d128ef1ecb
This should make it easier to obtain the data directly from an Image
783 lines
26 KiB
C++
783 lines
26 KiB
C++
#ifndef RENDERING_DEVICE_VULKAN_H
|
|
#define RENDERING_DEVICE_VULKAN_H
|
|
|
|
#include "core/oa_hash_map.h"
|
|
#include "core/os/thread_safe.h"
|
|
#include "core/rid_owner.h"
|
|
#include "servers/visual/rendering_device.h"
|
|
#include "thirdparty/glslang/glslang/Public/ShaderLang.h"
|
|
#include "vk_mem_alloc.h"
|
|
#include <vulkan/vulkan.h>
|
|
//todo:
|
|
//compute
|
|
//push constants
|
|
//views of texture slices
|
|
|
|
class VulkanContext;
|
|
|
|
class RenderingDeviceVulkan : public RenderingDevice {
|
|
|
|
_THREAD_SAFE_CLASS_
|
|
|
|
// Miscellaneous tables that map
|
|
// our enums to enums used
|
|
// by vulkan.
|
|
|
|
VkPhysicalDeviceLimits limits;
|
|
static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
|
|
static const char *named_formats[DATA_FORMAT_MAX];
|
|
static const VkCompareOp compare_operators[COMPARE_OP_MAX];
|
|
static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
|
|
static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
|
|
static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
|
|
static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
|
|
static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
|
|
static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
|
|
static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];
|
|
|
|
// Functions used for format
|
|
// validation, and ensures the
|
|
// user passes valid data.
|
|
|
|
static int get_format_vertex_size(DataFormat p_format);
|
|
static uint32_t get_image_format_pixel_size(DataFormat p_format);
|
|
static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
|
|
uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
|
|
static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
|
|
static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmaps, uint32_t *r_blockw = NULL, uint32_t *r_blockh = NULL);
|
|
static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
|
|
|
|
/***************************/
|
|
/**** ID INFRASTRUCTURE ****/
|
|
/***************************/
|
|
|
|
enum IDType {
|
|
ID_TYPE_FRAMEBUFFER_FORMAT,
|
|
ID_TYPE_VERTEX_FORMAT,
|
|
ID_TYPE_DRAW_LIST,
|
|
ID_TYPE_SPLIT_DRAW_LIST,
|
|
ID_TYPE_MAX,
|
|
ID_BASE_SHIFT = 58 //5 bits for ID types
|
|
};
|
|
|
|
VkDevice device;
|
|
|
|
Map<RID, Set<RID> > dependency_map; //IDs to IDs that depend on it
|
|
Map<RID, Set<RID> > reverse_dependency_map; //same as above, but in reverse
|
|
|
|
void _add_dependency(RID p_id, RID p_depends_on);
|
|
void _free_dependencies(RID p_id);
|
|
|
|
/*****************/
|
|
/**** TEXTURE ****/
|
|
/*****************/
|
|
|
|
// In Vulkan, the concept of textures does not exist,
|
|
// intead there is the image (the memory prety much,
|
|
// the view (how the memory is interpreted) and the
|
|
// sampler (how it's sampled from the shader).
|
|
//
|
|
// Texture here includes the first two stages, but
|
|
// It's possible to create textures sharing the image
|
|
// but with different views. The main use case for this
|
|
// is textures that can be read as both SRGB/Linear,
|
|
// or slices of a texture (a mipmap, a layer, a 3D slice)
|
|
// for a framebuffer to render into it.
|
|
|
|
struct Texture {
|
|
|
|
VkImage image;
|
|
VmaAllocation allocation;
|
|
VmaAllocationInfo allocation_info;
|
|
VkImageView view;
|
|
|
|
TextureType type;
|
|
DataFormat format;
|
|
TextureSamples samples;
|
|
uint32_t width;
|
|
uint32_t height;
|
|
uint32_t depth;
|
|
uint32_t layers;
|
|
uint32_t mipmaps;
|
|
uint32_t usage_flags;
|
|
|
|
VkImageLayout bound_layout; //layout used when bound to framebuffer being drawn
|
|
VkImageLayout unbound_layout; //layout used otherwise
|
|
uint32_t aspect_mask;
|
|
bool bound; //bound to framebffer
|
|
RID owner;
|
|
};
|
|
|
|
RID_Owner<Texture> texture_owner;
|
|
uint32_t texture_upload_region_size_px;
|
|
|
|
/*****************/
|
|
/**** SAMPLER ****/
|
|
/*****************/
|
|
|
|
RID_Owner<VkSampler> sampler_owner;
|
|
|
|
/***************************/
|
|
/**** BUFFER MANAGEMENT ****/
|
|
/***************************/
|
|
|
|
// These are temporary buffers on CPU memory that hold
|
|
// the information until the CPU fetches it and places it
|
|
// either on GPU buffers, or images (textures). It ensures
|
|
// updates are properly synchronized with whathever the
|
|
// GPU is doing.
|
|
//
|
|
// The logic here is as follows, only 3 of these
|
|
// blocks are created at the beginning (one per frame)
|
|
// they can each belong to a frame (assigned to current when
|
|
// used) and they can only be reused after the same frame is
|
|
// recycled.
|
|
//
|
|
// When CPU requires to allocate more than what is available,
|
|
// more of these buffers are created. If a limit is reached,
|
|
// then a fence will ensure will wait for blocks allocated
|
|
// in previous frames are processed. If that fails, then
|
|
// another fence will ensure everything pending for the current
|
|
// frame is processed (effectively stalling).
|
|
//
|
|
// See the comments in the code to understand better how it works.
|
|
|
|
struct StagingBufferBlock {
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
uint64_t frame_used;
|
|
uint32_t fill_amount;
|
|
};
|
|
|
|
Vector<StagingBufferBlock> staging_buffer_blocks;
|
|
int staging_buffer_current;
|
|
uint32_t staging_buffer_block_size;
|
|
uint64_t staging_buffer_max_size;
|
|
bool staging_buffer_used;
|
|
|
|
Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true, bool p_on_draw_command_buffer = false);
|
|
Error _insert_staging_block();
|
|
|
|
struct Buffer {
|
|
|
|
uint32_t size;
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
VkDescriptorBufferInfo buffer_info; //used for binding
|
|
Buffer() {
|
|
size = 0;
|
|
buffer = NULL;
|
|
allocation = NULL;
|
|
}
|
|
};
|
|
|
|
Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mapping);
|
|
Error _buffer_free(Buffer *p_buffer);
|
|
Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);
|
|
|
|
/*********************/
|
|
/**** FRAMEBUFFER ****/
|
|
/*********************/
|
|
|
|
// In Vulkan, framebuffers work similar to how they
|
|
// do in OpenGL, with the exception that
|
|
// the "format" (vkRenderPass) is not dynamic
|
|
// and must be more or less the same as the one
|
|
// used for the render pipelines.
|
|
|
|
struct FramebufferFormatKey {
|
|
Vector<AttachmentFormat> attachments;
|
|
bool operator<(const FramebufferFormatKey &p_key) const {
|
|
|
|
int as = attachments.size();
|
|
int bs = p_key.attachments.size();
|
|
if (as != bs) {
|
|
return as < bs;
|
|
}
|
|
|
|
const AttachmentFormat *af_a = attachments.ptr();
|
|
const AttachmentFormat *af_b = p_key.attachments.ptr();
|
|
for (int i = 0; i < as; i++) {
|
|
const AttachmentFormat &a = af_a[i];
|
|
const AttachmentFormat &b = af_b[i];
|
|
if (a.format != b.format) {
|
|
return a.format < b.format;
|
|
}
|
|
if (a.samples != b.samples) {
|
|
return a.samples < b.samples;
|
|
}
|
|
if (a.usage_flags != b.usage_flags) {
|
|
return a.usage_flags < b.usage_flags;
|
|
}
|
|
}
|
|
|
|
return false; //equal
|
|
}
|
|
};
|
|
|
|
VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, int *r_color_attachment_count = NULL);
|
|
|
|
// This is a cache and it's never freed, it ensures
|
|
// IDs for a given format are always unique.
|
|
Map<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
|
|
struct FramebufferFormat {
|
|
const Map<FramebufferFormatKey, FramebufferFormatID>::Element *E;
|
|
VkRenderPass render_pass; //here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec)
|
|
int color_attachments; //used for pipeline validation
|
|
};
|
|
|
|
Map<FramebufferFormatID, FramebufferFormat> framebuffer_formats;
|
|
|
|
struct Framebuffer {
|
|
FramebufferFormatID format_id;
|
|
struct VersionKey {
|
|
InitialAction initial_action;
|
|
FinalAction final_action;
|
|
bool operator<(const VersionKey &p_key) const {
|
|
if (initial_action == p_key.initial_action) {
|
|
return final_action < p_key.final_action;
|
|
} else {
|
|
return initial_action < p_key.initial_action;
|
|
}
|
|
}
|
|
};
|
|
|
|
Vector<RID> texture_ids;
|
|
|
|
struct Version {
|
|
VkFramebuffer framebuffer;
|
|
VkRenderPass render_pass; //this one is owned
|
|
};
|
|
|
|
Map<VersionKey, Version> framebuffers;
|
|
Size2 size;
|
|
};
|
|
|
|
RID_Owner<Framebuffer> framebuffer_owner;
|
|
|
|
/***********************/
|
|
/**** VERTEX BUFFER ****/
|
|
/***********************/
|
|
|
|
// Vertex buffers in Vulkan are similar to how
|
|
// they work in OpenGL, except that instead of
|
|
// an attribtue index, there is a buffer binding
|
|
// index (for binding the buffers in real-time)
|
|
// and a location index (what is used in the shader).
|
|
//
|
|
// This mapping is done here internally, and it's not
|
|
// exposed.
|
|
|
|
RID_Owner<Buffer> vertex_buffer_owner;
|
|
|
|
struct VertexDescriptionKey {
|
|
Vector<VertexDescription> vertex_formats;
|
|
int buffer_count;
|
|
bool operator<(const VertexDescriptionKey &p_key) const {
|
|
if (buffer_count != p_key.buffer_count) {
|
|
return buffer_count < p_key.buffer_count;
|
|
}
|
|
if (vertex_formats.size() != p_key.vertex_formats.size()) {
|
|
return vertex_formats.size() < p_key.vertex_formats.size();
|
|
} else {
|
|
int vdc = vertex_formats.size();
|
|
const VertexDescription *a_ptr = vertex_formats.ptr();
|
|
const VertexDescription *b_ptr = p_key.vertex_formats.ptr();
|
|
for (int i = 0; i < vdc; i++) {
|
|
const VertexDescription &a = a_ptr[i];
|
|
const VertexDescription &b = b_ptr[i];
|
|
|
|
if (a.location != b.location) {
|
|
return a.location < b.location;
|
|
}
|
|
if (a.offset != b.offset) {
|
|
return a.offset < b.offset;
|
|
}
|
|
if (a.format != b.format) {
|
|
return a.format < b.format;
|
|
}
|
|
if (a.stride != b.stride) {
|
|
return a.stride < b.stride;
|
|
}
|
|
return a.frequency < b.frequency;
|
|
}
|
|
return false; //they are equal
|
|
}
|
|
}
|
|
};
|
|
|
|
// This is a cache and it's never freed, it ensures that
|
|
// ID used for a specific format always remain the same.
|
|
Map<VertexDescriptionKey, VertexFormatID> vertex_format_cache;
|
|
struct VertexDescriptionCache {
|
|
const Map<VertexDescriptionKey, VertexFormatID>::Element *E;
|
|
VkVertexInputBindingDescription *bindings;
|
|
VkVertexInputAttributeDescription *attributes;
|
|
VkPipelineVertexInputStateCreateInfo create_info;
|
|
};
|
|
|
|
Map<VertexFormatID, VertexDescriptionCache> vertex_formats;
|
|
|
|
struct VertexArray {
|
|
RID buffer;
|
|
VertexFormatID description;
|
|
int vertex_count;
|
|
uint32_t max_instances_allowed;
|
|
|
|
Vector<VkBuffer> buffers; //not owned, just referenced
|
|
Vector<VkDeviceSize> offsets;
|
|
};
|
|
|
|
RID_Owner<VertexArray> vertex_array_owner;
|
|
|
|
struct IndexBuffer : public Buffer {
|
|
uint32_t max_index; //used for validation
|
|
uint32_t index_count;
|
|
VkIndexType index_type;
|
|
bool supports_restart_indices;
|
|
};
|
|
|
|
RID_Owner<IndexBuffer> index_buffer_owner;
|
|
|
|
struct IndexArray {
|
|
uint32_t max_index; //remember the maximum index here too, for validation
|
|
VkBuffer buffer; //not owned, inherited from index buffer
|
|
uint32_t offset;
|
|
uint32_t indices;
|
|
VkIndexType index_type;
|
|
bool supports_restart_indices;
|
|
};
|
|
|
|
RID_Owner<IndexArray> index_array_owner;
|
|
|
|
/****************/
|
|
/**** SHADER ****/
|
|
/****************/
|
|
|
|
// Shaders in Vulkan are just pretty much
|
|
// precompiled blocks of SPIR-V bytecode. They
|
|
// are most likely not really compiled to host
|
|
// assembly until a pipeline is created.
|
|
//
|
|
// When supplying the shaders, this implementation
|
|
// will use the reflection abilities of glslang to
|
|
// understand and cache everything required to
|
|
// create and use the descriptor sets (Vulkan's
|
|
// biggest pain).
|
|
//
|
|
// Additionally, hashes are created for every set
|
|
// to do quick validation and ensuring the user
|
|
// does not submit something invalid.
|
|
|
|
struct Shader {
|
|
|
|
struct UniformInfo {
|
|
UniformType type;
|
|
int binding;
|
|
uint32_t stages;
|
|
int length; //size of arrays (in total elements), or ubos (in bytes * total elements)
|
|
bool operator<(const UniformInfo &p_info) const {
|
|
if (type != p_info.type) {
|
|
return type < p_info.type;
|
|
}
|
|
if (binding != p_info.binding) {
|
|
return binding < p_info.binding;
|
|
}
|
|
if (stages != p_info.stages) {
|
|
return stages < p_info.stages;
|
|
}
|
|
return length < p_info.length;
|
|
}
|
|
};
|
|
|
|
struct Set {
|
|
|
|
Vector<UniformInfo> uniform_info;
|
|
VkDescriptorSetLayout descriptor_set_layout;
|
|
};
|
|
|
|
Vector<int> vertex_input_locations; //inputs used, this is mostly for validation
|
|
int fragment_outputs;
|
|
|
|
struct PushConstant {
|
|
uint32_t push_constant_size;
|
|
uint32_t push_constants_vk_stage;
|
|
};
|
|
|
|
PushConstant push_constant;
|
|
|
|
int max_output;
|
|
Vector<Set> sets;
|
|
Vector<uint32_t> set_hashes;
|
|
Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
|
|
VkPipelineLayout pipeline_layout;
|
|
};
|
|
|
|
bool _uniform_add_binding(Vector<Vector<VkDescriptorSetLayoutBinding> > &bindings, Vector<Vector<Shader::UniformInfo> > &uniform_infos, const glslang::TObjectReflection &reflection, RenderingDevice::ShaderStage p_stage, Shader::PushConstant &push_constant, String *r_error);
|
|
|
|
RID_Owner<Shader> shader_owner;
|
|
|
|
/******************/
|
|
/**** UNIFORMS ****/
|
|
/******************/
|
|
|
|
// Descriptor sets require allocation from a pool.
|
|
// The documentation on how to use pools properly
|
|
// is scarce, and the documentation is strange.
|
|
//
|
|
// Basically, you can mix and match pools as you
|
|
// like, but you'll run into fragmentation issues.
|
|
// Because of this, the recommended approach is to
|
|
// create a a pool for every descriptor set type,
|
|
// as this prevents fragmentation.
|
|
//
|
|
// This is implemented here as a having a list of
|
|
// pools (each can contain up to 64 sets) for each
|
|
// set layout. The amount of sets for each type
|
|
// is used as the key.
|
|
|
|
enum {
|
|
MAX_DESCRIPTOR_POOL_ELEMENT = 65535
|
|
};
|
|
|
|
struct DescriptorPoolKey {
|
|
union {
|
|
struct {
|
|
uint16_t uniform_type[UNIFORM_TYPE_MAX]; //using 16 bits because, for sending arrays, each element is a pool set.
|
|
};
|
|
struct {
|
|
uint64_t key1;
|
|
uint64_t key2;
|
|
uint64_t key3;
|
|
};
|
|
};
|
|
bool operator<(const DescriptorPoolKey &p_key) const {
|
|
if (key1 != p_key.key1) {
|
|
return key1 < p_key.key1;
|
|
}
|
|
if (key2 != p_key.key2) {
|
|
return key2 < p_key.key2;
|
|
}
|
|
|
|
return key3 < p_key.key3;
|
|
}
|
|
DescriptorPoolKey() {
|
|
key1 = 0;
|
|
key2 = 0;
|
|
key3 = 0;
|
|
}
|
|
};
|
|
|
|
struct DescriptorPool {
|
|
VkDescriptorPool pool;
|
|
uint32_t usage;
|
|
};
|
|
|
|
Map<DescriptorPoolKey, Set<DescriptorPool *> > descriptor_pools;
|
|
uint32_t max_descriptors_per_pool;
|
|
|
|
DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
|
|
void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);
|
|
|
|
RID_Owner<Buffer> uniform_buffer_owner;
|
|
RID_Owner<Buffer> storage_buffer_owner;
|
|
|
|
//texture buffer needs a view
|
|
struct TextureBuffer {
|
|
Buffer buffer;
|
|
VkBufferView view;
|
|
};
|
|
|
|
RID_Owner<TextureBuffer> texture_buffer_owner;
|
|
|
|
// This structure contains the descriptor set. They _need_ to be allocated
|
|
// for a shader (and will be erased when this shader is erased), but should
|
|
// work for other shaders as long as the hash matches. This covers using
|
|
// them in shader variants.
|
|
//
|
|
// Keep also in mind that you can share buffers between descriptor sets, so
|
|
// the above restriction is not too serious.
|
|
|
|
struct UniformSet {
|
|
uint32_t hash;
|
|
RID shader_id;
|
|
DescriptorPool *pool;
|
|
DescriptorPoolKey pool_key;
|
|
VkDescriptorSet descriptor_set;
|
|
VkPipelineLayout pipeline_layout; //not owned, inherited from shader
|
|
Vector<RID> attachable_textures; //used for validation
|
|
};
|
|
|
|
RID_Owner<UniformSet> uniform_set_owner;
|
|
|
|
/*******************/
|
|
/**** PIPELINES ****/
|
|
/*******************/
|
|
|
|
// Render pipeline contains ALL the
|
|
// information required for drawing.
|
|
// This includes all the rasterizer state
|
|
// as well as shader used, framebuffer format,
|
|
// etc.
|
|
// While the pipeline is just a single object
|
|
// (VkPipeline) a lot of values are also saved
|
|
// here to do validation (vulkan does none by
|
|
// default) and warn the user if something
|
|
// was not supplied as intended.
|
|
|
|
struct RenderPipeline {
|
|
//Cached values for validation
|
|
FramebufferFormatID framebuffer_format;
|
|
uint32_t dynamic_state;
|
|
VertexFormatID vertex_format;
|
|
bool uses_restart_indices;
|
|
uint32_t primitive_minimum;
|
|
uint32_t primitive_divisor;
|
|
Vector<uint32_t> set_hashes;
|
|
uint32_t push_constant_size;
|
|
uint32_t push_constant_stages;
|
|
//Actual pipeline
|
|
VkPipelineLayout pipeline_layout; // not owned, needed for push constants
|
|
VkPipeline pipeline;
|
|
};
|
|
|
|
RID_Owner<RenderPipeline> pipeline_owner;
|
|
|
|
/*******************/
|
|
/**** DRAW LIST ****/
|
|
/*******************/
|
|
|
|
// Draw list contains both the command buffer
|
|
// used for drawing as well as a LOT of
|
|
// information used for validation. This
|
|
// validation is cheap so most of it can
|
|
// also run in release builds.
|
|
|
|
// When using split command lists, this is
|
|
// implemented internally using secondary command
|
|
// buffers. As they can be created in threads,
|
|
// each needs it's own command pool.
|
|
|
|
struct SplitDrawListAllocator {
|
|
VkCommandPool command_pool;
|
|
Vector<VkCommandBuffer> command_buffers; //one for each frame
|
|
};
|
|
|
|
Vector<SplitDrawListAllocator> split_draw_list_allocators;
|
|
|
|
struct DrawList {
|
|
|
|
VkCommandBuffer command_buffer; //if persistent, this is owned, otherwise it's shared with the ringbuffer
|
|
|
|
struct Validation {
|
|
bool active; //means command buffer was not closes, so you can keep adding things
|
|
FramebufferFormatID framebuffer_format;
|
|
//actual render pass values
|
|
uint32_t dynamic_state;
|
|
VertexFormatID vertex_format; //INVALID_ID if not set
|
|
uint32_t vertex_array_size; //0 if not set
|
|
uint32_t vertex_max_instances_allowed;
|
|
bool index_buffer_uses_restart_indices;
|
|
uint32_t index_array_size; //0 if index buffer not set
|
|
uint32_t index_array_max_index;
|
|
uint32_t index_array_offset;
|
|
Vector<uint32_t> set_hashes;
|
|
//last pipeline set values
|
|
bool pipeline_active;
|
|
uint32_t pipeline_dynamic_state;
|
|
VertexFormatID pipeline_vertex_format;
|
|
bool pipeline_uses_restart_indices;
|
|
uint32_t pipeline_primitive_divisor;
|
|
uint32_t pipeline_primitive_minimum;
|
|
Vector<uint32_t> pipeline_set_hashes;
|
|
VkPipelineLayout pipeline_push_constant_layout;
|
|
uint32_t pipeline_push_constant_size;
|
|
uint32_t pipeline_push_constant_stages;
|
|
bool pipeline_push_constant_suppplied;
|
|
|
|
Validation() {
|
|
active = true;
|
|
dynamic_state = 0;
|
|
vertex_format = INVALID_ID;
|
|
vertex_array_size = 0;
|
|
vertex_max_instances_allowed = 0xFFFFFFFF;
|
|
framebuffer_format = INVALID_ID;
|
|
index_array_size = 0; //not sent
|
|
index_array_max_index = 0; //not set
|
|
index_buffer_uses_restart_indices = false;
|
|
|
|
//pipeline state initalize
|
|
pipeline_active = false;
|
|
pipeline_dynamic_state = 0;
|
|
pipeline_vertex_format = INVALID_ID;
|
|
pipeline_uses_restart_indices = false;
|
|
pipeline_push_constant_size = 0;
|
|
pipeline_push_constant_stages = 0;
|
|
pipeline_push_constant_suppplied = false;
|
|
}
|
|
} validation;
|
|
};
|
|
|
|
DrawList *draw_list; //one for regular draw lists, multiple for split.
|
|
uint32_t draw_list_count;
|
|
bool draw_list_split;
|
|
Vector<RID> draw_list_bound_textures;
|
|
bool draw_list_unbind_textures;
|
|
|
|
Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass);
|
|
Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents);
|
|
_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);
|
|
|
|
/**************************/
|
|
/**** FRAME MANAGEMENT ****/
|
|
/**************************/
|
|
|
|
// This is the frame structure. There are normally
|
|
// 3 of these (used for triple buffering), or 2
|
|
// (double buffering). They are cycled constantly.
|
|
//
|
|
// It contains two command buffers, one that is
|
|
// used internally for setting up (creating stuff)
|
|
// and another used mostly for drawing.
|
|
//
|
|
// They also contains a list of things that need
|
|
// to be disposed of when deleted, which can't
|
|
// happen immediately due to the asynchronous
|
|
// nature of the GPU. They will get deleted
|
|
// when the frame is cycled.
|
|
|
|
struct Frame {
|
|
//list in usage order, from last to free to first to free
|
|
List<Buffer> buffers_to_dispose_of;
|
|
List<Texture> textures_to_dispose_of;
|
|
List<Framebuffer> framebuffers_to_dispose_of;
|
|
List<VkSampler> samplers_to_dispose_of;
|
|
List<Shader> shaders_to_dispose_of;
|
|
List<VkBufferView> buffer_views_to_dispose_of;
|
|
List<UniformSet> uniform_sets_to_dispose_of;
|
|
List<RenderPipeline> pipelines_to_dispose_of;
|
|
|
|
VkCommandPool command_pool;
|
|
VkCommandBuffer setup_command_buffer; //used at the begining of every frame for set-up
|
|
VkCommandBuffer draw_command_buffer; //used at the begining of every frame for set-up
|
|
};
|
|
|
|
Frame *frames; //frames available, they are cycled (usually 3)
|
|
int frame; //current frame
|
|
int frame_count; //total amount of frames
|
|
uint64_t frames_drawn;
|
|
|
|
void _free_pending_resources();
|
|
|
|
VmaAllocator allocator;
|
|
|
|
VulkanContext *context;
|
|
|
|
void _free_internal(RID p_id);
|
|
|
|
public:
|
|
virtual RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<PoolVector<uint8_t> > &p_data = Vector<PoolVector<uint8_t> >());
|
|
virtual RID texture_create_shared(const TextureView &p_view, RID p_with_texture);
|
|
virtual Error texture_update(RID p_texture, uint32_t p_layer, const PoolVector<uint8_t> &p_data, bool p_sync_with_draw = false);
|
|
|
|
virtual bool texture_is_format_supported_for_usage(DataFormat p_format, TextureUsageBits p_usage) const;
|
|
|
|
/*********************/
|
|
/**** FRAMEBUFFER ****/
|
|
/*********************/
|
|
|
|
FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format);
|
|
|
|
virtual RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID);
|
|
|
|
virtual FramebufferFormatID framebuffer_get_format(RID p_framebuffer);
|
|
|
|
/*****************/
|
|
/**** SAMPLER ****/
|
|
/*****************/
|
|
|
|
virtual RID sampler_create(const SamplerState &p_state);
|
|
|
|
/**********************/
|
|
/**** VERTEX ARRAY ****/
|
|
/**********************/
|
|
|
|
virtual RID vertex_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
|
|
|
|
// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated
|
|
virtual VertexFormatID vertex_format_create(const Vector<VertexDescription> &p_vertex_formats);
|
|
virtual RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers);
|
|
|
|
virtual RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>(), bool p_use_restart_indices = false);
|
|
|
|
virtual RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
|
|
|
|
/****************/
|
|
/**** SHADER ****/
|
|
/****************/
|
|
|
|
virtual RID shader_create_from_source(const Vector<ShaderStageSource> &p_stages, String *r_error = NULL, bool p_allow_cache = true);
|
|
|
|
/*****************/
|
|
/**** UNIFORM ****/
|
|
/*****************/
|
|
|
|
virtual RID uniform_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
|
|
virtual RID storage_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
|
|
virtual RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
|
|
|
|
virtual RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
|
|
|
|
virtual Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, void *p_data, bool p_sync_with_draw = false); //works for any buffer
|
|
|
|
/*************************/
|
|
/**** RENDER PIPELINE ****/
|
|
/*************************/
|
|
|
|
virtual RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, int p_dynamic_state_flags = 0);
|
|
|
|
/****************/
|
|
/**** SCREEN ****/
|
|
/****************/
|
|
|
|
virtual int screen_get_width(int p_screen = 0) const;
|
|
virtual int screen_get_height(int p_screen = 0) const;
|
|
virtual FramebufferFormatID screen_get_framebuffer_format() const;
|
|
|
|
/********************/
|
|
/**** DRAW LISTS ****/
|
|
/********************/
|
|
|
|
virtual DrawListID draw_list_begin_for_screen(int p_screen = 0, const Color &p_clear_color = Color());
|
|
virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());
|
|
virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());
|
|
|
|
virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
|
|
virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
|
|
virtual void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
|
|
virtual void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
|
|
virtual void draw_list_set_push_constant(DrawListID p_list, void *p_data, uint32_t p_data_size);
|
|
|
|
virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1);
|
|
|
|
virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
|
|
virtual void draw_list_disable_scissor(DrawListID p_list);
|
|
|
|
virtual void draw_list_end();
|
|
|
|
virtual void free(RID p_id);
|
|
|
|
/**************/
|
|
/**** FREE ****/
|
|
/**************/
|
|
|
|
void initialize(VulkanContext *p_context);
|
|
void finalize();
|
|
|
|
void finalize_frame();
|
|
void advance_frame();
|
|
|
|
RenderingDeviceVulkan();
|
|
};
|
|
|
|
#endif // RENDERING_DEVICE_VULKAN_H
|