = oLitEnd;
*litPtr = iLitEnd;
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix */
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
match = dictEnd - (prefixStart-match);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = prefixStart;
} }
ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
return sequenceLength;
}
HINT_INLINE
size_t ZSTD_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
assert(op != NULL /* Precondition */);
assert(oend_w < oend /* No underflow */);
/* Handle edge cases in a slow path:
* - Read beyond end of literals
* - Match end is within WILDCOPY_OVERLIMIT of oend
* - 32-bit mode and the match length overflows
*/
if (UNLIKELY(
iLitEnd > litLimit ||
oMatchEnd > oend_w ||
(MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
/* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
assert(op <= oLitEnd /* No overflow */);
assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
assert(oMatchEnd <= oend /* No underflow */);
assert(iLitEnd <= litLimit /* Literal length is in bounds */);
assert(oLitEnd <= oend_w /* Can wildcopy literals */);
assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
/* Copy Literals:
* Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
* We likely don't need the full 32-byte wildcopy.
*/
assert(WILDCOPY_OVERLENGTH >= 16);
ZSTD_copy16(op, (*litPtr));
if (UNLIKELY(sequence.litLength > 16)) {
ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
}
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* Copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix -> go into extDict */
RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
match = dictEnd + (match - prefixStart);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = prefixStart;
} }
/* Match within prefix of 1 or more bytes */
assert(op <= oMatchEnd);
assert(oMatchEnd <= oend_w);
assert(match >= prefixStart);
assert(sequence.matchLength >= 1);
/* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
* without overlap checking.
*/
if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
/* We bet on a full wildcopy for matches, since we expect matches to be
* longer than literals (in general). In silesia, ~10% of matches are longer
* than 16 bytes.
*/
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
return sequenceLength;
}
assert(sequence.offset < WILDCOPY_VECLEN);
/* Copy 8 bytes and spread the offset to be >= 8. */
ZSTD_overlapCopy8(&op, &match, sequence.offset);
/* If the match length is > 8 bytes, then continue with the wildcopy. */
if (sequence.matchLength > 8) {
assert(op < oMatchEnd);
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
}
return sequenceLength;
}
static void
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
{
const void* ptr = dt;
const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
(U32)DStatePtr->state, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
FORCE_INLINE_TEMPLATE void
ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
{
ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.nextState + lowBits;
}
FORCE_INLINE_TEMPLATE void
ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, ZSTD_seqSymbol const DInfo)
{
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.nextState + lowBits;
}
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
* offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
* bits before reloading. This value is the maximum number of bytes we read
* after reloading when we are decoding long offsets.
*/
#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
(ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \
: 0)
typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
typedef enum { ZSTD_p_noPrefetch=0, ZSTD_p_prefetch=1 } ZSTD_prefetch_e;
FORCE_INLINE_TEMPLATE seq_t
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const ZSTD_prefetch_e prefetch)
{
seq_t seq;
ZSTD_seqSymbol const llDInfo = seqState->stateLL.table[seqState->stateLL.state];
ZSTD_seqSymbol const mlDInfo = seqState->stateML.table[seqState->stateML.state];
ZSTD_seqSymbol const ofDInfo = seqState->stateOffb.table[seqState->stateOffb.state];
U32 const llBase = llDInfo.baseValue;
U32 const mlBase = mlDInfo.baseValue;
U32 const ofBase = ofDInfo.baseValue;
BYTE const llBits = llDInfo.nbAdditionalBits;
BYTE const mlBits = mlDInfo.nbAdditionalBits;
BYTE const ofBits = ofDInfo.nbAdditionalBits;
BYTE const totalBits = llBits+mlBits+ofBits;
/* sequence */
{ size_t offset;
if (ofBits > 1) {
ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
assert(ofBits <= MaxOff);
if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
BIT_reloadDStream(&seqState->DStream);
if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */
} else {
offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
}
seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset;
} else {
U32 const ll0 = (llBase == 0);
if (LIKELY((ofBits == 0))) {
if (LIKELY(!ll0))
offset = seqState->prevOffset[0];
else {
offset = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset;
}
} else {
offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
{ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset = temp;
} } }
seq.offset = offset;
}
seq.matchLength = mlBase;
if (mlBits > 0)
seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
BIT_reloadDStream(&seqState->DStream);
if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
BIT_reloadDStream(&seqState->DStream);
/* Ensure there are enough bits to read the rest of data in 64-bit mode. */
ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
seq.litLength = llBase;
if (llBits > 0)
seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
if (MEM_32bits())
BIT_reloadDStream(&seqState->DStream);
DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
if (prefetch == ZSTD_p_prefetch) {
size_t const pos = seqState->pos + seq.litLength;
const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
seq.match = matchBase + pos - seq.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
* No consequence though : no memory access will occur, offset is only used for prefetching */
seqState->pos = pos + seq.matchLength;
}
/* ANS state update
* gcc-9.0.0 does 2.5% worse with ZSTD_updateFseStateWithDInfo().
* clang-9.2.0 does 7% worse with ZSTD_updateFseState().
* Naturally it seems like ZSTD_updateFseStateWithDInfo() should be the
* better option, so it is the default for other compilers. But, if you
* measure that it is worse, please put up a pull request.
*/
{
#if defined(__GNUC__) && !defined(__clang__)
const int kUseUpdateFseState = 1;
#else
const int kUseUpdateFseState = 0;
#endif
if (kUseUpdateFseState) {
ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
} else {
ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llDInfo); /* <= 9 bits */
ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlDInfo); /* <= 9 bits */
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofDInfo); /* <= 8 bits */
}
}
return seq;
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
{
size_t const windowSize = dctx->fParams.windowSize;
/* No dictionary used. */
if (dctx->dictContentEndForFuzzing == NULL) return 0;
/* Dictionary is our prefix. */
if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
/* Dictionary is not our ext-dict. */
if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
/* Dictionary is not within our window size. */
if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
/* Dictionary is active. */
return 1;
}
MEM_STATIC void ZSTD_assertValidSequence(
ZSTD_DCtx const* dctx,
BYTE const* op, BYTE const* oend,
seq_t const seq,
BYTE const* prefixStart, BYTE const* virtualStart)
{
size_t const windowSize = dctx->fParams.windowSize;
size_t const sequenceSize = seq.litLength + seq.matchLength;
BYTE const* const oLitEnd = op + seq.litLength;
DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
assert(op <= oend);
assert((size_t)(oend - op) >= sequenceSize);
assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
/* Offset must be within the dictionary. */
assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
assert(seq.offset <= windowSize + dictSize);
} else {
/* Offset must be within our window. */
assert(seq.offset <= windowSize);
}
}
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
FORCE_INLINE_TEMPLATE size_t
DONT_VECTORIZE
ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* const oend = ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
DEBUGLOG(5, "ZSTD_decompressSequences_body");
(void)frame;
/* Regen sequences */
if (nbSeq) {
seqState_t seqState;
size_t error = 0;
dctx->fseEntropy = 1;
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
RETURN_ERROR_IF(
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
corruption_detected, "");
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
assert(dst != NULL);
ZSTD_STATIC_ASSERT(
BIT_DStream_unfinished < BIT_DStream_completed &&
BIT_DStream_endOfBuffer < BIT_DStream_completed &&
BIT_DStream_completed < BIT_DStream_overflow);
#if defined(__GNUC__) && defined(__x86_64__)
/* Align the decompression loop to 32 + 16 bytes.
*
* zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
* speed swings based on the alignment of the decompression loop. This
* performance swing is caused by parts of the decompression loop falling
* out of the DSB. The entire decompression loop should fit in the DSB,
* when it can't we get much worse performance. You can measure if you've
* hit the good case or the bad case with this perf command for some
* compressed file test.zst:
*
* perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
* -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
*
* If you see most cycles served out of the MITE you've hit the bad case.
* If you see most cycles served out of the DSB you've hit the good case.
* If it is pretty even then you may be in an okay case.
*
* I've been able to reproduce this issue on the following CPUs:
* - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
* Use Instruments->Counters to get DSB/MITE cycles.
* I never got performance swings, but I was able to
* go from the good case of mostly DSB to half of the
* cycles served from MITE.
* - Coffeelake: Intel i9-9900k
*
* I haven't been able to reproduce the instability or DSB misses on any
* of the following CPUS:
* - Haswell
* - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
* - Skylake
*
* If you are seeing performance stability this script can help test.
* It tests on 4 commits in zstd where I saw performance change.
*
* https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
*/
__asm__(".p2align 5");
__asm__("nop");
__asm__(".p2align 4");
#endif
for ( ; ; ) {
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_noPrefetch);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
BIT_reloadDStream(&(seqState.DStream));
/* gcc and clang both don't like early returns in this loop.
* gcc doesn't like early breaks either.
* Instead save an error and report it at the end.
* When there is an error, don't increment op, so we don't
* overwrite.
*/
if (UNLIKELY(ZSTD_isError(oneSeqSize))) error = oneSeqSize;
else op += oneSeqSize;
if (UNLIKELY(!--nbSeq)) break;
}
/* check if reached exact end */
DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
if (ZSTD_isError(error)) return error;
RETURN_ERROR_IF(nbSeq, corruption_detected, "");
RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
if (op != NULL) {
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static size_t
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
FORCE_INLINE_TEMPLATE size_t
ZSTD_decompressSequencesLong_body(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* const oend = ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
(void)frame;
/* Regen sequences */
if (nbSeq) {
#define STORED_SEQS 4
#define STORED_SEQS_MASK (STORED_SEQS-1)
#define ADVANCED_SEQS 4
seq_t sequences[STORED_SEQS];
int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
seqState_t seqState;
int seqNb;
dctx->fseEntropy = 1;
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
seqState.prefixStart = prefixStart;
seqState.pos = (size_t)(op-prefixStart);
seqState.dictEnd = dictEnd;
assert(dst != NULL);
assert(iend >= ip);
RETURN_ERROR_IF(
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
corruption_detected, "");
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
/* prepare in advance */
for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
sequences[seqNb] = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
}
RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");
/* decode and decompress */
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
#endif
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
sequences[seqNb & STORED_SEQS_MASK] = sequence;
op += oneSeqSize;
}
RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");
/* finish queue */
seqNb -= seqAdvance;
for ( ; seqNb<nbSeq ; seqNb++) {
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
#endif
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
if (op != NULL) {
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
}
return op-ostart;
}
static size_t
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
#if DYNAMIC_BMI2
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static TARGET_ATTRIBUTE("bmi2") size_t
DONT_VECTORIZE
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
#endif /* DYNAMIC_BMI2 */
typedef size_t (*ZSTD_decompressSequences_t)(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame);
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static size_t
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
DEBUGLOG(5, "ZSTD_decompressSequences");
#if DYNAMIC_BMI2
if (dctx->bmi2) {
return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif
return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
/* ZSTD_decompressSequencesLong() :
* decompression function triggered when a minimum share of offsets is considered "long",
* aka out of cache.
* note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
* This function will try to mitigate main memory latency through the use of prefetching */
static size_t
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset,
const int frame)
{
DEBUGLOG(5, "ZSTD_decompressSequencesLong");
#if DYNAMIC_BMI2
if (dctx->bmi2) {
return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif
return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
/* ZSTD_getLongOffsetsShare() :
* condition : offTable must be valid
* @return : "share" of long offsets (arbitrarily defined as > (1<<23))
* compared to maximum possible of (1<<OffFSELog) */
static unsigned
ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
{
const void* ptr = offTable;
U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
const ZSTD_seqSymbol* table = offTable + 1;
U32 const max = 1 << tableLog;
U32 u, total = 0;
DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
assert(max <= (1 << OffFSELog)); /* max not too large */
for (u=0; u<max; u++) {
if (table[u].nbAdditionalBits > 22) total += 1;
}
assert(tableLog <= OffFSELog);
total <<= (OffFSELog - tableLog); /* scale to OffFSELog */
return total;
}
#endif
size_t
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const int frame)
{ /* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
/* isLongOffset must be true if there are long offsets.
* Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
* We don't expect that to be the case in 64-bit mode.
* In block mode, window size is not known, so we have to be conservative.
* (note: but it could be evaluated from current-lowLimit)
*/
ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
/* Decode literals section */
{ size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
}
/* Build Decoding Tables */
{
/* These macros control at build-time which decompressor implementation
* we use. If neither is defined, we do some inspection and dispatch at
* runtime.
*/
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
int usePrefetchDecoder = dctx->ddictIsCold;
#endif
int nbSeq;
size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
if (ZSTD_isError(seqHSize)) return seqHSize;
ip += seqHSize;
srcSize -= seqHSize;
RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
if ( !usePrefetchDecoder
&& (!frame || (dctx->fParams.windowSize > (1<<24)))
&& (nbSeq>ADVANCED_SEQS) ) { /* could probably use a larger nbSeq limit */
U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
usePrefetchDecoder = (shareLongOffsets >= minShare);
}
#endif
dctx->ddictIsCold = 0;
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
if (usePrefetchDecoder)
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
/* else */
return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif
}
}
void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
{
if (dst != dctx->previousDstEnd) { /* not contiguous */
dctx->dictEnd = dctx->previousDstEnd;
dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
dctx->prefixStart = dst;
dctx->previousDstEnd = dst;
}
}
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t dSize;
ZSTD_checkContinuity(dctx, dst);
dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
dctx->previousDstEnd = (char*)dst + dSize;
return dSize;
}