virtualx-engine/thirdparty/embree/kernels/common/scene_line_segments.h
jfons 767e374dce Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.

`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
2021-05-21 17:00:24 +02:00

345 lines
12 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "default.h"
#include "geometry.h"
#include "buffer.h"
namespace embree
{
/*! represents an array of line segments */
struct LineSegments : public Geometry
{
/*! type of this geometry */
static const Geometry::GTypeMask geom_type = Geometry::MTY_CURVE2;
public:
/*! line segments construction */
LineSegments (Device* device, Geometry::GType gtype);
public:
void setMask (unsigned mask);
void setNumTimeSteps (unsigned int numTimeSteps);
void setVertexAttributeCount (unsigned int N);
void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
void* getBuffer(RTCBufferType type, unsigned int slot);
void updateBuffer(RTCBufferType type, unsigned int slot);
void commit();
bool verify ();
void interpolate(const RTCInterpolateArguments* const args);
void setTessellationRate(float N);
void setMaxRadiusScale(float s);
void addElementsToCount (GeometryCounts & counts) const;
template<int N>
void interpolate_impl(const RTCInterpolateArguments* const args)
{
unsigned int primID = args->primID;
float u = args->u;
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* ddPdudu = args->ddPdudu;
unsigned int valueCount = args->valueCount;
/* calculate base pointer and stride */
assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
(bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
const char* src = nullptr;
size_t stride = 0;
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
src = vertexAttribs[bufferSlot].getPtr();
stride = vertexAttribs[bufferSlot].getStride();
} else {
src = vertices[bufferSlot].getPtr();
stride = vertices[bufferSlot].getStride();
}
for (unsigned int i=0; i<valueCount; i+=N)
{
const size_t ofs = i*sizeof(float);
const size_t segment = segments[primID];
const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>(int(valueCount));
const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[(segment+0)*stride+ofs]);
const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[(segment+1)*stride+ofs]);
if (P ) mem<vfloat<N>>::storeu(valid,P+i,lerp(p0,p1,u));
if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i,p1-p0);
if (ddPdudu) mem<vfloat<N>>::storeu(valid,dPdu+i,vfloat<N>(zero));
}
}
public:
/*! returns the number of vertices */
__forceinline size_t numVertices() const {
return vertices[0].size();
}
/*! returns the i'th segment */
__forceinline const unsigned int& segment(size_t i) const {
return segments[i];
}
/*! returns the segment to the left of the i'th segment */
__forceinline bool segmentLeftExists(size_t i) const {
assert (flags);
return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_LEFT) != 0;
}
/*! returns the segment to the right of the i'th segment */
__forceinline bool segmentRightExists(size_t i) const {
assert (flags);
return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_RIGHT) != 0;
}
/*! returns i'th vertex of the first time step */
__forceinline Vec3ff vertex(size_t i) const {
return vertices0[i];
}
/*! returns i'th vertex of the first time step */
__forceinline const char* vertexPtr(size_t i) const {
return vertices0.getPtr(i);
}
/*! returns i'th normal of the first time step */
__forceinline Vec3fa normal(size_t i) const {
return normals0[i];
}
/*! returns i'th radius of the first time step */
__forceinline float radius(size_t i) const {
return vertices0[i].w;
}
/*! returns i'th vertex of itime'th timestep */
__forceinline Vec3ff vertex(size_t i, size_t itime) const {
return vertices[itime][i];
}
/*! returns i'th vertex of itime'th timestep */
__forceinline const char* vertexPtr(size_t i, size_t itime) const {
return vertices[itime].getPtr(i);
}
/*! returns i'th normal of itime'th timestep */
__forceinline Vec3fa normal(size_t i, size_t itime) const {
return normals[itime][i];
}
/*! returns i'th radius of itime'th timestep */
__forceinline float radius(size_t i, size_t itime) const {
return vertices[itime][i].w;
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(const Vec3ff& v0, const Vec3ff& v1) const
{
const BBox3ff b = merge(BBox3ff(v0),BBox3ff(v1));
return enlarge((BBox3fa)b,maxRadiusScale*Vec3fa(max(v0.w,v1.w)));
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(size_t i) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0);
const Vec3ff v1 = vertex(index+1);
return bounds(v0,v1);
}
/*! calculates bounding box of i'th line segment for the itime'th time step */
__forceinline BBox3fa bounds(size_t i, size_t itime) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
return bounds(v0,v1);
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0);
const Vec3ff v1 = vertex(index+1);
const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w);
const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w);
return bounds(w0,w1);
}
/*! calculates bounding box of i'th line segment for the itime'th time step */
__forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i, size_t itime) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w);
const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w);
return bounds(w0,w1);
}
/*! check if the i'th primitive is valid at the itime'th timestep */
__forceinline bool valid(size_t i, size_t itime) const {
return valid(i, make_range(itime, itime));
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t i, const range<size_t>& itime_range) const
{
const unsigned int index = segment(i);
if (index+1 >= numVertices()) return false;
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
{
const Vec3ff v0 = vertex(index+0,itime); if (unlikely(!isvalid4(v0))) return false;
const Vec3ff v1 = vertex(index+1,itime); if (unlikely(!isvalid4(v1))) return false;
if (min(v0.w,v1.w) < 0.0f) return false;
}
return true;
}
/*! calculates the linear bounds of the i'th primitive at the itimeGlobal'th time segment */
__forceinline LBBox3fa linearBounds(size_t i, size_t itime) const {
return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1));
}
/*! calculates the build bounds of the i'th primitive, if it's valid */
__forceinline bool buildBounds(size_t i, BBox3fa* bbox) const
{
if (!valid(i,0)) return false;
*bbox = bounds(i);
return true;
}
/*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */
__forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
{
if (!valid(i,itime+0) || !valid(i,itime+1)) return false;
bbox = bounds(i,itime); // use bounds of first time step in builder
return true;
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const {
return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments);
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const {
return LBBox3fa([&] (size_t itime) { return bounds(space, primID, itime); }, dt, time_range, fnumTimeSegments);
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const
{
if (!valid(i, timeSegmentRange(time_range))) return false;
bbox = linearBounds(i, time_range);
return true;
}
/*! get fast access to first vertex buffer */
__forceinline float * getCompactVertexArray () const {
return (float*) vertices0.getPtr();
}
public:
BufferView<unsigned int> segments; //!< array of line segment indices
BufferView<Vec3ff> vertices0; //!< fast access to first vertex buffer
BufferView<Vec3fa> normals0; //!< fast access to first normal buffer
BufferView<char> flags; //!< start, end flag per segment
vector<BufferView<Vec3ff>> vertices; //!< vertex array for each timestep
vector<BufferView<Vec3fa>> normals; //!< normal array for each timestep
vector<BufferView<char>> vertexAttribs; //!< user buffers
int tessellationRate; //!< tessellation rate for bezier curve
float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii
};
namespace isa
{
struct LineSegmentsISA : public LineSegments
{
LineSegmentsISA (Device* device, Geometry::GType gtype)
: LineSegments(device,gtype) {}
Vec3fa computeDirection(unsigned int primID) const
{
const unsigned vtxID = segment(primID);
const Vec3fa v0 = vertex(vtxID+0);
const Vec3fa v1 = vertex(vtxID+1);
return v1-v0;
}
Vec3fa computeDirection(unsigned int primID, size_t time) const
{
const unsigned vtxID = segment(primID);
const Vec3fa v0 = vertex(vtxID+0,time);
const Vec3fa v1 = vertex(vtxID+1,time);
return v1-v0;
}
PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
BBox3fa bounds = empty;
if (!buildBounds(j,&bounds)) continue;
const PrimRef prim(bounds,geomID,unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
BBox3fa bounds = empty;
if (!buildBounds(j,itime,bounds)) continue;
const PrimRef prim(bounds,geomID,unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfoMB pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
if (!valid(j, timeSegmentRange(t0t1))) continue;
const PrimRefMB prim(linearBounds(j,t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j));
pinfo.add_primref(prim);
prims[k++] = prim;
}
return pinfo;
}
BBox3fa vbounds(size_t i) const {
return bounds(i);
}
BBox3fa vbounds(const LinearSpace3fa& space, size_t i) const {
return bounds(space,i);
}
LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const {
return linearBounds(primID,time_range);
}
LBBox3fa vlinearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const {
return linearBounds(space,primID,time_range);
}
};
}
DECLARE_ISA_FUNCTION(LineSegments*, createLineSegments, Device* COMMA Geometry::GType);
}