c7bc44d5ad
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer with state-of-the-art rendering techniques tuned to work as low as middle end handheld devices - without compromising with the possibilities given for higher end desktop games of course. Great times ahead for the Godot community and the gamers that will play our games!
316 lines
10 KiB
C++
316 lines
10 KiB
C++
/*************************************************************************/
|
|
/* collision_solver_2d_sw.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "collision_solver_2d_sw.h"
|
|
#include "collision_solver_2d_sat.h"
|
|
|
|
|
|
#define collision_solver sat_2d_calculate_penetration
|
|
//#define collision_solver gjk_epa_calculate_penetration
|
|
|
|
|
|
bool CollisionSolver2DSW::solve_static_line(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
|
|
|
|
|
|
const LineShape2DSW *line = static_cast<const LineShape2DSW*>(p_shape_A);
|
|
if (p_shape_B->get_type()==Physics2DServer::SHAPE_LINE)
|
|
return false;
|
|
|
|
|
|
Vector2 n = p_transform_A.basis_xform(line->get_normal()).normalized();
|
|
Vector2 p = p_transform_A.xform(line->get_normal()*line->get_d());
|
|
real_t d = n.dot(p);
|
|
|
|
Vector2 supports[2];
|
|
int support_count;
|
|
|
|
p_shape_B->get_supports(p_transform_A.affine_inverse().basis_xform(-n).normalized(),supports,support_count);
|
|
|
|
bool found=false;
|
|
|
|
|
|
for(int i=0;i<support_count;i++) {
|
|
|
|
supports[i] = p_transform_B.xform( supports[i] );
|
|
real_t pd = n.dot(supports[i]);
|
|
if (pd>=d)
|
|
continue;
|
|
found=true;
|
|
|
|
Vector2 support_A = supports[i] - n*(pd-d);
|
|
|
|
if (p_result_callback) {
|
|
if (p_swap_result)
|
|
p_result_callback(supports[i],support_A,p_userdata);
|
|
else
|
|
p_result_callback(support_A,supports[i],p_userdata);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
return found;
|
|
}
|
|
|
|
bool CollisionSolver2DSW::solve_raycast(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis) {
|
|
|
|
|
|
|
|
const RayShape2DSW *ray = static_cast<const RayShape2DSW*>(p_shape_A);
|
|
if (p_shape_B->get_type()==Physics2DServer::SHAPE_RAY)
|
|
return false;
|
|
|
|
Vector2 from = p_transform_A.get_origin();
|
|
Vector2 to = from+p_transform_A[1]*ray->get_length();
|
|
Vector2 support_A=to;
|
|
|
|
Matrix32 invb = p_transform_B.affine_inverse();
|
|
from = invb.xform(from);
|
|
to = invb.xform(to);
|
|
|
|
Vector2 p,n;
|
|
if (!p_shape_B->intersect_segment(from,to,p,n)) {
|
|
|
|
if (sep_axis)
|
|
*sep_axis=p_transform_A[1].normalized();
|
|
return false;
|
|
}
|
|
|
|
|
|
Vector2 support_B=p_transform_B.xform(p);
|
|
|
|
if (p_result_callback) {
|
|
if (p_swap_result)
|
|
p_result_callback(support_B,support_A,p_userdata);
|
|
else
|
|
p_result_callback(support_A,support_B,p_userdata);
|
|
}
|
|
return true;
|
|
|
|
}
|
|
|
|
/*
|
|
bool CollisionSolver2DSW::solve_ray(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Matrix32& p_inverse_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
|
|
|
|
|
|
const RayShape2DSW *ray = static_cast<const RayShape2DSW*>(p_shape_A);
|
|
|
|
Vector2 from = p_transform_A.origin;
|
|
Vector2 to = from+p_transform_A.basis.get_axis(2)*ray->get_length();
|
|
Vector2 support_A=to;
|
|
|
|
from = p_inverse_B.xform(from);
|
|
to = p_inverse_B.xform(to);
|
|
|
|
Vector2 p,n;
|
|
if (!p_shape_B->intersect_segment(from,to,&p,&n))
|
|
return false;
|
|
|
|
Vector2 support_B=p_transform_B.xform(p);
|
|
|
|
if (p_result_callback) {
|
|
if (p_swap_result)
|
|
p_result_callback(support_B,support_A,p_userdata);
|
|
else
|
|
p_result_callback(support_A,support_B,p_userdata);
|
|
}
|
|
return true;
|
|
}
|
|
*/
|
|
|
|
struct _ConcaveCollisionInfo2D {
|
|
|
|
const Matrix32 *transform_A;
|
|
const Shape2DSW *shape_A;
|
|
const Matrix32 *transform_B;
|
|
Vector2 motion_A;
|
|
Vector2 motion_B;
|
|
real_t margin_A;
|
|
real_t margin_B;
|
|
CollisionSolver2DSW::CallbackResult result_callback;
|
|
void *userdata;
|
|
bool swap_result;
|
|
bool collided;
|
|
int aabb_tests;
|
|
int collisions;
|
|
Vector2 *sep_axis;
|
|
|
|
};
|
|
|
|
void CollisionSolver2DSW::concave_callback(void *p_userdata, Shape2DSW *p_convex) {
|
|
|
|
|
|
|
|
_ConcaveCollisionInfo2D &cinfo = *(_ConcaveCollisionInfo2D*)(p_userdata);
|
|
cinfo.aabb_tests++;
|
|
if (!cinfo.result_callback && cinfo.collided)
|
|
return; //already collided and no contacts requested, don't test anymore
|
|
|
|
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex,*cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result,cinfo.sep_axis,cinfo.margin_A,cinfo.margin_B );
|
|
if (!collided)
|
|
return;
|
|
|
|
|
|
cinfo.collided=true;
|
|
cinfo.collisions++;
|
|
|
|
}
|
|
|
|
bool CollisionSolver2DSW::solve_concave(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis,float p_margin_A,float p_margin_B) {
|
|
|
|
|
|
const ConcaveShape2DSW *concave_B=static_cast<const ConcaveShape2DSW*>(p_shape_B);
|
|
|
|
_ConcaveCollisionInfo2D cinfo;
|
|
cinfo.transform_A=&p_transform_A;
|
|
cinfo.shape_A=p_shape_A;
|
|
cinfo.transform_B=&p_transform_B;
|
|
cinfo.motion_A=p_motion_A;
|
|
cinfo.result_callback=p_result_callback;
|
|
cinfo.userdata=p_userdata;
|
|
cinfo.swap_result=p_swap_result;
|
|
cinfo.collided=false;
|
|
cinfo.collisions=0;
|
|
cinfo.sep_axis=sep_axis;
|
|
cinfo.margin_A=p_margin_A;
|
|
cinfo.margin_B=p_margin_B;
|
|
|
|
cinfo.aabb_tests=0;
|
|
|
|
Matrix32 rel_transform = p_transform_A;
|
|
rel_transform.elements[2]-=p_transform_B.elements[2];
|
|
|
|
//quickly compute a local Rect2
|
|
|
|
Rect2 local_aabb;
|
|
for(int i=0;i<2;i++) {
|
|
|
|
Vector2 axis( p_transform_B.elements[i] );
|
|
float axis_scale = 1.0/axis.length();
|
|
axis*=axis_scale;
|
|
|
|
float smin,smax;
|
|
p_shape_A->project_rangev(axis,rel_transform,smin,smax);
|
|
smin*=axis_scale;
|
|
smax*=axis_scale;
|
|
|
|
local_aabb.pos[i]=smin;
|
|
local_aabb.size[i]=smax-smin;
|
|
}
|
|
|
|
concave_B->cull(local_aabb,concave_callback,&cinfo);
|
|
|
|
|
|
// print_line("Rect2 TESTS: "+itos(cinfo.aabb_tests));
|
|
return cinfo.collided;
|
|
}
|
|
|
|
|
|
bool CollisionSolver2DSW::solve(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,Vector2 *sep_axis,float p_margin_A,float p_margin_B) {
|
|
|
|
|
|
|
|
|
|
Physics2DServer::ShapeType type_A=p_shape_A->get_type();
|
|
Physics2DServer::ShapeType type_B=p_shape_B->get_type();
|
|
bool concave_A=p_shape_A->is_concave();
|
|
bool concave_B=p_shape_B->is_concave();
|
|
real_t margin_A=p_margin_A,margin_B=p_margin_B;
|
|
|
|
bool swap = false;
|
|
|
|
if (type_A>type_B) {
|
|
SWAP(type_A,type_B);
|
|
SWAP(concave_A,concave_B);
|
|
SWAP(margin_A,margin_B);
|
|
swap=true;
|
|
}
|
|
|
|
if (type_A==Physics2DServer::SHAPE_LINE) {
|
|
|
|
if (type_B==Physics2DServer::SHAPE_LINE || type_B==Physics2DServer::SHAPE_RAY) {
|
|
return false;
|
|
//if (type_B==Physics2DServer::SHAPE_RAY) {
|
|
// return false;
|
|
}
|
|
|
|
if (swap) {
|
|
return solve_static_line(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true);
|
|
} else {
|
|
return solve_static_line(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false);
|
|
}
|
|
|
|
/*} else if (type_A==Physics2DServer::SHAPE_RAY) {
|
|
|
|
if (type_B==Physics2DServer::SHAPE_RAY)
|
|
return false;
|
|
|
|
if (swap) {
|
|
return solve_ray(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_inverse_A,p_result_callback,p_userdata,true);
|
|
} else {
|
|
return solve_ray(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_inverse_B,p_result_callback,p_userdata,false);
|
|
}
|
|
*/
|
|
} else if (type_A==Physics2DServer::SHAPE_RAY) {
|
|
|
|
if (type_B==Physics2DServer::SHAPE_RAY) {
|
|
|
|
return false; //no ray-ray
|
|
}
|
|
|
|
|
|
if (swap) {
|
|
return solve_raycast(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true,sep_axis);
|
|
} else {
|
|
return solve_raycast(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false,sep_axis);
|
|
}
|
|
|
|
|
|
} else if (concave_B) {
|
|
|
|
|
|
if (concave_A)
|
|
return false;
|
|
|
|
if (!swap)
|
|
return solve_concave(p_shape_A,p_transform_A,p_motion_A,p_shape_B,p_transform_B,p_motion_B,p_result_callback,p_userdata,false,sep_axis,margin_A,margin_B);
|
|
else
|
|
return solve_concave(p_shape_B,p_transform_B,p_motion_B,p_shape_A,p_transform_A,p_motion_A,p_result_callback,p_userdata,true,sep_axis,margin_A,margin_B);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
return collision_solver(p_shape_A, p_transform_A,p_motion_A, p_shape_B, p_transform_B, p_motion_B,p_result_callback,p_userdata,false,sep_axis,margin_A,margin_B);
|
|
}
|
|
|
|
|
|
return false;
|
|
}
|
|
|