0dbedd18fc
-=-=-=-=-=-=-=-=-=-=-=-=-=- *YOUR SOURCE MIGHT NOT WORK* For mor information on fix: https://github.com/okamstudio/godot/wiki/devel_scene_tree Other stuff: -Shower of bullets demo -Fixes all around
1220 lines
33 KiB
C++
1220 lines
33 KiB
C++
/*************************************************************************/
|
|
/* tween.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "tween.h"
|
|
#include "method_bind_ext.inc"
|
|
|
|
bool Tween::_set(const StringName& p_name, const Variant& p_value) {
|
|
|
|
String name=p_name;
|
|
|
|
if (name=="playback/speed" || name=="speed") { //bw compatibility
|
|
set_speed(p_value);
|
|
|
|
} else if (name=="playback/active") {
|
|
set_active(p_value);
|
|
|
|
} else if (name=="playback/repeat") {
|
|
set_repeat(p_value);
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::_get(const StringName& p_name,Variant &r_ret) const {
|
|
|
|
String name=p_name;
|
|
|
|
if (name=="playback/speed") { //bw compatibility
|
|
|
|
r_ret=speed_scale;
|
|
} else if (name=="playback/active") {
|
|
|
|
r_ret=is_active();
|
|
} else if(name=="playback/repeat") {
|
|
|
|
r_ret=is_repeat();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Tween::_get_property_list(List<PropertyInfo> *p_list) const {
|
|
|
|
p_list->push_back( PropertyInfo( Variant::BOOL, "playback/active", PROPERTY_HINT_NONE,"" ) );
|
|
p_list->push_back( PropertyInfo( Variant::BOOL, "playback/repeat", PROPERTY_HINT_NONE,"" ) );
|
|
p_list->push_back( PropertyInfo( Variant::REAL, "playback/speed", PROPERTY_HINT_RANGE, "-64,64,0.01") );
|
|
}
|
|
|
|
void Tween::_notification(int p_what) {
|
|
|
|
switch(p_what) {
|
|
|
|
case NOTIFICATION_ENTER_TREE: {
|
|
|
|
if (!processing) {
|
|
//make sure that a previous process state was not saved
|
|
//only process if "processing" is set
|
|
set_fixed_process(false);
|
|
set_process(false);
|
|
}
|
|
} break;
|
|
case NOTIFICATION_READY: {
|
|
|
|
} break;
|
|
case NOTIFICATION_PROCESS: {
|
|
if (tween_process_mode==TWEEN_PROCESS_FIXED)
|
|
break;
|
|
|
|
if (processing)
|
|
_tween_process( get_process_delta_time() );
|
|
} break;
|
|
case NOTIFICATION_FIXED_PROCESS: {
|
|
|
|
if (tween_process_mode==TWEEN_PROCESS_IDLE)
|
|
break;
|
|
|
|
if (processing)
|
|
_tween_process( get_fixed_process_delta_time() );
|
|
} break;
|
|
case NOTIFICATION_EXIT_TREE: {
|
|
|
|
stop_all();
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void Tween::_bind_methods() {
|
|
|
|
ObjectTypeDB::bind_method(_MD("is_active"),&Tween::is_active );
|
|
ObjectTypeDB::bind_method(_MD("set_active","active"),&Tween::set_active );
|
|
|
|
ObjectTypeDB::bind_method(_MD("is_repeat"),&Tween::is_repeat );
|
|
ObjectTypeDB::bind_method(_MD("set_repeat","repeat"),&Tween::set_repeat );
|
|
|
|
ObjectTypeDB::bind_method(_MD("set_speed","speed"),&Tween::set_speed);
|
|
ObjectTypeDB::bind_method(_MD("get_speed"),&Tween::get_speed);
|
|
|
|
ObjectTypeDB::bind_method(_MD("set_tween_process_mode","mode"),&Tween::set_tween_process_mode);
|
|
ObjectTypeDB::bind_method(_MD("get_tween_process_mode"),&Tween::get_tween_process_mode);
|
|
|
|
ObjectTypeDB::bind_method(_MD("start"),&Tween::start );
|
|
ObjectTypeDB::bind_method(_MD("reset","node","key"),&Tween::reset );
|
|
ObjectTypeDB::bind_method(_MD("reset_all"),&Tween::reset_all );
|
|
ObjectTypeDB::bind_method(_MD("stop","node","key"),&Tween::stop );
|
|
ObjectTypeDB::bind_method(_MD("stop_all"),&Tween::stop_all );
|
|
ObjectTypeDB::bind_method(_MD("resume","node","key"),&Tween::resume );
|
|
ObjectTypeDB::bind_method(_MD("resume_all"),&Tween::resume_all );
|
|
ObjectTypeDB::bind_method(_MD("remove","node","key"),&Tween::remove );
|
|
ObjectTypeDB::bind_method(_MD("remove_all"),&Tween::remove_all );
|
|
ObjectTypeDB::bind_method(_MD("seek","time"),&Tween::seek );
|
|
ObjectTypeDB::bind_method(_MD("tell"),&Tween::tell );
|
|
ObjectTypeDB::bind_method(_MD("get_runtime"),&Tween::get_runtime );
|
|
|
|
ObjectTypeDB::bind_method(_MD("interpolate_property","node","property","initial_val","final_val","times_in_sec","trans_type","ease_type","delay"),&Tween::interpolate_property, DEFVAL(0) );
|
|
ObjectTypeDB::bind_method(_MD("interpolate_method","node","method","initial_val","final_val","times_in_sec","trans_type","ease_type","delay"),&Tween::interpolate_method, DEFVAL(0) );
|
|
ObjectTypeDB::bind_method(_MD("interpolate_callback","node","callback","times_in_sec","args"),&Tween::interpolate_callback, DEFVAL(Variant()) );
|
|
ObjectTypeDB::bind_method(_MD("follow_property","node","property","initial_val","target","target_property","times_in_sec","trans_type","ease_type","delay"),&Tween::follow_property, DEFVAL(0) );
|
|
ObjectTypeDB::bind_method(_MD("follow_method","node","method","initial_val","target","target_method","times_in_sec","trans_type","ease_type","delay"),&Tween::follow_method, DEFVAL(0) );
|
|
ObjectTypeDB::bind_method(_MD("targeting_property","node","property","initial","initial_val","final_val","times_in_sec","trans_type","ease_type","delay"),&Tween::targeting_property, DEFVAL(0) );
|
|
ObjectTypeDB::bind_method(_MD("targeting_method","node","method","initial","initial_method","final_val","times_in_sec","trans_type","ease_type","delay"),&Tween::targeting_method, DEFVAL(0) );
|
|
|
|
ADD_SIGNAL( MethodInfo("tween_start", PropertyInfo( Variant::OBJECT,"node"), PropertyInfo( Variant::STRING,"key")) );
|
|
ADD_SIGNAL( MethodInfo("tween_step", PropertyInfo( Variant::OBJECT,"node"), PropertyInfo( Variant::STRING,"key"), PropertyInfo( Variant::REAL,"elapsed"), PropertyInfo( Variant::OBJECT,"value")) );
|
|
ADD_SIGNAL( MethodInfo("tween_complete", PropertyInfo( Variant::OBJECT,"node"), PropertyInfo( Variant::STRING,"key")) );
|
|
|
|
ADD_PROPERTY( PropertyInfo( Variant::INT, "playback/process_mode", PROPERTY_HINT_ENUM, "Fixed,Idle"), _SCS("set_tween_process_mode"), _SCS("get_tween_process_mode"));
|
|
//ADD_PROPERTY( PropertyInfo( Variant::BOOL, "activate"), _SCS("set_active"), _SCS("is_active"));
|
|
|
|
BIND_CONSTANT(TRANS_LINEAR);
|
|
BIND_CONSTANT(TRANS_SINE);
|
|
BIND_CONSTANT(TRANS_QUINT);
|
|
BIND_CONSTANT(TRANS_QUART);
|
|
BIND_CONSTANT(TRANS_QUAD);
|
|
BIND_CONSTANT(TRANS_EXPO);
|
|
BIND_CONSTANT(TRANS_ELASTIC);
|
|
BIND_CONSTANT(TRANS_CUBIC);
|
|
BIND_CONSTANT(TRANS_CIRC);
|
|
BIND_CONSTANT(TRANS_BOUNCE);
|
|
BIND_CONSTANT(TRANS_BACK);
|
|
|
|
BIND_CONSTANT(EASE_IN);
|
|
BIND_CONSTANT(EASE_OUT);
|
|
BIND_CONSTANT(EASE_IN_OUT);
|
|
BIND_CONSTANT(EASE_OUT_IN);
|
|
}
|
|
|
|
Variant& Tween::_get_initial_val(InterpolateData& p_data) {
|
|
|
|
switch(p_data.type) {
|
|
case INTER_PROPERTY:
|
|
case INTER_METHOD:
|
|
case FOLLOW_PROPERTY:
|
|
case FOLLOW_METHOD:
|
|
return p_data.initial_val;
|
|
|
|
case TARGETING_PROPERTY:
|
|
case TARGETING_METHOD: {
|
|
|
|
Node *node = get_node(p_data.target);
|
|
ERR_FAIL_COND_V(node == NULL,p_data.initial_val);
|
|
|
|
static Variant initial_val;
|
|
if(p_data.type == TARGETING_PROPERTY) {
|
|
|
|
bool valid = false;
|
|
initial_val = node->get(p_data.target_key, &valid);
|
|
ERR_FAIL_COND_V(!valid,p_data.initial_val);
|
|
} else {
|
|
|
|
Variant::CallError error;
|
|
initial_val = node->call(p_data.target_key, NULL, 0, error);
|
|
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK,p_data.initial_val);
|
|
}
|
|
return initial_val;
|
|
}
|
|
break;
|
|
}
|
|
return p_data.delta_val;
|
|
}
|
|
|
|
Variant& Tween::_get_delta_val(InterpolateData& p_data) {
|
|
|
|
switch(p_data.type) {
|
|
case INTER_PROPERTY:
|
|
case INTER_METHOD:
|
|
return p_data.delta_val;
|
|
|
|
case FOLLOW_PROPERTY:
|
|
case FOLLOW_METHOD: {
|
|
|
|
Node *target = get_node(p_data.target);
|
|
ERR_FAIL_COND_V(target == NULL,p_data.initial_val);
|
|
|
|
Variant final_val;
|
|
|
|
if(p_data.type == FOLLOW_PROPERTY) {
|
|
|
|
bool valid = false;
|
|
final_val = target->get(p_data.target_key, &valid);
|
|
ERR_FAIL_COND_V(!valid,p_data.initial_val);
|
|
} else {
|
|
|
|
Variant::CallError error;
|
|
final_val = target->call(p_data.target_key, NULL, 0, error);
|
|
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK,p_data.initial_val);
|
|
}
|
|
|
|
// convert INT to REAL is better for interpolaters
|
|
if(final_val.get_type() == Variant::INT) final_val = final_val.operator real_t();
|
|
_calc_delta_val(p_data.initial_val, final_val, p_data.delta_val);
|
|
return p_data.delta_val;
|
|
}
|
|
break;
|
|
|
|
case TARGETING_PROPERTY:
|
|
case TARGETING_METHOD: {
|
|
|
|
Variant initial_val = _get_initial_val(p_data);
|
|
// convert INT to REAL is better for interpolaters
|
|
if(initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
|
|
|
|
//_calc_delta_val(p_data.initial_val, p_data.final_val, p_data.delta_val);
|
|
_calc_delta_val(initial_val, p_data.final_val, p_data.delta_val);
|
|
return p_data.delta_val;
|
|
}
|
|
break;
|
|
}
|
|
return p_data.initial_val;
|
|
}
|
|
|
|
Variant Tween::_run_equation(InterpolateData& p_data) {
|
|
|
|
Variant& initial_val = _get_initial_val(p_data);
|
|
Variant& delta_val = _get_delta_val(p_data);
|
|
Variant result;
|
|
|
|
#define APPLY_EQUATION(element)\
|
|
r.element = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, i.element, d.element, p_data.times_in_sec);
|
|
|
|
switch(initial_val.get_type())
|
|
{
|
|
case Variant::INT:
|
|
result = (int) _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (int) initial_val, (int) delta_val, p_data.times_in_sec);
|
|
break;
|
|
|
|
case Variant::REAL:
|
|
result = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (real_t) initial_val, (real_t) delta_val, p_data.times_in_sec);
|
|
break;
|
|
|
|
case Variant::VECTOR2:
|
|
{
|
|
Vector2 i = initial_val;
|
|
Vector2 d = delta_val;
|
|
Vector2 r;
|
|
|
|
APPLY_EQUATION(x);
|
|
APPLY_EQUATION(y);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
|
|
case Variant::VECTOR3:
|
|
{
|
|
Vector3 i = initial_val;
|
|
Vector3 d = delta_val;
|
|
Vector3 r;
|
|
|
|
APPLY_EQUATION(x);
|
|
APPLY_EQUATION(y);
|
|
APPLY_EQUATION(z);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
|
|
case Variant::MATRIX3:
|
|
{
|
|
Matrix3 i = initial_val;
|
|
Matrix3 d = delta_val;
|
|
Matrix3 r;
|
|
|
|
APPLY_EQUATION(elements[0][0]);
|
|
APPLY_EQUATION(elements[0][1]);
|
|
APPLY_EQUATION(elements[0][2]);
|
|
APPLY_EQUATION(elements[1][0]);
|
|
APPLY_EQUATION(elements[1][1]);
|
|
APPLY_EQUATION(elements[1][2]);
|
|
APPLY_EQUATION(elements[2][0]);
|
|
APPLY_EQUATION(elements[2][1]);
|
|
APPLY_EQUATION(elements[2][2]);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
|
|
case Variant::MATRIX32:
|
|
{
|
|
Matrix3 i = initial_val;
|
|
Matrix3 d = delta_val;
|
|
Matrix3 r;
|
|
|
|
APPLY_EQUATION(elements[0][0]);
|
|
APPLY_EQUATION(elements[0][1]);
|
|
APPLY_EQUATION(elements[1][0]);
|
|
APPLY_EQUATION(elements[1][1]);
|
|
APPLY_EQUATION(elements[2][0]);
|
|
APPLY_EQUATION(elements[2][1]);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
case Variant::QUAT:
|
|
{
|
|
Quat i = initial_val;
|
|
Quat d = delta_val;
|
|
Quat r;
|
|
|
|
APPLY_EQUATION(x);
|
|
APPLY_EQUATION(y);
|
|
APPLY_EQUATION(z);
|
|
APPLY_EQUATION(w);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
case Variant::_AABB:
|
|
{
|
|
AABB i = initial_val;
|
|
AABB d = delta_val;
|
|
AABB r;
|
|
|
|
APPLY_EQUATION(pos.x);
|
|
APPLY_EQUATION(pos.y);
|
|
APPLY_EQUATION(pos.z);
|
|
APPLY_EQUATION(size.x);
|
|
APPLY_EQUATION(size.y);
|
|
APPLY_EQUATION(size.z);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
case Variant::TRANSFORM:
|
|
{
|
|
Transform i = initial_val;
|
|
Transform d = delta_val;
|
|
Transform r;
|
|
|
|
APPLY_EQUATION(basis.elements[0][0]);
|
|
APPLY_EQUATION(basis.elements[0][1]);
|
|
APPLY_EQUATION(basis.elements[0][2]);
|
|
APPLY_EQUATION(basis.elements[1][0]);
|
|
APPLY_EQUATION(basis.elements[1][1]);
|
|
APPLY_EQUATION(basis.elements[1][2]);
|
|
APPLY_EQUATION(basis.elements[2][0]);
|
|
APPLY_EQUATION(basis.elements[2][1]);
|
|
APPLY_EQUATION(basis.elements[2][2]);
|
|
APPLY_EQUATION(origin.x);
|
|
APPLY_EQUATION(origin.y);
|
|
APPLY_EQUATION(origin.z);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
case Variant::COLOR:
|
|
{
|
|
Color i = initial_val;
|
|
Color d = delta_val;
|
|
Color r;
|
|
|
|
APPLY_EQUATION(r);
|
|
APPLY_EQUATION(g);
|
|
APPLY_EQUATION(b);
|
|
APPLY_EQUATION(a);
|
|
|
|
result = r;
|
|
}
|
|
break;
|
|
};
|
|
#undef APPLY_EQUATION
|
|
|
|
return result;
|
|
}
|
|
|
|
bool Tween::_apply_tween_value(InterpolateData& p_data, Variant& value) {
|
|
|
|
Object *object = get_node(p_data.path);
|
|
ERR_FAIL_COND_V(object == NULL, false);
|
|
|
|
switch(p_data.type) {
|
|
|
|
case INTER_PROPERTY:
|
|
case FOLLOW_PROPERTY:
|
|
case TARGETING_PROPERTY:
|
|
{
|
|
bool valid = false;
|
|
object->set(p_data.key,value, &valid);
|
|
return valid;
|
|
}
|
|
|
|
case INTER_METHOD:
|
|
case FOLLOW_METHOD:
|
|
case TARGETING_METHOD:
|
|
{
|
|
Variant::CallError error;
|
|
if (value.get_type() != Variant::NIL) {
|
|
Variant *arg[1] = { &value };
|
|
object->call(p_data.key, (const Variant **) arg, 1, error);
|
|
} else {
|
|
object->call(p_data.key, NULL, 0, error);
|
|
}
|
|
|
|
if(error.error == Variant::CallError::CALL_OK)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
case INTER_CALLBACK:
|
|
break;
|
|
};
|
|
return true;
|
|
}
|
|
|
|
void Tween::_tween_process(float p_delta) {
|
|
|
|
if (speed_scale == 0)
|
|
return;
|
|
p_delta *= speed_scale;
|
|
|
|
// if repeat and all interpolates was finished then reset all interpolates
|
|
if(repeat) {
|
|
bool all_finished = true;
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
|
|
if(!data.finish) {
|
|
all_finished = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(all_finished)
|
|
reset_all();
|
|
}
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
if(!data.active || data.finish)
|
|
continue;
|
|
|
|
Object *object = get_node(data.path);
|
|
if(object == NULL)
|
|
continue;
|
|
|
|
bool prev_delaying = data.elapsed <= data.delay;
|
|
data.elapsed += p_delta;
|
|
if(data.elapsed < data.delay)
|
|
continue;
|
|
else if(prev_delaying) {
|
|
|
|
emit_signal("tween_start",object,data.key);
|
|
_apply_tween_value(data, data.initial_val);
|
|
}
|
|
|
|
if(data.elapsed > (data.delay + data.times_in_sec)) {
|
|
|
|
data.elapsed = data.delay + data.times_in_sec;
|
|
data.finish = true;
|
|
}
|
|
|
|
switch(data.type)
|
|
{
|
|
case INTER_PROPERTY:
|
|
case INTER_METHOD:
|
|
break;
|
|
case INTER_CALLBACK:
|
|
if(data.finish) {
|
|
|
|
Variant::CallError error;
|
|
if (data.arg.get_type() != Variant::NIL) {
|
|
Variant *arg[1] = { &data.arg };
|
|
object->call(data.key, (const Variant **) arg, 1, error);
|
|
} else {
|
|
object->call(data.key, NULL, 0, error);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
Variant result = _run_equation(data);
|
|
emit_signal("tween_step",object,data.key,data.elapsed,result);
|
|
|
|
_apply_tween_value(data, result);
|
|
|
|
if(data.finish)
|
|
emit_signal("tween_complete",object,data.key);
|
|
}
|
|
}
|
|
|
|
void Tween::set_tween_process_mode(TweenProcessMode p_mode) {
|
|
|
|
if (tween_process_mode==p_mode)
|
|
return;
|
|
|
|
bool pr = processing;
|
|
if (pr)
|
|
_set_process(false);
|
|
tween_process_mode=p_mode;
|
|
if (pr)
|
|
_set_process(true);
|
|
}
|
|
|
|
Tween::TweenProcessMode Tween::get_tween_process_mode() const {
|
|
|
|
return tween_process_mode;
|
|
}
|
|
|
|
void Tween::_set_process(bool p_process,bool p_force) {
|
|
|
|
if (processing==p_process && !p_force)
|
|
return;
|
|
|
|
switch(tween_process_mode) {
|
|
|
|
case TWEEN_PROCESS_FIXED: set_fixed_process(p_process && active); break;
|
|
case TWEEN_PROCESS_IDLE: set_process(p_process && active); break;
|
|
}
|
|
|
|
processing=p_process;
|
|
}
|
|
|
|
bool Tween::is_active() const {
|
|
|
|
return active;
|
|
}
|
|
|
|
void Tween::set_active(bool p_active) {
|
|
|
|
if (active==p_active)
|
|
return;
|
|
|
|
active=p_active;
|
|
_set_process(processing,true);
|
|
}
|
|
|
|
bool Tween::is_repeat() const {
|
|
|
|
return repeat;
|
|
}
|
|
|
|
void Tween::set_repeat(bool p_repeat) {
|
|
|
|
repeat = p_repeat;
|
|
}
|
|
|
|
void Tween::set_speed(float p_speed) {
|
|
|
|
speed_scale=p_speed;
|
|
}
|
|
|
|
float Tween::get_speed() const {
|
|
|
|
return speed_scale;
|
|
}
|
|
|
|
bool Tween::start() {
|
|
|
|
set_active(true);
|
|
_set_process(true);
|
|
return true;
|
|
}
|
|
|
|
bool Tween::reset(Node *p_node, String p_key) {
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
Node *node = get_node(data.path);
|
|
if(node == NULL)
|
|
continue;
|
|
|
|
if(node == p_node && data.key == p_key) {
|
|
|
|
data.elapsed = 0;
|
|
data.finish = false;
|
|
if(data.delay == 0)
|
|
_apply_tween_value(data, data.initial_val);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::reset_all() {
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
data.elapsed = 0;
|
|
data.finish = false;
|
|
if(data.delay == 0)
|
|
_apply_tween_value(data, data.initial_val);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::stop(Node *p_node, String p_key) {
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
Node *node = get_node(data.path);
|
|
if(node == NULL)
|
|
continue;
|
|
if(node == p_node && data.key == p_key)
|
|
data.active = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::stop_all() {
|
|
|
|
set_active(false);
|
|
_set_process(false);
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
data.active = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::resume(Node *p_node, String p_key) {
|
|
|
|
set_active(true);
|
|
_set_process(true);
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
Node *node = get_node(data.path);
|
|
if(node == NULL)
|
|
continue;
|
|
if(node == p_node && data.key == p_key)
|
|
data.active = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::resume_all() {
|
|
|
|
set_active(true);
|
|
_set_process(true);
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
data.active = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::remove(Node *p_node, String p_key) {
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
Node *node = get_node(data.path);
|
|
if(node == NULL)
|
|
continue;
|
|
if(node == p_node && data.key == p_key) {
|
|
interpolates.erase(E);
|
|
return true;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Tween::remove_all() {
|
|
|
|
set_active(false);
|
|
_set_process(false);
|
|
interpolates.clear();
|
|
return true;
|
|
}
|
|
|
|
bool Tween::seek(real_t p_time) {
|
|
|
|
for(List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
InterpolateData& data = E->get();
|
|
|
|
data.elapsed = p_time;
|
|
if(data.elapsed < data.delay) {
|
|
|
|
data.finish = false;
|
|
continue;
|
|
}
|
|
else if(data.elapsed >= (data.delay + data.times_in_sec)) {
|
|
|
|
data.finish = true;
|
|
data.elapsed = (data.delay + data.times_in_sec);
|
|
} else
|
|
data.finish = false;
|
|
|
|
switch(data.type)
|
|
{
|
|
case INTER_PROPERTY:
|
|
case INTER_METHOD:
|
|
break;
|
|
case INTER_CALLBACK:
|
|
continue;
|
|
}
|
|
|
|
Variant result = _run_equation(data);
|
|
|
|
_apply_tween_value(data, result);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
real_t Tween::tell() const {
|
|
|
|
real_t pos = 0;
|
|
for(const List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
const InterpolateData& data = E->get();
|
|
if(data.elapsed > pos)
|
|
pos = data.elapsed;
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
real_t Tween::get_runtime() const {
|
|
|
|
real_t runtime = 0;
|
|
for(const List<InterpolateData>::Element *E=interpolates.front();E;E=E->next()) {
|
|
|
|
const InterpolateData& data = E->get();
|
|
real_t t = data.delay + data.times_in_sec;
|
|
if(t > runtime)
|
|
runtime = t;
|
|
}
|
|
return runtime;
|
|
}
|
|
|
|
bool Tween::_calc_delta_val(const Variant& p_initial_val, const Variant& p_final_val, Variant& p_delta_val) {
|
|
|
|
const Variant& initial_val = p_initial_val;
|
|
const Variant& final_val = p_final_val;
|
|
Variant& delta_val = p_delta_val;
|
|
|
|
switch(initial_val.get_type()) {
|
|
case Variant::INT:
|
|
delta_val = (int) final_val - (int) initial_val;
|
|
break;
|
|
|
|
case Variant::REAL:
|
|
delta_val = (real_t) final_val - (real_t) initial_val;
|
|
break;
|
|
|
|
case Variant::VECTOR2:
|
|
delta_val = final_val.operator Vector2() - initial_val.operator Vector2();
|
|
break;
|
|
|
|
case Variant::VECTOR3:
|
|
delta_val = final_val.operator Vector3() - initial_val.operator Vector3();
|
|
break;
|
|
|
|
case Variant::MATRIX3:
|
|
{
|
|
Matrix3 i = initial_val;
|
|
Matrix3 f = final_val;
|
|
delta_val = Matrix3(f.elements[0][0] - i.elements[0][0],
|
|
f.elements[0][1] - i.elements[0][1],
|
|
f.elements[0][2] - i.elements[0][2],
|
|
f.elements[1][0] - i.elements[1][0],
|
|
f.elements[1][1] - i.elements[1][1],
|
|
f.elements[1][2] - i.elements[1][2],
|
|
f.elements[2][0] - i.elements[2][0],
|
|
f.elements[2][1] - i.elements[2][1],
|
|
f.elements[2][2] - i.elements[2][2]
|
|
);
|
|
}
|
|
break;
|
|
|
|
case Variant::MATRIX32:
|
|
{
|
|
Matrix32 i = initial_val;
|
|
Matrix32 f = final_val;
|
|
Matrix32 d = Matrix32();
|
|
d[0][0] = f.elements[0][0] - i.elements[0][0];
|
|
d[0][1] = f.elements[0][1] - i.elements[0][1];
|
|
d[1][0] = f.elements[1][0] - i.elements[1][0];
|
|
d[1][1] = f.elements[1][1] - i.elements[1][1];
|
|
d[2][0] = f.elements[2][0] - i.elements[2][0];
|
|
d[2][1] = f.elements[2][1] - i.elements[2][1];
|
|
delta_val = d;
|
|
}
|
|
break;
|
|
case Variant::QUAT:
|
|
delta_val = final_val.operator Quat() - initial_val.operator Quat();
|
|
break;
|
|
case Variant::_AABB:
|
|
{
|
|
AABB i = initial_val;
|
|
AABB f = final_val;
|
|
delta_val = AABB(f.pos - i.pos, f.size - i.size);
|
|
}
|
|
break;
|
|
case Variant::TRANSFORM:
|
|
{
|
|
Transform i = initial_val;
|
|
Transform f = final_val;
|
|
Transform d;
|
|
d.set(f.basis.elements[0][0] - i.basis.elements[0][0],
|
|
f.basis.elements[0][1] - i.basis.elements[0][1],
|
|
f.basis.elements[0][2] - i.basis.elements[0][2],
|
|
f.basis.elements[1][0] - i.basis.elements[1][0],
|
|
f.basis.elements[1][1] - i.basis.elements[1][1],
|
|
f.basis.elements[1][2] - i.basis.elements[1][2],
|
|
f.basis.elements[2][0] - i.basis.elements[2][0],
|
|
f.basis.elements[2][1] - i.basis.elements[2][1],
|
|
f.basis.elements[2][2] - i.basis.elements[2][2],
|
|
f.origin.x - i.origin.x,
|
|
f.origin.y - i.origin.y,
|
|
f.origin.z - i.origin.z
|
|
);
|
|
|
|
delta_val = d;
|
|
}
|
|
break;
|
|
case Variant::COLOR:
|
|
{
|
|
Color i = initial_val;
|
|
Color f = final_val;
|
|
delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ERR_PRINT("Invalid param type, except(int/real/vector2/vector/matrix/matrix32/quat/aabb/transform/color)");
|
|
return false;
|
|
};
|
|
return true;
|
|
}
|
|
|
|
bool Tween::interpolate_property(Node *p_node
|
|
, String p_property
|
|
, Variant p_initial_val
|
|
, Variant p_final_val
|
|
, real_t p_times_in_sec
|
|
, TransitionType p_trans_type
|
|
, EaseType p_ease_type
|
|
, real_t p_delay
|
|
) {
|
|
// convert INT to REAL is better for interpolaters
|
|
if(p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
|
|
if(p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
|
|
|
|
ERR_FAIL_COND_V(p_node == NULL, false);
|
|
ERR_FAIL_COND_V(p_initial_val.get_type() != p_final_val.get_type(), false);
|
|
ERR_FAIL_COND_V(p_times_in_sec <= 0, false);
|
|
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
|
|
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
|
|
ERR_FAIL_COND_V(p_delay < 0, false);
|
|
|
|
bool prop_valid = false;
|
|
p_node->get(p_property,&prop_valid);
|
|
ERR_FAIL_COND_V(!prop_valid, false);
|
|
|
|
InterpolateData data;
|
|
data.active = true;
|
|
data.type = INTER_PROPERTY;
|
|
data.finish = false;
|
|
data.elapsed = 0;
|
|
|
|
data.path = p_node->get_path();
|
|
data.key = p_property;
|
|
data.initial_val = p_initial_val;
|
|
data.final_val = p_final_val;
|
|
data.times_in_sec = p_times_in_sec;
|
|
data.trans_type = p_trans_type;
|
|
data.ease_type = p_ease_type;
|
|
data.delay = p_delay;
|
|
|
|
if(!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
|
|
return false;
|
|
|
|
interpolates.push_back(data);
|
|
return true;
|
|
}
|
|
|
|
bool Tween::interpolate_method(Node *p_node
|
|
, String p_method
|
|
, Variant p_initial_val
|
|
, Variant p_final_val
|
|
, real_t p_times_in_sec
|
|
, TransitionType p_trans_type
|
|
, EaseType p_ease_type
|
|
, real_t p_delay
|
|
) {
|
|
// convert INT to REAL is better for interpolaters
|
|
if(p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
|
|
if(p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
|
|
|
|
ERR_FAIL_COND_V(p_node == NULL, false);
|
|
ERR_FAIL_COND_V(p_initial_val.get_type() != p_final_val.get_type(), false);
|
|
ERR_FAIL_COND_V(p_times_in_sec <= 0, false);
|
|
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
|
|
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
|
|
ERR_FAIL_COND_V(p_delay < 0, false);
|
|
|
|
ERR_FAIL_COND_V(!p_node->has_method(p_method), false);
|
|
|
|
InterpolateData data;
|
|
data.active = true;
|
|
data.type = INTER_METHOD;
|
|
data.finish = false;
|
|
data.elapsed = 0;
|
|
|
|
data.path = p_node->get_path();
|
|
data.key = p_method;
|
|
data.initial_val = p_initial_val;
|
|
data.final_val = p_final_val;
|
|
data.times_in_sec = p_times_in_sec;
|
|
data.trans_type = p_trans_type;
|
|
data.ease_type = p_ease_type;
|
|
data.delay = p_delay;
|
|
|
|
if(!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
|
|
return false;
|
|
|
|
interpolates.push_back(data);
|
|
return true;
|
|
}
|
|
|
|
bool Tween::interpolate_callback(Node *p_node
|
|
, String p_callback
|
|
, real_t p_times_in_sec
|
|
, Variant p_arg
|
|
) {
|
|
|
|
ERR_FAIL_COND_V(p_node == NULL, false);
|
|
ERR_FAIL_COND_V(p_times_in_sec < 0, false);
|
|
|
|
ERR_FAIL_COND_V(!p_node->has_method(p_callback), false);
|
|
|
|
InterpolateData data;
|
|
data.active = true;
|
|
data.type = INTER_CALLBACK;
|
|
data.finish = false;
|
|
data.elapsed = 0;
|
|
|
|
data.path = p_node->get_path();
|
|
data.key = p_callback;
|
|
data.times_in_sec = p_times_in_sec;
|
|
data.delay = 0;
|
|
data.arg = p_arg;
|
|
|
|
interpolates.push_back(data);
|
|
return true;
|
|
}
|
|
|
|
bool Tween::follow_property(Node *p_node
|
|
, String p_property
|
|
, Variant p_initial_val
|
|
, Node *p_target
|
|
, String p_target_property
|
|
, real_t p_times_in_sec
|
|
, TransitionType p_trans_type
|
|
, EaseType p_ease_type
|
|
, real_t p_delay
|
|
) {
|
|
// convert INT to REAL is better for interpolaters
|
|
if(p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
|
|
|
|
ERR_FAIL_COND_V(p_node == NULL, false);
|
|
ERR_FAIL_COND_V(p_target == NULL, false);
|
|
ERR_FAIL_COND_V(p_times_in_sec <= 0, false);
|
|
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
|
|
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
|
|
ERR_FAIL_COND_V(p_delay < 0, false);
|
|
|
|
bool prop_valid = false;
|
|
p_node->get(p_property,&prop_valid);
|
|
ERR_FAIL_COND_V(!prop_valid, false);
|
|
|
|
bool target_prop_valid = false;
|
|
Variant target_val = p_target->get(p_target_property,&target_prop_valid);
|
|
ERR_FAIL_COND_V(!target_prop_valid, false);
|
|
|
|
// convert INT to REAL is better for interpolaters
|
|
if(target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
|
|
ERR_FAIL_COND_V(target_val.get_type() != p_initial_val.get_type(), false);
|
|
|
|
InterpolateData data;
|
|
data.active = true;
|
|
data.type = FOLLOW_PROPERTY;
|
|
data.finish = false;
|
|
data.elapsed = 0;
|
|
|
|
data.path = p_node->get_path();
|
|
data.key = p_property;
|
|
data.initial_val = p_initial_val;
|
|
data.target = p_target->get_path();
|
|
data.target_key = p_target_property;
|
|
data.times_in_sec = p_times_in_sec;
|
|
data.trans_type = p_trans_type;
|
|
data.ease_type = p_ease_type;
|
|
data.delay = p_delay;
|
|
|
|
interpolates.push_back(data);
|
|
return true;
|
|
}
|
|
|
|
bool Tween::follow_method(Node *p_node
|
|
, String p_method
|
|
, Variant p_initial_val
|
|
, Node *p_target
|
|
, String p_target_method
|
|
, real_t p_times_in_sec
|
|
, TransitionType p_trans_type
|
|
, EaseType p_ease_type
|
|
, real_t p_delay
|
|
) {
|
|
// convert INT to REAL is better for interpolaters
|
|
if(p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
|
|
|
|
ERR_FAIL_COND_V(p_node == NULL, false);
|
|
ERR_FAIL_COND_V(p_target == NULL, false);
|
|
ERR_FAIL_COND_V(p_times_in_sec <= 0, false);
|
|
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
|
|
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
|
|
ERR_FAIL_COND_V(p_delay < 0, false);
|
|
|
|
ERR_FAIL_COND_V(!p_node->has_method(p_method), false);
|
|
ERR_FAIL_COND_V(!p_target->has_method(p_target_method), false);
|
|
|
|
Variant::CallError error;
|
|
Variant target_val = p_target->call(p_target_method, NULL, 0, error);
|
|
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, false);
|
|
|
|
// convert INT to REAL is better for interpolaters
|
|
if(target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
|
|
ERR_FAIL_COND_V(target_val.get_type() != p_initial_val.get_type(), false);
|
|
|
|
InterpolateData data;
|
|
data.active = true;
|
|
data.type = FOLLOW_METHOD;
|
|
data.finish = false;
|
|
data.elapsed = 0;
|
|
|
|
data.path = p_node->get_path();
|
|
data.key = p_method;
|
|
data.initial_val = p_initial_val;
|
|
data.target = p_target->get_path();
|
|
data.target_key = p_target_method;
|
|
data.times_in_sec = p_times_in_sec;
|
|
data.trans_type = p_trans_type;
|
|
data.ease_type = p_ease_type;
|
|
data.delay = p_delay;
|
|
|
|
interpolates.push_back(data);
|
|
return true;
|
|
}
|
|
|
|
bool Tween::targeting_property(Node *p_node
|
|
, String p_property
|
|
, Node *p_initial
|
|
, String p_initial_property
|
|
, Variant p_final_val
|
|
, real_t p_times_in_sec
|
|
, TransitionType p_trans_type
|
|
, EaseType p_ease_type
|
|
, real_t p_delay
|
|
) {
|
|
// convert INT to REAL is better for interpolaters
|
|
if(p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
|
|
|
|
ERR_FAIL_COND_V(p_node == NULL, false);
|
|
ERR_FAIL_COND_V(p_initial == NULL, false);
|
|
ERR_FAIL_COND_V(p_times_in_sec <= 0, false);
|
|
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
|
|
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
|
|
ERR_FAIL_COND_V(p_delay < 0, false);
|
|
|
|
bool prop_valid = false;
|
|
p_node->get(p_property,&prop_valid);
|
|
ERR_FAIL_COND_V(!prop_valid, false);
|
|
|
|
bool initial_prop_valid = false;
|
|
Variant initial_val = p_initial->get(p_initial_property,&initial_prop_valid);
|
|
ERR_FAIL_COND_V(!initial_prop_valid, false);
|
|
|
|
// convert INT to REAL is better for interpolaters
|
|
if(initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
|
|
ERR_FAIL_COND_V(initial_val.get_type() != p_final_val.get_type(), false);
|
|
|
|
InterpolateData data;
|
|
data.active = true;
|
|
data.type = TARGETING_PROPERTY;
|
|
data.finish = false;
|
|
data.elapsed = 0;
|
|
|
|
data.path = p_node->get_path();
|
|
data.key = p_property;
|
|
data.target = p_initial->get_path();
|
|
data.target_key = p_initial_property;
|
|
data.initial_val = initial_val;
|
|
data.final_val = p_final_val;
|
|
data.times_in_sec = p_times_in_sec;
|
|
data.trans_type = p_trans_type;
|
|
data.ease_type = p_ease_type;
|
|
data.delay = p_delay;
|
|
|
|
if(!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
|
|
return false;
|
|
|
|
interpolates.push_back(data);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Tween::targeting_method(Node *p_node
|
|
, String p_method
|
|
, Node *p_initial
|
|
, String p_initial_method
|
|
, Variant p_final_val
|
|
, real_t p_times_in_sec
|
|
, TransitionType p_trans_type
|
|
, EaseType p_ease_type
|
|
, real_t p_delay
|
|
) {
|
|
// convert INT to REAL is better for interpolaters
|
|
if(p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
|
|
|
|
ERR_FAIL_COND_V(p_node == NULL, false);
|
|
ERR_FAIL_COND_V(p_initial == NULL, false);
|
|
ERR_FAIL_COND_V(p_times_in_sec <= 0, false);
|
|
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
|
|
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
|
|
ERR_FAIL_COND_V(p_delay < 0, false);
|
|
|
|
ERR_FAIL_COND_V(!p_node->has_method(p_method), false);
|
|
ERR_FAIL_COND_V(!p_initial->has_method(p_initial_method), false);
|
|
|
|
Variant::CallError error;
|
|
Variant initial_val = p_initial->call(p_initial_method, NULL, 0, error);
|
|
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, false);
|
|
|
|
// convert INT to REAL is better for interpolaters
|
|
if(initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
|
|
ERR_FAIL_COND_V(initial_val.get_type() != p_final_val.get_type(), false);
|
|
|
|
InterpolateData data;
|
|
data.active = true;
|
|
data.type = TARGETING_METHOD;
|
|
data.finish = false;
|
|
data.elapsed = 0;
|
|
|
|
data.path = p_node->get_path();
|
|
data.key = p_method;
|
|
data.target = p_initial->get_path();
|
|
data.target_key = p_initial_method;
|
|
data.initial_val = initial_val;
|
|
data.final_val = p_final_val;
|
|
data.times_in_sec = p_times_in_sec;
|
|
data.trans_type = p_trans_type;
|
|
data.ease_type = p_ease_type;
|
|
data.delay = p_delay;
|
|
|
|
if(!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
|
|
return false;
|
|
|
|
interpolates.push_back(data);
|
|
return true;
|
|
}
|
|
|
|
Tween::Tween() {
|
|
|
|
//String autoplay;
|
|
tween_process_mode=TWEEN_PROCESS_IDLE;
|
|
processing=false;
|
|
active=false;
|
|
repeat=false;
|
|
speed_scale=1;
|
|
}
|
|
|
|
Tween::~Tween() {
|
|
|
|
}
|