virtualx-engine/servers/physics_2d/collision_solver_2d_sw.cpp
Rémi Verschelde 1426cd3b3a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".

Backported from #70885.
2023-01-10 15:26:54 +01:00

248 lines
9.5 KiB
C++

/**************************************************************************/
/* collision_solver_2d_sw.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "collision_solver_2d_sw.h"
#include "collision_solver_2d_sat.h"
#define collision_solver sat_2d_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration
bool CollisionSolver2DSW::solve_static_line(const Shape2DSW *p_shape_A, const Transform2D &p_transform_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
const LineShape2DSW *line = static_cast<const LineShape2DSW *>(p_shape_A);
if (p_shape_B->get_type() == Physics2DServer::SHAPE_LINE) {
return false;
}
Vector2 n = p_transform_A.basis_xform(line->get_normal()).normalized();
Vector2 p = p_transform_A.xform(line->get_normal() * line->get_d());
real_t d = n.dot(p);
Vector2 supports[2];
int support_count;
p_shape_B->get_supports(p_transform_B.affine_inverse().basis_xform(-n).normalized(), supports, support_count);
bool found = false;
for (int i = 0; i < support_count; i++) {
supports[i] = p_transform_B.xform(supports[i]);
real_t pd = n.dot(supports[i]);
if (pd >= d) {
continue;
}
found = true;
Vector2 support_A = supports[i] - n * (pd - d);
if (p_result_callback) {
if (p_swap_result) {
p_result_callback(supports[i], support_A, p_userdata);
} else {
p_result_callback(support_A, supports[i], p_userdata);
}
}
}
return found;
}
bool CollisionSolver2DSW::solve_raycast(const Shape2DSW *p_shape_A, const Vector2 &p_motion_A, const Transform2D &p_transform_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *sep_axis, real_t p_margin) {
const RayShape2DSW *ray = static_cast<const RayShape2DSW *>(p_shape_A);
if (p_shape_B->get_type() == Physics2DServer::SHAPE_RAY) {
return false;
}
Vector2 from = p_transform_A.get_origin();
Vector2 to = from + p_transform_A[1] * (ray->get_length() + p_margin);
if (p_motion_A != Vector2()) {
//not the best but should be enough
Vector2 normal = (to - from).normalized();
to += normal * MAX(0.0, normal.dot(p_motion_A));
}
Vector2 support_A = to;
Transform2D invb = p_transform_B.affine_inverse();
from = invb.xform(from);
to = invb.xform(to);
Vector2 p, n;
if (!p_shape_B->intersect_segment(from, to, p, n)) {
if (sep_axis) {
*sep_axis = p_transform_A[1].normalized();
}
return false;
}
Vector2 support_B = p_transform_B.xform(p);
if (ray->get_slips_on_slope()) {
Vector2 global_n = invb.basis_xform_inv(n).normalized();
support_B = support_A + (support_B - support_A).length() * global_n;
}
if (p_result_callback) {
if (p_swap_result) {
p_result_callback(support_B, support_A, p_userdata);
} else {
p_result_callback(support_A, support_B, p_userdata);
}
}
return true;
}
struct _ConcaveCollisionInfo2D {
const Transform2D *transform_A;
const Shape2DSW *shape_A;
const Transform2D *transform_B;
Vector2 motion_A;
Vector2 motion_B;
real_t margin_A;
real_t margin_B;
CollisionSolver2DSW::CallbackResult result_callback;
void *userdata;
bool swap_result;
bool collided;
int aabb_tests;
int collisions;
Vector2 *sep_axis;
};
bool CollisionSolver2DSW::concave_callback(void *p_userdata, Shape2DSW *p_convex) {
_ConcaveCollisionInfo2D &cinfo = *(_ConcaveCollisionInfo2D *)(p_userdata);
cinfo.aabb_tests++;
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex, *cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, cinfo.sep_axis, cinfo.margin_A, cinfo.margin_B);
if (!collided) {
return false;
}
cinfo.collided = true;
cinfo.collisions++;
// Stop at first collision if contacts are not needed.
return !cinfo.result_callback;
}
bool CollisionSolver2DSW::solve_concave(const Shape2DSW *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *sep_axis, real_t p_margin_A, real_t p_margin_B) {
const ConcaveShape2DSW *concave_B = static_cast<const ConcaveShape2DSW *>(p_shape_B);
_ConcaveCollisionInfo2D cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.motion_A = p_motion_A;
cinfo.result_callback = p_result_callback;
cinfo.userdata = p_userdata;
cinfo.swap_result = p_swap_result;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.sep_axis = sep_axis;
cinfo.margin_A = p_margin_A;
cinfo.margin_B = p_margin_B;
cinfo.aabb_tests = 0;
Transform2D rel_transform = p_transform_A;
rel_transform.elements[2] -= p_transform_B.get_origin();
//quickly compute a local Rect2
Rect2 local_aabb;
for (int i = 0; i < 2; i++) {
Vector2 axis(p_transform_B.elements[i]);
real_t axis_scale = 1.0 / axis.length();
axis *= axis_scale;
real_t smin, smax;
p_shape_A->project_rangev(axis, rel_transform, smin, smax);
smin *= axis_scale;
smax *= axis_scale;
local_aabb.position[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_B->cull(local_aabb, concave_callback, &cinfo);
return cinfo.collided;
}
bool CollisionSolver2DSW::solve(const Shape2DSW *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, Vector2 *sep_axis, real_t p_margin_A, real_t p_margin_B) {
Physics2DServer::ShapeType type_A = p_shape_A->get_type();
Physics2DServer::ShapeType type_B = p_shape_B->get_type();
bool concave_A = p_shape_A->is_concave();
bool concave_B = p_shape_B->is_concave();
real_t margin_A = p_margin_A, margin_B = p_margin_B;
bool swap = false;
if (type_A > type_B) {
SWAP(type_A, type_B);
SWAP(concave_A, concave_B);
SWAP(margin_A, margin_B);
swap = true;
}
if (type_A == Physics2DServer::SHAPE_LINE) {
if (type_B == Physics2DServer::SHAPE_LINE || type_B == Physics2DServer::SHAPE_RAY) {
return false;
}
if (swap) {
return solve_static_line(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
} else {
return solve_static_line(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
}
} else if (type_A == Physics2DServer::SHAPE_RAY) {
if (type_B == Physics2DServer::SHAPE_RAY) {
return false; //no ray-ray
}
if (swap) {
return solve_raycast(p_shape_B, p_motion_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, sep_axis, p_margin_B);
} else {
return solve_raycast(p_shape_A, p_motion_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, sep_axis, p_margin_A);
}
} else if (concave_B) {
if (concave_A) {
return false;
}
if (!swap) {
return solve_concave(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, sep_axis, margin_A, margin_B);
} else {
return solve_concave(p_shape_B, p_transform_B, p_motion_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, sep_axis, margin_A, margin_B);
}
} else {
return collision_solver(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, sep_axis, margin_A, margin_B);
}
}