virtualx-engine/modules/basis_universal/image_compress_basisu.cpp
Hugo Locurcio ec97372f04
Make Basis Universal import quiet unless engine is in verbose mode
This makes Basis Universal stdout match other compression modes.
2024-06-22 00:34:53 +02:00

331 lines
12 KiB
C++

/**************************************************************************/
/* image_compress_basisu.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "image_compress_basisu.h"
#include "servers/rendering_server.h"
#include <transcoder/basisu_transcoder.h>
#ifdef TOOLS_ENABLED
#include <encoder/basisu_comp.h>
#endif
void basis_universal_init() {
#ifdef TOOLS_ENABLED
basisu::basisu_encoder_init();
#endif
basist::basisu_transcoder_init();
}
#ifdef TOOLS_ENABLED
Vector<uint8_t> basis_universal_packer(const Ref<Image> &p_image, Image::UsedChannels p_channels) {
Ref<Image> image = p_image->duplicate();
image->convert(Image::FORMAT_RGBA8);
basisu::basis_compressor_params params;
params.m_uastc = true;
params.m_quality_level = basisu::BASISU_QUALITY_MIN;
params.m_pack_uastc_flags &= ~basisu::cPackUASTCLevelMask;
params.m_pack_uastc_flags |= basisu::cPackUASTCLevelFastest;
params.m_rdo_uastc = 0.0f;
params.m_rdo_uastc_quality_scalar = 0.0f;
params.m_rdo_uastc_dict_size = 1024;
params.m_mip_fast = true;
params.m_multithreading = true;
params.m_check_for_alpha = false;
if (!OS::get_singleton()->is_stdout_verbose()) {
params.m_print_stats = false;
params.m_compute_stats = false;
params.m_status_output = false;
}
basisu::job_pool job_pool(OS::get_singleton()->get_processor_count());
params.m_pJob_pool = &job_pool;
BasisDecompressFormat decompress_format = BASIS_DECOMPRESS_RG;
switch (p_channels) {
case Image::USED_CHANNELS_L: {
decompress_format = BASIS_DECOMPRESS_RGB;
} break;
case Image::USED_CHANNELS_LA: {
params.m_force_alpha = true;
decompress_format = BASIS_DECOMPRESS_RGBA;
} break;
case Image::USED_CHANNELS_R: {
decompress_format = BASIS_DECOMPRESS_RGB;
} break;
case Image::USED_CHANNELS_RG: {
// Currently RG textures are compressed as DXT5/ETC2_RGBA8 with a RA -> RG swizzle,
// as BasisUniversal didn't use to support ETC2_RG11 transcoding.
params.m_force_alpha = true;
image->convert_rg_to_ra_rgba8();
decompress_format = BASIS_DECOMPRESS_RG_AS_RA;
} break;
case Image::USED_CHANNELS_RGB: {
decompress_format = BASIS_DECOMPRESS_RGB;
} break;
case Image::USED_CHANNELS_RGBA: {
params.m_force_alpha = true;
decompress_format = BASIS_DECOMPRESS_RGBA;
} break;
}
// Copy the source image data with mipmaps into BasisU.
{
const int orig_width = image->get_width();
const int orig_height = image->get_height();
bool is_res_div_4 = (orig_width % 4 == 0) && (orig_height % 4 == 0);
// Image's resolution rounded up to the nearest values divisible by 4.
int next_width = orig_width <= 2 ? orig_width : (orig_width + 3) & ~3;
int next_height = orig_height <= 2 ? orig_height : (orig_height + 3) & ~3;
Vector<uint8_t> image_data = image->get_data();
basisu::vector<basisu::image> basisu_mipmaps;
// Buffer for storing padded mipmap data.
Vector<uint32_t> mip_data_padded;
for (int32_t i = 0; i <= image->get_mipmap_count(); i++) {
int ofs, size, width, height;
image->get_mipmap_offset_size_and_dimensions(i, ofs, size, width, height);
const uint8_t *image_mip_data = image_data.ptr() + ofs;
// Pad the mipmap's data if its resolution isn't divisible by 4.
if (image->has_mipmaps() && !is_res_div_4 && (width > 2 && height > 2) && (width != next_width || height != next_height)) {
// Source mip's data interpreted as 32-bit RGBA blocks to help with copying pixel data.
const uint32_t *mip_src_data = reinterpret_cast<const uint32_t *>(image_mip_data);
// Reserve space in the padded buffer.
mip_data_padded.resize(next_width * next_height);
uint32_t *data_padded_ptr = mip_data_padded.ptrw();
// Pad mipmap to the nearest block by smearing.
int x = 0, y = 0;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
data_padded_ptr[next_width * y + x] = mip_src_data[width * y + x];
}
// First, smear in x.
for (; x < next_width; x++) {
data_padded_ptr[next_width * y + x] = data_padded_ptr[next_width * y + x - 1];
}
}
// Then, smear in y.
for (; y < next_height; y++) {
for (x = 0; x < next_width; x++) {
data_padded_ptr[next_width * y + x] = data_padded_ptr[next_width * y + x - next_width];
}
}
// Override the image_mip_data pointer with our temporary Vector.
image_mip_data = reinterpret_cast<const uint8_t *>(mip_data_padded.ptr());
// Override the mipmap's properties.
width = next_width;
height = next_height;
size = mip_data_padded.size() * 4;
}
// Get the next mipmap's resolution.
next_width /= 2;
next_height /= 2;
// Copy the source mipmap's data to a BasisU image.
basisu::image basisu_image(width, height);
memcpy(basisu_image.get_ptr(), image_mip_data, size);
if (i == 0) {
params.m_source_images.push_back(basisu_image);
} else {
basisu_mipmaps.push_back(basisu_image);
}
}
params.m_source_mipmap_images.push_back(basisu_mipmaps);
}
// Encode the image data.
Vector<uint8_t> basisu_data;
basisu::basis_compressor compressor;
compressor.init(params);
int basisu_err = compressor.process();
ERR_FAIL_COND_V(basisu_err != basisu::basis_compressor::cECSuccess, basisu_data);
const basisu::uint8_vec &basisu_out = compressor.get_output_basis_file();
basisu_data.resize(basisu_out.size() + 4);
// Copy the encoded data to the buffer.
{
uint8_t *wb = basisu_data.ptrw();
*(uint32_t *)wb = decompress_format;
memcpy(wb + 4, basisu_out.get_ptr(), basisu_out.size());
}
return basisu_data;
}
#endif // TOOLS_ENABLED
Ref<Image> basis_universal_unpacker_ptr(const uint8_t *p_data, int p_size) {
Ref<Image> image;
ERR_FAIL_NULL_V_MSG(p_data, image, "Cannot unpack invalid BasisUniversal data.");
const uint8_t *src_ptr = p_data;
int src_size = p_size;
basist::transcoder_texture_format basisu_format = basist::transcoder_texture_format::cTFTotalTextureFormats;
Image::Format image_format = Image::FORMAT_MAX;
// Get supported compression formats.
bool bptc_supported = RS::get_singleton()->has_os_feature("bptc");
bool astc_supported = RS::get_singleton()->has_os_feature("astc");
bool s3tc_supported = RS::get_singleton()->has_os_feature("s3tc");
bool etc2_supported = RS::get_singleton()->has_os_feature("etc2");
bool needs_ra_rg_swap = false;
switch (*(uint32_t *)(src_ptr)) {
case BASIS_DECOMPRESS_RG: {
// RGTC transcoding is currently performed with RG_AS_RA, fail.
ERR_FAIL_V(image);
} break;
case BASIS_DECOMPRESS_RGB: {
if (bptc_supported) {
basisu_format = basist::transcoder_texture_format::cTFBC7_M6_OPAQUE_ONLY;
image_format = Image::FORMAT_BPTC_RGBA;
} else if (astc_supported) {
basisu_format = basist::transcoder_texture_format::cTFASTC_4x4_RGBA;
image_format = Image::FORMAT_ASTC_4x4;
} else if (s3tc_supported) {
basisu_format = basist::transcoder_texture_format::cTFBC1;
image_format = Image::FORMAT_DXT1;
} else if (etc2_supported) {
basisu_format = basist::transcoder_texture_format::cTFETC1;
image_format = Image::FORMAT_ETC2_RGB8;
} else {
// No supported VRAM compression formats, decompress.
basisu_format = basist::transcoder_texture_format::cTFRGBA32;
image_format = Image::FORMAT_RGBA8;
}
} break;
case BASIS_DECOMPRESS_RGBA: {
if (bptc_supported) {
basisu_format = basist::transcoder_texture_format::cTFBC7_M5;
image_format = Image::FORMAT_BPTC_RGBA;
} else if (astc_supported) {
basisu_format = basist::transcoder_texture_format::cTFASTC_4x4_RGBA;
image_format = Image::FORMAT_ASTC_4x4;
} else if (s3tc_supported) {
basisu_format = basist::transcoder_texture_format::cTFBC3;
image_format = Image::FORMAT_DXT5;
} else if (etc2_supported) {
basisu_format = basist::transcoder_texture_format::cTFETC2;
image_format = Image::FORMAT_ETC2_RGBA8;
} else {
// No supported VRAM compression formats, decompress.
basisu_format = basist::transcoder_texture_format::cTFRGBA32;
image_format = Image::FORMAT_RGBA8;
}
} break;
case BASIS_DECOMPRESS_RG_AS_RA: {
if (s3tc_supported) {
basisu_format = basist::transcoder_texture_format::cTFBC3;
image_format = Image::FORMAT_DXT5_RA_AS_RG;
} else if (etc2_supported) {
basisu_format = basist::transcoder_texture_format::cTFETC2;
image_format = Image::FORMAT_ETC2_RA_AS_RG;
} else {
// No supported VRAM compression formats, decompress.
basisu_format = basist::transcoder_texture_format::cTFRGBA32;
image_format = Image::FORMAT_RGBA8;
needs_ra_rg_swap = true;
}
} break;
}
src_ptr += 4;
src_size -= 4;
basist::basisu_transcoder transcoder;
ERR_FAIL_COND_V(!transcoder.validate_header(src_ptr, src_size), image);
transcoder.start_transcoding(src_ptr, src_size);
basist::basisu_image_info basisu_info;
transcoder.get_image_info(src_ptr, src_size, basisu_info, 0);
// Create the buffer for transcoded/decompressed data.
Vector<uint8_t> out_data;
out_data.resize(Image::get_image_data_size(basisu_info.m_width, basisu_info.m_height, image_format, basisu_info.m_total_levels > 1));
uint8_t *dst = out_data.ptrw();
memset(dst, 0, out_data.size());
for (uint32_t i = 0; i < basisu_info.m_total_levels; i++) {
basist::basisu_image_level_info basisu_level;
transcoder.get_image_level_info(src_ptr, src_size, basisu_level, 0, i);
uint32_t mip_block_or_pixel_count = Image::is_format_compressed(image_format) ? basisu_level.m_total_blocks : basisu_level.m_orig_width * basisu_level.m_orig_height;
int ofs = Image::get_image_mipmap_offset(basisu_info.m_width, basisu_info.m_height, image_format, i);
bool result = transcoder.transcode_image_level(src_ptr, src_size, 0, i, dst + ofs, mip_block_or_pixel_count, basisu_format);
if (!result) {
print_line(vformat("BasisUniversal cannot unpack level %d.", i));
break;
}
}
image = Image::create_from_data(basisu_info.m_width, basisu_info.m_height, basisu_info.m_total_levels > 1, image_format, out_data);
if (needs_ra_rg_swap) {
// Swap uncompressed RA-as-RG texture's color channels.
image->convert_ra_rgba8_to_rg();
}
return image;
}
Ref<Image> basis_universal_unpacker(const Vector<uint8_t> &p_buffer) {
return basis_universal_unpacker_ptr(p_buffer.ptr(), p_buffer.size());
}