virtualx-engine/servers/physics/collision_solver_sw.cpp
2017-08-27 14:11:45 +02:00

376 lines
12 KiB
C++

/*************************************************************************/
/* collision_solver_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "collision_solver_sw.h"
#include "collision_solver_sat.h"
#include "collision_solver_sat.h"
#include "gjk_epa.h"
#define collision_solver sat_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration
bool CollisionSolverSW::solve_static_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
const PlaneShapeSW *plane = static_cast<const PlaneShapeSW *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE)
return false;
Plane p = p_transform_A.xform(plane->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count);
bool found = false;
for (int i = 0; i < support_count; i++) {
supports[i] = p_transform_B.xform(supports[i]);
if (p.distance_to(supports[i]) >= 0)
continue;
found = true;
Vector3 support_A = p.project(supports[i]);
if (p_result_callback) {
if (p_swap_result)
p_result_callback(supports[i], support_A, p_userdata);
else
p_result_callback(support_A, supports[i], p_userdata);
}
}
return found;
}
bool CollisionSolverSW::solve_ray(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
const RayShapeSW *ray = static_cast<const RayShapeSW *>(p_shape_A);
Vector3 from = p_transform_A.origin;
Vector3 to = from + p_transform_A.basis.get_axis(2) * ray->get_length();
Vector3 support_A = to;
Transform ai = p_transform_B.affine_inverse();
from = ai.xform(from);
to = ai.xform(to);
Vector3 p, n;
if (!p_shape_B->intersect_segment(from, to, p, n))
return false;
Vector3 support_B = p_transform_B.xform(p);
if (p_result_callback) {
if (p_swap_result)
p_result_callback(support_B, support_A, p_userdata);
else
p_result_callback(support_A, support_B, p_userdata);
}
return true;
}
struct _ConcaveCollisionInfo {
const Transform *transform_A;
const ShapeSW *shape_A;
const Transform *transform_B;
CollisionSolverSW::CallbackResult result_callback;
void *userdata;
bool swap_result;
bool collided;
int aabb_tests;
int collisions;
bool tested;
float margin_A;
float margin_B;
Vector3 close_A, close_B;
};
void CollisionSolverSW::concave_callback(void *p_userdata, ShapeSW *p_convex) {
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
cinfo.aabb_tests++;
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, NULL, cinfo.margin_A, cinfo.margin_B);
if (!collided)
return;
cinfo.collided = true;
cinfo.collisions++;
}
bool CollisionSolverSW::solve_concave(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, float p_margin_A, float p_margin_B) {
const ConcaveShapeSW *concave_B = static_cast<const ConcaveShapeSW *>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.result_callback = p_result_callback;
cinfo.userdata = p_userdata;
cinfo.swap_result = p_swap_result;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.margin_A = p_margin_A;
cinfo.margin_B = p_margin_B;
cinfo.aabb_tests = 0;
Transform rel_transform = p_transform_A;
rel_transform.origin -= p_transform_B.origin;
//quickly compute a local AABB
AABB local_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis(p_transform_B.basis.get_axis(i));
float axis_scale = 1.0 / axis.length();
axis *= axis_scale;
float smin, smax;
p_shape_A->project_range(axis, rel_transform, smin, smax);
smin -= p_margin_A;
smax += p_margin_A;
smin *= axis_scale;
smax *= axis_scale;
local_aabb.pos[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_B->cull(local_aabb, concave_callback, &cinfo);
//print_line("COL AABB TESTS: "+itos(cinfo.aabb_tests));
return cinfo.collided;
}
bool CollisionSolverSW::solve_static(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, float p_margin_A, float p_margin_B) {
PhysicsServer::ShapeType type_A = p_shape_A->get_type();
PhysicsServer::ShapeType type_B = p_shape_B->get_type();
bool concave_A = p_shape_A->is_concave();
bool concave_B = p_shape_B->is_concave();
bool swap = false;
if (type_A > type_B) {
SWAP(type_A, type_B);
SWAP(concave_A, concave_B);
swap = true;
}
if (type_A == PhysicsServer::SHAPE_PLANE) {
if (type_B == PhysicsServer::SHAPE_PLANE)
return false;
if (type_B == PhysicsServer::SHAPE_RAY) {
return false;
}
if (swap) {
return solve_static_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
} else {
return solve_static_plane(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
}
} else if (type_A == PhysicsServer::SHAPE_RAY) {
if (type_B == PhysicsServer::SHAPE_RAY)
return false;
if (swap) {
return solve_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
} else {
return solve_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
}
} else if (concave_B) {
if (concave_A)
return false;
if (!swap)
return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
else
return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
} else {
return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
}
return false;
}
void CollisionSolverSW::concave_distance_callback(void *p_userdata, ShapeSW *p_convex) {
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
cinfo.aabb_tests++;
if (cinfo.collided)
return;
Vector3 close_A, close_B;
cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
if (cinfo.collided)
return;
if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
cinfo.close_A = close_A;
cinfo.close_B = close_B;
cinfo.tested = true;
}
cinfo.collisions++;
}
bool CollisionSolverSW::solve_distance_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
const PlaneShapeSW *plane = static_cast<const PlaneShapeSW *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE)
return false;
Plane p = p_transform_A.xform(plane->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count);
bool collided = false;
Vector3 closest;
float closest_d;
for (int i = 0; i < support_count; i++) {
supports[i] = p_transform_B.xform(supports[i]);
real_t d = p.distance_to(supports[i]);
if (i == 0 || d < closest_d) {
closest = supports[i];
closest_d = d;
if (d <= 0)
collided = true;
}
}
r_point_A = p.project(closest);
r_point_B = closest;
return collided;
}
bool CollisionSolverSW::solve_distance(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
if (p_shape_A->is_concave())
return false;
if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) {
Vector3 a, b;
bool col = solve_distance_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
r_point_A = b;
r_point_B = a;
return !col;
} else if (p_shape_B->is_concave()) {
if (p_shape_A->is_concave())
return false;
const ConcaveShapeSW *concave_B = static_cast<const ConcaveShapeSW *>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.result_callback = NULL;
cinfo.userdata = NULL;
cinfo.swap_result = false;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.aabb_tests = 0;
cinfo.tested = false;
Transform rel_transform = p_transform_A;
rel_transform.origin -= p_transform_B.origin;
//quickly compute a local AABB
bool use_cc_hint = p_concave_hint != AABB();
AABB cc_hint_aabb;
if (use_cc_hint) {
cc_hint_aabb = p_concave_hint;
cc_hint_aabb.pos -= p_transform_B.origin;
}
AABB local_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis(p_transform_B.basis.get_axis(i));
float axis_scale = 1.0 / axis.length();
axis *= axis_scale;
float smin, smax;
if (use_cc_hint) {
cc_hint_aabb.project_range_in_plane(Plane(axis, 0), smin, smax);
} else {
p_shape_A->project_range(axis, rel_transform, smin, smax);
}
smin *= axis_scale;
smax *= axis_scale;
local_aabb.pos[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_B->cull(local_aabb, concave_distance_callback, &cinfo);
if (!cinfo.collided) {
// print_line(itos(cinfo.tested));
r_point_A = cinfo.close_A;
r_point_B = cinfo.close_B;
}
//print_line("DIST AABB TESTS: "+itos(cinfo.aabb_tests));
return !cinfo.collided;
} else {
return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
}
return false;
}