virtualx-engine/modules/bullet/generic_6dof_joint_bullet.cpp
Rémi Verschelde 6d16f2f053 Fix error macro calls not ending with semicolon
It's not necessary, but the vast majority of calls of error macros
do have an ending semicolon, so it's best to be consistent.
Most WARN_DEPRECATED calls did *not* have a semicolon, but there's
no reason for them to be treated differently.
2019-06-11 14:49:34 +02:00

275 lines
12 KiB
C++

/*************************************************************************/
/* generic_6dof_joint_bullet.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "generic_6dof_joint_bullet.h"
#include "bullet_types_converter.h"
#include "bullet_utilities.h"
#include "rigid_body_bullet.h"
#include <BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h>
/**
@author AndreaCatania
*/
Generic6DOFJointBullet::Generic6DOFJointBullet(RigidBodyBullet *rbA, RigidBodyBullet *rbB, const Transform &frameInA, const Transform &frameInB) :
JointBullet() {
Transform scaled_AFrame(frameInA.scaled(rbA->get_body_scale()));
scaled_AFrame.basis.rotref_posscale_decomposition(scaled_AFrame.basis);
btTransform btFrameA;
G_TO_B(scaled_AFrame, btFrameA);
if (rbB) {
Transform scaled_BFrame(frameInB.scaled(rbB->get_body_scale()));
scaled_BFrame.basis.rotref_posscale_decomposition(scaled_BFrame.basis);
btTransform btFrameB;
G_TO_B(scaled_BFrame, btFrameB);
sixDOFConstraint = bulletnew(btGeneric6DofSpring2Constraint(*rbA->get_bt_rigid_body(), *rbB->get_bt_rigid_body(), btFrameA, btFrameB));
} else {
sixDOFConstraint = bulletnew(btGeneric6DofSpring2Constraint(*rbA->get_bt_rigid_body(), btFrameA));
}
setup(sixDOFConstraint);
}
Transform Generic6DOFJointBullet::getFrameOffsetA() const {
btTransform btTrs = sixDOFConstraint->getFrameOffsetA();
Transform gTrs;
B_TO_G(btTrs, gTrs);
return gTrs;
}
Transform Generic6DOFJointBullet::getFrameOffsetB() const {
btTransform btTrs = sixDOFConstraint->getFrameOffsetB();
Transform gTrs;
B_TO_G(btTrs, gTrs);
return gTrs;
}
Transform Generic6DOFJointBullet::getFrameOffsetA() {
btTransform btTrs = sixDOFConstraint->getFrameOffsetA();
Transform gTrs;
B_TO_G(btTrs, gTrs);
return gTrs;
}
Transform Generic6DOFJointBullet::getFrameOffsetB() {
btTransform btTrs = sixDOFConstraint->getFrameOffsetB();
Transform gTrs;
B_TO_G(btTrs, gTrs);
return gTrs;
}
void Generic6DOFJointBullet::set_linear_lower_limit(const Vector3 &linearLower) {
btVector3 btVec;
G_TO_B(linearLower, btVec);
sixDOFConstraint->setLinearLowerLimit(btVec);
}
void Generic6DOFJointBullet::set_linear_upper_limit(const Vector3 &linearUpper) {
btVector3 btVec;
G_TO_B(linearUpper, btVec);
sixDOFConstraint->setLinearUpperLimit(btVec);
}
void Generic6DOFJointBullet::set_angular_lower_limit(const Vector3 &angularLower) {
btVector3 btVec;
G_TO_B(angularLower, btVec);
sixDOFConstraint->setAngularLowerLimit(btVec);
}
void Generic6DOFJointBullet::set_angular_upper_limit(const Vector3 &angularUpper) {
btVector3 btVec;
G_TO_B(angularUpper, btVec);
sixDOFConstraint->setAngularUpperLimit(btVec);
}
void Generic6DOFJointBullet::set_param(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisParam p_param, real_t p_value) {
ERR_FAIL_INDEX(p_axis, 3);
switch (p_param) {
case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT:
limits_lower[0][p_axis] = p_value;
set_flag(p_axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, flags[p_axis][PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT]); // Reload bullet parameter
break;
case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT:
limits_upper[0][p_axis] = p_value;
set_flag(p_axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, flags[p_axis][PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT]); // Reload bullet parameter
break;
case PhysicsServer::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY:
sixDOFConstraint->getTranslationalLimitMotor()->m_targetVelocity.m_floats[p_axis] = p_value;
break;
case PhysicsServer::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT:
sixDOFConstraint->getTranslationalLimitMotor()->m_maxMotorForce.m_floats[p_axis] = p_value;
break;
case PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_DAMPING:
sixDOFConstraint->getTranslationalLimitMotor()->m_springDamping.m_floats[p_axis] = p_value;
break;
case PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS:
sixDOFConstraint->getTranslationalLimitMotor()->m_springStiffness.m_floats[p_axis] = p_value;
break;
case PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT:
sixDOFConstraint->getTranslationalLimitMotor()->m_equilibriumPoint.m_floats[p_axis] = p_value;
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT:
limits_lower[1][p_axis] = p_value;
set_flag(p_axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, flags[p_axis][PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT]); // Reload bullet parameter
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT:
limits_upper[1][p_axis] = p_value;
set_flag(p_axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, flags[p_axis][PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT]); // Reload bullet parameter
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_bounce = p_value;
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_stopERP = p_value;
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_targetVelocity = p_value;
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_maxMotorForce = p_value;
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_springStiffness = p_value;
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_DAMPING:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_springDamping = p_value;
break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_equilibriumPoint = p_value;
break;
default:
ERR_EXPLAIN("This parameter " + itos(p_param) + " is deprecated");
WARN_DEPRECATED;
break;
}
}
real_t Generic6DOFJointBullet::get_param(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisParam p_param) const {
ERR_FAIL_INDEX_V(p_axis, 3, 0.);
switch (p_param) {
case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT:
return limits_lower[0][p_axis];
case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT:
return limits_upper[0][p_axis];
case PhysicsServer::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY:
return sixDOFConstraint->getTranslationalLimitMotor()->m_targetVelocity.m_floats[p_axis];
case PhysicsServer::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT:
return sixDOFConstraint->getTranslationalLimitMotor()->m_maxMotorForce.m_floats[p_axis];
case PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_DAMPING:
return sixDOFConstraint->getTranslationalLimitMotor()->m_springDamping.m_floats[p_axis];
case PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS:
return sixDOFConstraint->getTranslationalLimitMotor()->m_springStiffness.m_floats[p_axis];
case PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT:
return sixDOFConstraint->getTranslationalLimitMotor()->m_equilibriumPoint.m_floats[p_axis];
case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT:
return limits_lower[1][p_axis];
case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT:
return limits_upper[1][p_axis];
case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION:
return sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_bounce;
case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP:
return sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_stopERP;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY:
return sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_targetVelocity;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT:
return sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_maxMotorForce;
case PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS:
return sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_springStiffness;
case PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_DAMPING:
return sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_springDamping;
case PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT:
return sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_equilibriumPoint;
default:
ERR_EXPLAIN("This parameter " + itos(p_param) + " is deprecated");
WARN_DEPRECATED;
return 0;
}
}
void Generic6DOFJointBullet::set_flag(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value) {
ERR_FAIL_INDEX(p_axis, 3);
flags[p_axis][p_flag] = p_value;
switch (p_flag) {
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT:
if (flags[p_axis][p_flag]) {
sixDOFConstraint->setLimit(p_axis, limits_lower[0][p_axis], limits_upper[0][p_axis]);
} else {
sixDOFConstraint->setLimit(p_axis, 0, -1); // Free
}
break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT:
if (flags[p_axis][p_flag]) {
sixDOFConstraint->setLimit(p_axis + 3, limits_lower[1][p_axis], limits_upper[1][p_axis]);
} else {
sixDOFConstraint->setLimit(p_axis + 3, 0, -1); // Free
}
break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_MOTOR:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_enableMotor = flags[p_axis][p_flag];
break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR:
sixDOFConstraint->getTranslationalLimitMotor()->m_enableMotor[p_axis] = flags[p_axis][p_flag];
break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING:
sixDOFConstraint->getTranslationalLimitMotor()->m_enableSpring[p_axis] = p_value;
break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING:
sixDOFConstraint->getRotationalLimitMotor(p_axis)->m_enableSpring = p_value;
break;
default:
ERR_EXPLAIN("This flag " + itos(p_flag) + " is deprecated");
WARN_DEPRECATED;
break;
}
}
bool Generic6DOFJointBullet::get_flag(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisFlag p_flag) const {
ERR_FAIL_INDEX_V(p_axis, 3, false);
return flags[p_axis][p_flag];
}
void Generic6DOFJointBullet::set_precision(int p_precision) {
sixDOFConstraint->setOverrideNumSolverIterations(MAX(1, p_precision));
}
int Generic6DOFJointBullet::get_precision() const {
return sixDOFConstraint->getOverrideNumSolverIterations();
}