virtualx-engine/core/object/message_queue.cpp
2023-06-23 13:27:34 +02:00

576 lines
17 KiB
C++

/**************************************************************************/
/* message_queue.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "message_queue.h"
#include "core/config/project_settings.h"
#include "core/core_string_names.h"
#include "core/object/class_db.h"
#include "core/object/script_language.h"
#ifdef DEV_ENABLED
// Includes sanity checks to ensure that a queue set as a thread singleton override
// is only ever called from the thread it was set for.
#define LOCK_MUTEX \
if (this != MessageQueue::thread_singleton) { \
DEV_ASSERT(!this->is_current_thread_override); \
mutex.lock(); \
} else { \
DEV_ASSERT(this->is_current_thread_override); \
}
#else
#define LOCK_MUTEX \
if (this != MessageQueue::thread_singleton) { \
mutex.lock(); \
}
#endif
#define UNLOCK_MUTEX \
if (this != MessageQueue::thread_singleton) { \
mutex.unlock(); \
}
void CallQueue::_add_page() {
if (pages_used == page_bytes.size()) {
pages.push_back(allocator->alloc());
page_bytes.push_back(0);
}
page_bytes[pages_used] = 0;
pages_used++;
}
Error CallQueue::push_callp(ObjectID p_id, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
return push_callablep(Callable(p_id, p_method), p_args, p_argcount, p_show_error);
}
Error CallQueue::push_callp(Object *p_object, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
return push_callp(p_object->get_instance_id(), p_method, p_args, p_argcount, p_show_error);
}
Error CallQueue::push_notification(Object *p_object, int p_notification) {
return push_notification(p_object->get_instance_id(), p_notification);
}
Error CallQueue::push_set(Object *p_object, const StringName &p_prop, const Variant &p_value) {
return push_set(p_object->get_instance_id(), p_prop, p_value);
}
Error CallQueue::push_callablep(const Callable &p_callable, const Variant **p_args, int p_argcount, bool p_show_error) {
uint32_t room_needed = sizeof(Message) + sizeof(Variant) * p_argcount;
ERR_FAIL_COND_V_MSG(room_needed > uint32_t(PAGE_SIZE_BYTES), ERR_INVALID_PARAMETER, "Message is too large to fit on a page (" + itos(PAGE_SIZE_BYTES) + " bytes), consider passing less arguments.");
LOCK_MUTEX;
_ensure_first_page();
if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (pages_used == max_pages) {
ERR_PRINT("Failed method: " + p_callable + ". Message queue out of memory. " + error_text);
statistics();
UNLOCK_MUTEX;
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]];
Message *msg = memnew_placement(buffer_end, Message);
msg->args = p_argcount;
msg->callable = p_callable;
msg->type = TYPE_CALL;
if (p_show_error) {
msg->type |= FLAG_SHOW_ERROR;
}
// Support callables of static methods.
if (p_callable.get_object_id().is_null() && p_callable.is_valid()) {
msg->type |= FLAG_NULL_IS_OK;
}
buffer_end += sizeof(Message);
for (int i = 0; i < p_argcount; i++) {
Variant *v = memnew_placement(buffer_end, Variant);
buffer_end += sizeof(Variant);
*v = *p_args[i];
}
page_bytes[pages_used - 1] += room_needed;
UNLOCK_MUTEX;
return OK;
}
Error CallQueue::push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value) {
LOCK_MUTEX;
uint32_t room_needed = sizeof(Message) + sizeof(Variant);
_ensure_first_page();
if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (pages_used == max_pages) {
String type;
if (ObjectDB::get_instance(p_id)) {
type = ObjectDB::get_instance(p_id)->get_class();
}
ERR_PRINT("Failed set: " + type + ":" + p_prop + " target ID: " + itos(p_id) + ". Message queue out of memory. " + error_text);
statistics();
UNLOCK_MUTEX;
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]];
Message *msg = memnew_placement(buffer_end, Message);
msg->args = 1;
msg->callable = Callable(p_id, p_prop);
msg->type = TYPE_SET;
buffer_end += sizeof(Message);
Variant *v = memnew_placement(buffer_end, Variant);
*v = p_value;
page_bytes[pages_used - 1] += room_needed;
UNLOCK_MUTEX;
return OK;
}
Error CallQueue::push_notification(ObjectID p_id, int p_notification) {
ERR_FAIL_COND_V(p_notification < 0, ERR_INVALID_PARAMETER);
LOCK_MUTEX;
uint32_t room_needed = sizeof(Message);
_ensure_first_page();
if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (pages_used == max_pages) {
ERR_PRINT("Failed notification: " + itos(p_notification) + " target ID: " + itos(p_id) + ". Message queue out of memory. " + error_text);
statistics();
UNLOCK_MUTEX;
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]];
Message *msg = memnew_placement(buffer_end, Message);
msg->type = TYPE_NOTIFICATION;
msg->callable = Callable(p_id, CoreStringNames::get_singleton()->notification); //name is meaningless but callable needs it
//msg->target;
msg->notification = p_notification;
page_bytes[pages_used - 1] += room_needed;
UNLOCK_MUTEX;
return OK;
}
void CallQueue::_call_function(const Callable &p_callable, const Variant *p_args, int p_argcount, bool p_show_error) {
const Variant **argptrs = nullptr;
if (p_argcount) {
argptrs = (const Variant **)alloca(sizeof(Variant *) * p_argcount);
for (int i = 0; i < p_argcount; i++) {
argptrs[i] = &p_args[i];
}
}
Callable::CallError ce;
Variant ret;
p_callable.callp(argptrs, p_argcount, ret, ce);
if (p_show_error && ce.error != Callable::CallError::CALL_OK) {
ERR_PRINT("Error calling deferred method: " + Variant::get_callable_error_text(p_callable, argptrs, p_argcount, ce) + ".");
}
}
Error CallQueue::_transfer_messages_to_main_queue() {
if (pages.size() == 0) {
return OK;
}
CallQueue *mq = MessageQueue::main_singleton;
DEV_ASSERT(!mq->allocator_is_custom && !allocator_is_custom); // Transferring pages is only safe if using the same alloator parameters.
mq->mutex.lock();
// Here we're transferring the data from this queue to the main one.
// However, it's very unlikely big amounts of messages will be queued here,
// so PagedArray/Pool would be overkill. Also, in most cases the data will fit
// an already existing page of the main queue.
// Let's see if our first (likely only) page fits the current target queue page.
uint32_t src_page = 0;
{
if (mq->pages_used) {
uint32_t dst_page = mq->pages_used - 1;
uint32_t dst_offset = mq->page_bytes[dst_page];
if (dst_offset + page_bytes[0] < uint32_t(PAGE_SIZE_BYTES)) {
memcpy(mq->pages[dst_page]->data + dst_offset, pages[0]->data, page_bytes[0]);
mq->page_bytes[dst_page] += page_bytes[0];
src_page++;
}
}
}
// Any other possibly existing source page needs to be added.
if (mq->pages_used + (pages_used - src_page) > mq->max_pages) {
ERR_PRINT("Failed appending thread queue. Message queue out of memory. " + mq->error_text);
mq->statistics();
mq->mutex.unlock();
return ERR_OUT_OF_MEMORY;
}
for (; src_page < pages_used; src_page++) {
mq->_add_page();
memcpy(mq->pages[mq->pages_used - 1]->data, pages[src_page]->data, page_bytes[src_page]);
mq->page_bytes[mq->pages_used - 1] = page_bytes[src_page];
}
mq->mutex.unlock();
page_bytes[0] = 0;
pages_used = 1;
return OK;
}
Error CallQueue::flush() {
// Thread overrides are not meant to be flushed, but appended to the main one.
if (unlikely(this == MessageQueue::thread_singleton)) {
return _transfer_messages_to_main_queue();
}
LOCK_MUTEX;
if (pages.size() == 0) {
// Never allocated
UNLOCK_MUTEX;
return OK; // Do nothing.
}
if (flushing) {
UNLOCK_MUTEX;
return ERR_BUSY;
}
flushing = true;
uint32_t i = 0;
uint32_t offset = 0;
while (i < pages_used && offset < page_bytes[i]) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
//pre-advance so this function is reentrant
offset += advance;
Object *target = message->callable.get_object();
UNLOCK_MUTEX;
switch (message->type & FLAG_MASK) {
case TYPE_CALL: {
if (target || (message->type & FLAG_NULL_IS_OK)) {
Variant *args = (Variant *)(message + 1);
_call_function(message->callable, args, message->args, message->type & FLAG_SHOW_ERROR);
}
} break;
case TYPE_NOTIFICATION: {
if (target) {
target->notification(message->notification);
}
} break;
case TYPE_SET: {
if (target) {
Variant *arg = (Variant *)(message + 1);
target->set(message->callable.get_method(), *arg);
}
} break;
}
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
LOCK_MUTEX;
if (offset == page_bytes[i]) {
i++;
offset = 0;
}
}
page_bytes[0] = 0;
pages_used = 1;
flushing = false;
UNLOCK_MUTEX;
return OK;
}
void CallQueue::clear() {
LOCK_MUTEX;
if (pages.size() == 0) {
UNLOCK_MUTEX;
return; // Nothing to clear.
}
for (uint32_t i = 0; i < pages_used; i++) {
uint32_t offset = 0;
while (offset < page_bytes[i]) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
offset += advance;
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
}
}
pages_used = 1;
page_bytes[0] = 0;
UNLOCK_MUTEX;
}
void CallQueue::statistics() {
LOCK_MUTEX;
HashMap<StringName, int> set_count;
HashMap<int, int> notify_count;
HashMap<Callable, int> call_count;
int null_count = 0;
for (uint32_t i = 0; i < pages_used; i++) {
uint32_t offset = 0;
while (offset < page_bytes[i]) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
Object *target = message->callable.get_object();
bool null_target = true;
switch (message->type & FLAG_MASK) {
case TYPE_CALL: {
if (target || (message->type & FLAG_NULL_IS_OK)) {
if (!call_count.has(message->callable)) {
call_count[message->callable] = 0;
}
call_count[message->callable]++;
null_target = false;
}
} break;
case TYPE_NOTIFICATION: {
if (target) {
if (!notify_count.has(message->notification)) {
notify_count[message->notification] = 0;
}
notify_count[message->notification]++;
null_target = false;
}
} break;
case TYPE_SET: {
if (target) {
StringName t = message->callable.get_method();
if (!set_count.has(t)) {
set_count[t] = 0;
}
set_count[t]++;
null_target = false;
}
} break;
}
if (null_target) {
//object was deleted
print_line("Object was deleted while awaiting a callback");
null_count++;
}
offset += advance;
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
}
}
print_line("TOTAL PAGES: " + itos(pages_used) + " (" + itos(pages_used * PAGE_SIZE_BYTES) + " bytes).");
print_line("NULL count: " + itos(null_count));
for (const KeyValue<StringName, int> &E : set_count) {
print_line("SET " + E.key + ": " + itos(E.value));
}
for (const KeyValue<Callable, int> &E : call_count) {
print_line("CALL " + E.key + ": " + itos(E.value));
}
for (const KeyValue<int, int> &E : notify_count) {
print_line("NOTIFY " + itos(E.key) + ": " + itos(E.value));
}
UNLOCK_MUTEX;
}
bool CallQueue::is_flushing() const {
return flushing;
}
bool CallQueue::has_messages() const {
if (pages_used == 0) {
return false;
}
if (pages_used == 1 && page_bytes[0] == 0) {
return false;
}
return true;
}
int CallQueue::get_max_buffer_usage() const {
return pages.size() * PAGE_SIZE_BYTES;
}
CallQueue::CallQueue(Allocator *p_custom_allocator, uint32_t p_max_pages, const String &p_error_text) {
if (p_custom_allocator) {
allocator = p_custom_allocator;
allocator_is_custom = true;
} else {
allocator = memnew(Allocator(16)); // 16 elements per allocator page, 64kb per allocator page. Anything small will do, though.
allocator_is_custom = false;
}
max_pages = p_max_pages;
error_text = p_error_text;
}
CallQueue::~CallQueue() {
clear();
// Let go of pages.
for (uint32_t i = 0; i < pages.size(); i++) {
allocator->free(pages[i]);
}
if (!allocator_is_custom) {
memdelete(allocator);
}
// This is done here to avoid a circular dependency between the sanity checks and the thread singleton pointer.
if (this == MessageQueue::thread_singleton) {
MessageQueue::thread_singleton = nullptr;
}
}
//////////////////////
CallQueue *MessageQueue::main_singleton = nullptr;
thread_local CallQueue *MessageQueue::thread_singleton = nullptr;
void MessageQueue::set_thread_singleton_override(CallQueue *p_thread_singleton) {
DEV_ASSERT(p_thread_singleton); // To unset the thread singleton, don't call this with nullptr, but just memfree() it.
#ifdef DEV_ENABLED
if (thread_singleton) {
thread_singleton->is_current_thread_override = false;
}
#endif
thread_singleton = p_thread_singleton;
#ifdef DEV_ENABLED
if (thread_singleton) {
thread_singleton->is_current_thread_override = true;
}
#endif
}
MessageQueue::MessageQueue() :
CallQueue(nullptr,
int(GLOBAL_DEF_RST(PropertyInfo(Variant::INT, "memory/limits/message_queue/max_size_mb", PROPERTY_HINT_RANGE, "1,512,1,or_greater"), 32)) * 1024 * 1024 / PAGE_SIZE_BYTES,
"Message queue out of memory. Try increasing 'memory/limits/message_queue/max_size_mb' in project settings.") {
ERR_FAIL_COND_MSG(main_singleton != nullptr, "A MessageQueue singleton already exists.");
main_singleton = this;
}
MessageQueue::~MessageQueue() {
main_singleton = nullptr;
}