virtualx-engine/doc/classes/Basis.xml
Rémi Verschelde 18e9133d5a
Merge pull request #86364 from aaronfranke/basis-divide
Add and expose Basis/Transform2D/3D division by float operator
2024-01-04 14:26:16 +01:00

354 lines
15 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Basis" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
A 3×3 matrix for representing 3D rotation and scale.
</brief_description>
<description>
A 3×3 matrix used for representing 3D rotation and scale. Usually used as an orthogonal basis for a [Transform3D].
Contains 3 vector fields X, Y and Z as its columns, which are typically interpreted as the local basis vectors of a transformation. For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S).
Basis can also be accessed as an array of 3D vectors. These vectors are usually orthogonal to each other, but are not necessarily normalized (due to scaling).
For a general introduction, see the [url=$DOCS_URL/tutorials/math/matrices_and_transforms.html]Matrices and transforms[/url] tutorial.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
<link title="3D Voxel Demo">https://godotengine.org/asset-library/asset/676</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<constructors>
<constructor name="Basis">
<return type="Basis" />
<description>
Constructs a default-initialized [Basis] set to [constant IDENTITY].
</description>
</constructor>
<constructor name="Basis">
<return type="Basis" />
<param index="0" name="from" type="Basis" />
<description>
Constructs a [Basis] as a copy of the given [Basis].
</description>
</constructor>
<constructor name="Basis">
<return type="Basis" />
<param index="0" name="axis" type="Vector3" />
<param index="1" name="angle" type="float" />
<description>
Constructs a pure rotation basis matrix, rotated around the given [param axis] by [param angle] (in radians). The axis must be a normalized vector.
</description>
</constructor>
<constructor name="Basis">
<return type="Basis" />
<param index="0" name="from" type="Quaternion" />
<description>
Constructs a pure rotation basis matrix from the given quaternion.
</description>
</constructor>
<constructor name="Basis">
<return type="Basis" />
<param index="0" name="x_axis" type="Vector3" />
<param index="1" name="y_axis" type="Vector3" />
<param index="2" name="z_axis" type="Vector3" />
<description>
Constructs a basis matrix from 3 axis vectors (matrix columns).
</description>
</constructor>
</constructors>
<methods>
<method name="determinant" qualifiers="const">
<return type="float" />
<description>
Returns the determinant of the basis matrix. If the basis is uniformly scaled, its determinant is the square of the scale.
A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid.
</description>
</method>
<method name="from_euler" qualifiers="static">
<return type="Basis" />
<param index="0" name="euler" type="Vector3" />
<param index="1" name="order" type="int" default="2" />
<description>
Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the [enum EulerOrder] enum for possible values.
[codeblock]
# Creates a Basis whose z axis points down.
var my_basis = Basis.from_euler(Vector3(TAU / 4, 0, 0))
print(my_basis.z) # Prints (0, -1, 0).
[/codeblock]
</description>
</method>
<method name="from_scale" qualifiers="static">
<return type="Basis" />
<param index="0" name="scale" type="Vector3" />
<description>
Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero.
[codeblock]
var my_basis = Basis.from_scale(Vector3(2, 4, 8))
print(my_basis.x) # Prints (2, 0, 0).
print(my_basis.y) # Prints (0, 4, 0).
print(my_basis.z) # Prints (0, 0, 8).
[/codeblock]
</description>
</method>
<method name="get_euler" qualifiers="const">
<return type="Vector3" />
<param index="0" name="order" type="int" default="2" />
<description>
Returns the basis's rotation in the form of Euler angles. The Euler order depends on the [param order] parameter, by default it uses the YXZ convention: when decomposing, first Z, then X, and Y last. The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
Consider using the [method get_rotation_quaternion] method instead, which returns a [Quaternion] quaternion instead of Euler angles.
</description>
</method>
<method name="get_rotation_quaternion" qualifiers="const">
<return type="Quaternion" />
<description>
Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles.
</description>
</method>
<method name="get_scale" qualifiers="const">
<return type="Vector3" />
<description>
Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
[codeblock]
var my_basis = Basis(
Vector3(2, 0, 0),
Vector3(0, 4, 0),
Vector3(0, 0, 8)
)
# Rotating the Basis in any way preserves its scale.
my_basis = my_basis.rotated(Vector3.UP, TAU / 2)
my_basis = my_basis.rotated(Vector3.RIGHT, TAU / 4)
print(my_basis.get_scale()) # Prints (2, 4, 8).
[/codeblock]
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Basis" />
<description>
Returns the inverse of the matrix.
</description>
</method>
<method name="is_conformal" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the basis is conformal, meaning it preserves angles and distance ratios, and may only be composed of rotation and uniform scale. Returns [code]false[/code] if the basis has non-uniform scale or shear/skew. This can be used to validate if the basis is non-distorted, which is important for physics and other use cases.
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="b" type="Basis" />
<description>
Returns [code]true[/code] if this basis and [param b] are approximately equal, by calling [method @GlobalScope.is_equal_approx] on all vector components.
</description>
</method>
<method name="is_finite" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this basis is finite, by calling [method @GlobalScope.is_finite] on all vector components.
</description>
</method>
<method name="looking_at" qualifiers="static">
<return type="Basis" />
<param index="0" name="target" type="Vector3" />
<param index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" />
<param index="2" name="use_model_front" type="bool" default="false" />
<description>
Creates a Basis with a rotation such that the forward axis (-Z) points towards the [param target] position.
The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [param target] and [param up] vectors cannot be zero, and cannot be parallel to each other.
If [param use_model_front] is [code]true[/code], the +Z axis (asset front) is treated as forward (implies +X is left) and points toward the [param target] position. By default, the -Z axis (camera forward) is treated as forward (implies +X is right).
</description>
</method>
<method name="orthonormalized" qualifiers="const">
<return type="Basis" />
<description>
Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
[codeblock]
# Rotate this Node3D every frame.
func _process(delta):
basis = basis.rotated(Vector3.UP, TAU * delta)
basis = basis.rotated(Vector3.RIGHT, TAU * delta)
basis = basis.orthonormalized()
[/codeblock]
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Basis" />
<param index="0" name="axis" type="Vector3" />
<param index="1" name="angle" type="float" />
<description>
Introduce an additional rotation around the given axis by [param angle] (in radians). The axis must be a normalized vector.
[codeblock]
var my_basis = Basis.IDENTITY
var angle = TAU / 2
my_basis = my_basis.rotated(Vector3.UP, angle) # Rotate around the up axis (yaw)
my_basis = my_basis.rotated(Vector3.RIGHT, angle) # Rotate around the right axis (pitch)
my_basis = my_basis.rotated(Vector3.BACK, angle) # Rotate around the back axis (roll)
[/codeblock]
</description>
</method>
<method name="scaled" qualifiers="const">
<return type="Basis" />
<param index="0" name="scale" type="Vector3" />
<description>
Introduce an additional scaling specified by the given 3D scaling factor.
[codeblock]
var my_basis = Basis(
Vector3(1, 1, 1),
Vector3(2, 2, 2),
Vector3(3, 3, 3)
)
my_basis = my_basis.scaled(Vector3(0, 2, -2))
print(my_basis.x) # Prints (0, 2, -2).
print(my_basis.y) # Prints (0, 4, -4).
print(my_basis.z) # Prints (0, 6, -6).
[/codeblock]
</description>
</method>
<method name="slerp" qualifiers="const">
<return type="Basis" />
<param index="0" name="to" type="Basis" />
<param index="1" name="weight" type="float" />
<description>
Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
</description>
</method>
<method name="tdotx" qualifiers="const">
<return type="float" />
<param index="0" name="with" type="Vector3" />
<description>
Transposed dot product with the X axis of the matrix.
</description>
</method>
<method name="tdoty" qualifiers="const">
<return type="float" />
<param index="0" name="with" type="Vector3" />
<description>
Transposed dot product with the Y axis of the matrix.
</description>
</method>
<method name="tdotz" qualifiers="const">
<return type="float" />
<param index="0" name="with" type="Vector3" />
<description>
Transposed dot product with the Z axis of the matrix.
</description>
</method>
<method name="transposed" qualifiers="const">
<return type="Basis" />
<description>
Returns the transposed version of the matrix.
[codeblock]
var my_basis = Basis(
Vector3(1, 2, 3),
Vector3(4, 5, 6),
Vector3(7, 8, 9)
)
my_basis = my_basis.transposed()
print(my_basis.x) # Prints (1, 4, 7).
print(my_basis.y) # Prints (2, 5, 8).
print(my_basis.z) # Prints (3, 6, 9).
[/codeblock]
</description>
</method>
</methods>
<members>
<member name="x" type="Vector3" setter="" getter="" default="Vector3(1, 0, 0)">
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name="y" type="Vector3" setter="" getter="" default="Vector3(0, 1, 0)">
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
<member name="z" type="Vector3" setter="" getter="" default="Vector3(0, 0, 1)">
The basis matrix's Z vector (column 2). Equivalent to array index [code]2[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)">
The identity basis, with no rotation or scaling applied.
This is identical to creating [constructor Basis] without any parameters. This constant can be used to make your code clearer, and for consistency with C#.
</constant>
<constant name="FLIP_X" value="Basis(-1, 0, 0, 0, 1, 0, 0, 0, 1)">
The basis that will flip something along the X axis when used in a transformation.
</constant>
<constant name="FLIP_Y" value="Basis(1, 0, 0, 0, -1, 0, 0, 0, 1)">
The basis that will flip something along the Y axis when used in a transformation.
</constant>
<constant name="FLIP_Z" value="Basis(1, 0, 0, 0, 1, 0, 0, 0, -1)">
The basis that will flip something along the Z axis when used in a transformation.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Basis" />
<description>
Returns [code]true[/code] if the [Basis] matrices are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="Basis" />
<param index="0" name="right" type="Basis" />
<description>
Composes these two basis matrices by multiplying them together. This has the effect of transforming the second basis (the child) by the first basis (the parent).
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Vector3" />
<description>
Transforms (multiplies) the [Vector3] by the given [Basis] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Basis" />
<param index="0" name="right" type="float" />
<description>
This operator multiplies all components of the [Basis], which scales it uniformly.
</description>
</operator>
<operator name="operator *">
<return type="Basis" />
<param index="0" name="right" type="int" />
<description>
This operator multiplies all components of the [Basis], which scales it uniformly.
</description>
</operator>
<operator name="operator /">
<return type="Basis" />
<param index="0" name="right" type="float" />
<description>
This operator divides all components of the [Basis], which inversely scales it uniformly.
</description>
</operator>
<operator name="operator /">
<return type="Basis" />
<param index="0" name="right" type="int" />
<description>
This operator divides all components of the [Basis], which inversely scales it uniformly.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Basis" />
<description>
Returns [code]true[/code] if the [Basis] matrices are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator []">
<return type="Vector3" />
<param index="0" name="index" type="int" />
<description>
Access basis components using their index. [code]b[0][/code] is equivalent to [code]b.x[/code], [code]b[1][/code] is equivalent to [code]b.y[/code], and [code]b[2][/code] is equivalent to [code]b.z[/code].
</description>
</operator>
</operators>
</class>