virtualx-engine/scene/3d/lightmap_gi.cpp
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

1555 lines
54 KiB
C++

/**************************************************************************/
/* lightmap_gi.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "lightmap_gi.h"
#include "core/config/project_settings.h"
#include "core/io/config_file.h"
#include "core/math/delaunay_3d.h"
#include "lightmap_probe.h"
#include "scene/3d/mesh_instance_3d.h"
#include "scene/resources/camera_attributes.h"
#include "scene/resources/environment.h"
#include "scene/resources/sky.h"
void LightmapGIData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) {
User user;
user.path = p_path;
user.uv_scale = p_uv_scale;
user.slice_index = p_slice_index;
user.sub_instance = p_sub_instance;
users.push_back(user);
}
int LightmapGIData::get_user_count() const {
return users.size();
}
NodePath LightmapGIData::get_user_path(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), NodePath());
return users[p_user].path;
}
int32_t LightmapGIData::get_user_sub_instance(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), -1);
return users[p_user].sub_instance;
}
Rect2 LightmapGIData::get_user_lightmap_uv_scale(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), Rect2());
return users[p_user].uv_scale;
}
int LightmapGIData::get_user_lightmap_slice_index(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), -1);
return users[p_user].slice_index;
}
void LightmapGIData::clear_users() {
users.clear();
}
void LightmapGIData::_set_user_data(const Array &p_data) {
ERR_FAIL_COND(p_data.is_empty());
ERR_FAIL_COND((p_data.size() % 4) != 0);
for (int i = 0; i < p_data.size(); i += 4) {
add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]);
}
}
Array LightmapGIData::_get_user_data() const {
Array ret;
for (int i = 0; i < users.size(); i++) {
ret.push_back(users[i].path);
ret.push_back(users[i].uv_scale);
ret.push_back(users[i].slice_index);
ret.push_back(users[i].sub_instance);
}
return ret;
}
void LightmapGIData::_set_light_textures_data(const Array &p_data) {
ERR_FAIL_COND(p_data.is_empty());
if (p_data.size() == 1) {
set_light_texture(p_data[0]);
} else {
Vector<Ref<Image>> images;
for (int i = 0; i < p_data.size(); i++) {
Ref<TextureLayered> texture = p_data[i];
ERR_FAIL_COND_MSG(texture.is_null(), vformat("Invalid TextureLayered at index %d.", i));
for (int j = 0; j < texture->get_layers(); j++) {
images.push_back(texture->get_layer_data(j));
}
}
Ref<Texture2DArray> combined_texture;
combined_texture.instantiate();
combined_texture->create_from_images(images);
set_light_texture(combined_texture);
}
}
Array LightmapGIData::_get_light_textures_data() const {
Array ret;
if (light_texture.is_null() || light_texture->get_layers() == 0) {
return ret;
}
Vector<Ref<Image>> images;
for (int i = 0; i < light_texture->get_layers(); i++) {
images.push_back(light_texture->get_layer_data(i));
}
int slice_count = images.size();
int slice_width = images[0]->get_width();
int slice_height = images[0]->get_height();
int slices_per_texture = Image::MAX_HEIGHT / slice_height;
int texture_count = Math::ceil(slice_count / (float)slices_per_texture);
ret.resize(texture_count);
String base_name = get_path().get_basename();
int last_count = slice_count % slices_per_texture;
for (int i = 0; i < texture_count; i++) {
int texture_slice_count = (i == texture_count - 1 && last_count != 0) ? last_count : slices_per_texture;
Ref<Image> texture_image = Image::create_empty(slice_width, slice_height * texture_slice_count, false, images[0]->get_format());
for (int j = 0; j < texture_slice_count; j++) {
texture_image->blit_rect(images[i * slices_per_texture + j], Rect2i(0, 0, slice_width, slice_height), Point2i(0, slice_height * j));
}
String texture_path = texture_count > 1 ? base_name + "_" + itos(i) + ".exr" : base_name + ".exr";
Ref<ConfigFile> config;
config.instantiate();
if (FileAccess::exists(texture_path + ".import")) {
config->load(texture_path + ".import");
}
config->set_value("remap", "importer", "2d_array_texture");
config->set_value("remap", "type", "CompressedTexture2DArray");
if (!config->has_section_key("params", "compress/mode")) {
config->set_value("params", "compress/mode", 2); //user may want another compression, so leave it be
}
config->set_value("params", "compress/channel_pack", 1);
config->set_value("params", "mipmaps/generate", false);
config->set_value("params", "slices/horizontal", 1);
config->set_value("params", "slices/vertical", texture_slice_count);
config->save(texture_path + ".import");
Error err = texture_image->save_exr(texture_path, false);
ERR_FAIL_COND_V(err, ret);
ResourceLoader::import(texture_path);
Ref<TextureLayered> t = ResourceLoader::load(texture_path); //if already loaded, it will be updated on refocus?
ERR_FAIL_COND_V(t.is_null(), ret);
ret[i] = t;
}
return ret;
}
RID LightmapGIData::get_rid() const {
return lightmap;
}
void LightmapGIData::clear() {
users.clear();
}
void LightmapGIData::set_light_texture(const Ref<TextureLayered> &p_light_texture) {
light_texture = p_light_texture;
RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
}
Ref<TextureLayered> LightmapGIData::get_light_texture() const {
return light_texture;
}
void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) {
uses_spherical_harmonics = p_enable;
RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
}
bool LightmapGIData::is_using_spherical_harmonics() const {
return uses_spherical_harmonics;
}
void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree, float p_baked_exposure) {
if (p_points.size()) {
int pc = p_points.size();
ERR_FAIL_COND(pc * 9 != p_point_sh.size());
ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0);
ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0);
RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree);
RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds);
RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior);
} else {
RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array());
RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB());
RS::get_singleton()->lightmap_set_probe_interior(lightmap, false);
}
RS::get_singleton()->lightmap_set_baked_exposure_normalization(lightmap, p_baked_exposure);
baked_exposure = p_baked_exposure;
interior = p_interior;
bounds = p_bounds;
}
PackedVector3Array LightmapGIData::get_capture_points() const {
return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap);
}
PackedColorArray LightmapGIData::get_capture_sh() const {
return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap);
}
PackedInt32Array LightmapGIData::get_capture_tetrahedra() const {
return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap);
}
PackedInt32Array LightmapGIData::get_capture_bsp_tree() const {
return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap);
}
AABB LightmapGIData::get_capture_bounds() const {
return bounds;
}
bool LightmapGIData::is_interior() const {
return interior;
}
float LightmapGIData::get_baked_exposure() const {
return baked_exposure;
}
void LightmapGIData::_set_probe_data(const Dictionary &p_data) {
ERR_FAIL_COND(!p_data.has("bounds"));
ERR_FAIL_COND(!p_data.has("points"));
ERR_FAIL_COND(!p_data.has("tetrahedra"));
ERR_FAIL_COND(!p_data.has("bsp"));
ERR_FAIL_COND(!p_data.has("sh"));
ERR_FAIL_COND(!p_data.has("interior"));
ERR_FAIL_COND(!p_data.has("baked_exposure"));
set_capture_data(p_data["bounds"], p_data["interior"], p_data["points"], p_data["sh"], p_data["tetrahedra"], p_data["bsp"], p_data["baked_exposure"]);
}
Dictionary LightmapGIData::_get_probe_data() const {
Dictionary d;
d["bounds"] = get_capture_bounds();
d["points"] = get_capture_points();
d["tetrahedra"] = get_capture_tetrahedra();
d["bsp"] = get_capture_bsp_tree();
d["sh"] = get_capture_sh();
d["interior"] = is_interior();
d["baked_exposure"] = get_baked_exposure();
return d;
}
void LightmapGIData::_bind_methods() {
ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &LightmapGIData::_set_user_data);
ClassDB::bind_method(D_METHOD("_get_user_data"), &LightmapGIData::_get_user_data);
ClassDB::bind_method(D_METHOD("set_light_texture", "light_texture"), &LightmapGIData::set_light_texture);
ClassDB::bind_method(D_METHOD("get_light_texture"), &LightmapGIData::get_light_texture);
ClassDB::bind_method(D_METHOD("_set_light_textures_data", "data"), &LightmapGIData::_set_light_textures_data);
ClassDB::bind_method(D_METHOD("_get_light_textures_data"), &LightmapGIData::_get_light_textures_data);
ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &LightmapGIData::set_uses_spherical_harmonics);
ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &LightmapGIData::is_using_spherical_harmonics);
ClassDB::bind_method(D_METHOD("add_user", "path", "uv_scale", "slice_index", "sub_instance"), &LightmapGIData::add_user);
ClassDB::bind_method(D_METHOD("get_user_count"), &LightmapGIData::get_user_count);
ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &LightmapGIData::get_user_path);
ClassDB::bind_method(D_METHOD("clear_users"), &LightmapGIData::clear_users);
ClassDB::bind_method(D_METHOD("_set_probe_data", "data"), &LightmapGIData::_set_probe_data);
ClassDB::bind_method(D_METHOD("_get_probe_data"), &LightmapGIData::_get_probe_data);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered", PROPERTY_USAGE_EDITOR), "set_light_texture", "get_light_texture"); // property usage default but no save
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "light_textures", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_light_textures_data", "_get_light_textures_data");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics");
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data");
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data");
}
LightmapGIData::LightmapGIData() {
lightmap = RS::get_singleton()->lightmap_create();
}
LightmapGIData::~LightmapGIData() {
ERR_FAIL_NULL(RenderingServer::get_singleton());
RS::get_singleton()->free(lightmap);
}
///////////////////////////
void LightmapGI::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) {
MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node);
if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_STATIC && mi->is_visible_in_tree()) {
Ref<Mesh> mesh = mi->get_mesh();
if (mesh.is_valid()) {
bool all_have_uv2_and_normal = true;
bool surfaces_found = false;
for (int i = 0; i < mesh->get_surface_count(); i++) {
if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) {
all_have_uv2_and_normal = false;
break;
}
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) {
all_have_uv2_and_normal = false;
break;
}
surfaces_found = true;
}
if (surfaces_found && all_have_uv2_and_normal) {
//READY TO BAKE! size hint could be computed if not found, actually..
MeshesFound mf;
mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform();
mf.node_path = get_path_to(mi);
mf.subindex = -1;
mf.mesh = mesh;
static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 };
mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()];
Ref<Material> all_override = mi->get_material_override();
for (int i = 0; i < mesh->get_surface_count(); i++) {
if (all_override.is_valid()) {
mf.overrides.push_back(all_override);
} else {
mf.overrides.push_back(mi->get_surface_override_material(i));
}
}
meshes.push_back(mf);
}
}
}
Node3D *s = Object::cast_to<Node3D>(p_at_node);
if (!mi && s) {
Array bmeshes = p_at_node->call("get_bake_bmeshes");
if (bmeshes.size() && (bmeshes.size() & 1) == 0) {
Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform();
for (int i = 0; i < bmeshes.size(); i += 2) {
Ref<Mesh> mesh = bmeshes[i];
if (!mesh.is_valid()) {
continue;
}
MeshesFound mf;
Transform3D mesh_xf = bmeshes[i + 1];
mf.xform = xf * mesh_xf;
mf.node_path = get_path_to(s);
mf.subindex = i / 2;
mf.lightmap_scale = 1;
mf.mesh = mesh;
meshes.push_back(mf);
}
}
}
Light3D *light = Object::cast_to<Light3D>(p_at_node);
if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) {
LightsFound lf;
lf.xform = get_global_transform().affine_inverse() * light->get_global_transform();
lf.light = light;
lights.push_back(lf);
}
LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node);
if (probe) {
Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform();
probes.push_back(xf.origin);
}
for (int i = 0; i < p_at_node->get_child_count(); i++) {
Node *child = p_at_node->get_child(i);
if (!child->get_owner()) {
continue; //maybe a helper
}
_find_meshes_and_lights(child, meshes, lights, probes);
}
}
int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const {
int over = 0;
int under = 0;
const BSPSimplex &s = p_simplices[p_simplex];
for (int i = 0; i < 4; i++) {
const Vector3 v = p_points[s.vertices[i]];
if (p_plane.has_point(v)) {
// Coplanar.
} else if (p_plane.is_point_over(v)) {
over++;
} else {
under++;
}
}
ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error
if (under == 0) {
return 1; // all over
} else if (over == 0) {
return -1; // all under
} else {
return 0; // crossing
}
}
//#define DEBUG_BSP
int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) {
//if we reach here, it means there is more than one simplex
int32_t node_index = (int32_t)bsp_nodes.size();
bsp_nodes.push_back(BSPNode());
//test with all the simplex planes
Plane best_plane;
float best_plane_score = -1.0;
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
const BSPSimplex &s = p_simplices[p_simplex_indices[i]];
for (int j = 0; j < 4; j++) {
uint32_t plane_index = s.planes[j];
if (planes_tested[plane_index] == node_index) {
continue; //tested this plane already
}
planes_tested[plane_index] = node_index;
static const int face_order[4][3] = {
{ 0, 1, 2 },
{ 0, 2, 3 },
{ 0, 1, 3 },
{ 1, 2, 3 }
};
// despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error
// from thinking this same simplex is intersecting rather than on a side
Vector3 v0 = p_points[s.vertices[face_order[j][0]]];
Vector3 v1 = p_points[s.vertices[face_order[j][1]]];
Vector3 v2 = p_points[s.vertices[face_order[j][2]]];
Plane plane(v0, v1, v2);
//test with all the simplices
int over_count = 0;
int under_count = 0;
for (uint32_t k = 0; k < p_simplex_indices.size(); k++) {
int side = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[k]);
if (side == -2) {
continue; //this simplex is invalid, skip for now
} else if (side < 0) {
under_count++;
} else if (side > 0) {
over_count++;
}
}
if (under_count == 0 && over_count == 0) {
continue; //most likely precision issue with a flat simplex, do not try this plane
}
if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio
SWAP(under_count, over_count);
}
float score = 0; //by default, score is 0 (worst)
if (over_count > 0) {
//give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced
score = float(under_count) / over_count;
}
//adjusting priority over least splits, probably not a great idea
//score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score
if (score > best_plane_score) {
best_plane = plane;
best_plane_score = score;
}
}
}
LocalVector<int32_t> indices_over;
LocalVector<int32_t> indices_under;
//split again, but add to list
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
uint32_t index = p_simplex_indices[i];
int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index);
if (side == -2) {
continue; //simplex sits on the plane, does not make sense to use it
}
if (side <= 0) {
indices_under.push_back(index);
}
if (side >= 0) {
indices_over.push_back(index);
}
}
#ifdef DEBUG_BSP
print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting));
#endif
if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) {
ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug
// Failed to separate the tetrahedrons using planes
// this means Delaunay broke at some point.
// Luckily, because we are using tetrahedrons, we can resort to
// less precise but still working ways to generate the separating plane
// this will most likely look bad when interpolating, but at least it will not crash.
// and the arctifact will most likely also be very small, so too difficult to notice.
//find the longest axis
WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit.");
LocalVector<Vector3> centers;
AABB bounds_all;
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
AABB bounds;
for (uint32_t j = 0; j < 4; j++) {
Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]];
if (j == 0) {
bounds.position = p;
} else {
bounds.expand_to(p);
}
}
if (i == 0) {
centers.push_back(bounds.get_center());
} else {
bounds_all.merge_with(bounds);
}
}
Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index());
//find the simplex that will go under
uint32_t min_d_idx = 0xFFFFFFFF;
float min_d_dist = 1e20;
for (uint32_t i = 0; i < centers.size(); i++) {
if (centers[i][longest_axis] < min_d_dist) {
min_d_idx = i;
min_d_dist = centers[i][longest_axis];
}
}
//rebuild best_plane and over/under arrays
best_plane = Plane();
best_plane.normal[longest_axis] = 1.0;
best_plane.d = min_d_dist;
indices_under.clear();
indices_under.push_back(min_d_idx);
indices_over.clear();
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
if (i == min_d_idx) {
continue;
}
indices_over.push_back(p_simplex_indices[i]);
}
}
BSPNode node;
node.plane = best_plane;
if (indices_under.size() == 0) {
//nothing to do here
node.under = BSPNode::EMPTY_LEAF;
} else if (indices_under.size() == 1) {
node.under = -(indices_under[0] + 1);
} else {
node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes);
}
if (indices_over.size() == 0) {
//nothing to do here
node.over = BSPNode::EMPTY_LEAF;
} else if (indices_over.size() == 1) {
node.over = -(indices_over[0] + 1);
} else {
node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes);
}
bsp_nodes[node_index] = node;
return node_index;
}
bool LightmapGI::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) {
BakeStepUD *bsud = (BakeStepUD *)ud;
bool ret = false;
if (bsud->func) {
ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh);
}
return ret;
}
void LightmapGI::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) {
for (int i = 0; i < 8; i++) {
Vector3i pos = p_cell->offset;
uint32_t half_size = p_cell->size / 2;
if (i & 1) {
pos.x += half_size;
}
if (i & 2) {
pos.y += half_size;
}
if (i & 4) {
pos.z += half_size;
}
AABB subcell;
subcell.position = Vector3(pos) * p_cell_size;
subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size;
if (!Geometry3D::triangle_box_overlap(subcell.get_center(), subcell.size * 0.5, p_triangle)) {
continue;
}
if (p_cell->children[i] == nullptr) {
GenProbesOctree *child = memnew(GenProbesOctree);
child->offset = pos;
child->size = half_size;
p_cell->children[i] = child;
}
if (half_size > 1) {
//still levels missing
_plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle);
}
}
}
void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool> &positions_used, const AABB &p_bounds) {
for (int i = 0; i < 8; i++) {
Vector3i pos = p_cell->offset;
if (i & 1) {
pos.x += p_cell->size;
}
if (i & 2) {
pos.y += p_cell->size;
}
if (i & 4) {
pos.z += p_cell->size;
}
if (p_cell->size == 1 && !positions_used.has(pos)) {
//new position to insert!
Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size;
//see if a user submitted probe is too close
int ppcount = probe_positions.size();
const Vector3 *pp = probe_positions.ptr();
bool exists = false;
for (int j = 0; j < ppcount; j++) {
if (pp[j].is_equal_approx(real_pos)) {
exists = true;
break;
}
}
if (!exists) {
new_probe_positions.push_back(real_pos);
}
positions_used[pos] = true;
}
if (p_cell->children[i] != nullptr) {
_gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds);
}
}
}
LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) {
if (p_image_data_path.is_empty()) {
if (get_light_data().is_null()) {
return BAKE_ERROR_NO_SAVE_PATH;
}
p_image_data_path = get_light_data()->get_path();
if (!p_image_data_path.is_resource_file()) {
return BAKE_ERROR_NO_SAVE_PATH;
}
}
Ref<Lightmapper> lightmapper = Lightmapper::create();
ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER);
BakeStepUD bsud;
bsud.func = p_bake_step;
bsud.ud = p_bake_userdata;
bsud.from_percent = 0.2;
bsud.to_percent = 0.8;
if (p_bake_step) {
p_bake_step(0.0, RTR("Finding meshes, lights and probes"), p_bake_userdata, true);
}
/* STEP 1, FIND MESHES, LIGHTS AND PROBES */
Vector<Lightmapper::MeshData> mesh_data;
Vector<LightsFound> lights_found;
Vector<Vector3> probes_found;
AABB bounds;
{
Vector<MeshesFound> meshes_found;
_find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found);
if (meshes_found.size() == 0) {
return BAKE_ERROR_NO_MESHES;
}
// create mesh data for insert
//get the base material textures, help compute atlas size and bounds
for (int m_i = 0; m_i < meshes_found.size(); m_i++) {
if (p_bake_step) {
float p = (float)(m_i) / meshes_found.size();
p_bake_step(p * 0.1, vformat(RTR("Preparing geometry %d/%d"), m_i, meshes_found.size()), p_bake_userdata, false);
}
MeshesFound &mf = meshes_found.write[m_i];
Size2i lightmap_size = mf.mesh->get_lightmap_size_hint() * mf.lightmap_scale;
TypedArray<RID> overrides;
overrides.resize(mf.overrides.size());
for (int i = 0; i < mf.overrides.size(); i++) {
if (mf.overrides[i].is_valid()) {
overrides[i] = mf.overrides[i]->get_rid();
}
}
TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size);
ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE);
Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA];
Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM];
//multiply albedo by metal
Lightmapper::MeshData md;
{
Dictionary d;
d["path"] = mf.node_path;
if (mf.subindex >= 0) {
d["subindex"] = mf.subindex;
}
md.userdata = d;
}
{
if (albedo->get_format() != Image::FORMAT_RGBA8) {
albedo->convert(Image::FORMAT_RGBA8);
}
if (orm->get_format() != Image::FORMAT_RGBA8) {
orm->convert(Image::FORMAT_RGBA8);
}
Vector<uint8_t> albedo_alpha = albedo->get_data();
Vector<uint8_t> orm_data = orm->get_data();
Vector<uint8_t> albedom;
uint32_t len = albedo_alpha.size();
albedom.resize(len);
const uint8_t *r_aa = albedo_alpha.ptr();
const uint8_t *r_orm = orm_data.ptr();
uint8_t *w_albedo = albedom.ptrw();
for (uint32_t i = 0; i < len; i += 4) {
w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
w_albedo[i + 3] = 255;
}
md.albedo_on_uv2.instantiate();
md.albedo_on_uv2->set_data(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom);
}
md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION];
if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) {
md.emission_on_uv2->convert(Image::FORMAT_RGBAH);
}
//get geometry
Basis normal_xform = mf.xform.basis.inverse().transposed();
for (int i = 0; i < mf.mesh->get_surface_count(); i++) {
if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
Array a = mf.mesh->surface_get_arrays(i);
Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
const Vector3 *vr = vertices.ptr();
Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2];
const Vector2 *uvr = nullptr;
Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
const Vector3 *nr = nullptr;
Vector<int> index = a[Mesh::ARRAY_INDEX];
ERR_CONTINUE(uv.size() == 0);
ERR_CONTINUE(normals.size() == 0);
uvr = uv.ptr();
nr = normals.ptr();
int facecount;
const int *ir = nullptr;
if (index.size()) {
facecount = index.size() / 3;
ir = index.ptr();
} else {
facecount = vertices.size() / 3;
}
for (int j = 0; j < facecount; j++) {
uint32_t vidx[3];
if (ir) {
for (int k = 0; k < 3; k++) {
vidx[k] = ir[j * 3 + k];
}
} else {
for (int k = 0; k < 3; k++) {
vidx[k] = j * 3 + k;
}
}
for (int k = 0; k < 3; k++) {
Vector3 v = mf.xform.xform(vr[vidx[k]]);
if (bounds == AABB()) {
bounds.position = v;
} else {
bounds.expand_to(v);
}
md.points.push_back(v);
md.uv2.push_back(uvr[vidx[k]]);
md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized());
}
}
}
mesh_data.push_back(md);
}
}
/* STEP 2, CREATE PROBES */
if (p_bake_step) {
p_bake_step(0.3, RTR("Creating probes"), p_bake_userdata, true);
}
//bounds need to include the user probes
for (int i = 0; i < probes_found.size(); i++) {
bounds.expand_to(probes_found[i]);
}
bounds.grow_by(bounds.size.length() * 0.001);
if (gen_probes == GENERATE_PROBES_DISABLED) {
// generate 8 probes on bound endpoints
for (int i = 0; i < 8; i++) {
probes_found.push_back(bounds.get_endpoint(i));
}
} else {
// detect probes from geometry
static const int subdiv_values[6] = { 0, 4, 8, 16, 32 };
int subdiv = subdiv_values[gen_probes];
float subdiv_cell_size;
Vector3i bound_limit;
{
int longest_axis = bounds.get_longest_axis_index();
subdiv_cell_size = bounds.size[longest_axis] / subdiv;
int axis_n1 = (longest_axis + 1) % 3;
int axis_n2 = (longest_axis + 2) % 3;
bound_limit[longest_axis] = subdiv;
bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size));
bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size));
//compensate bounds
bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size;
bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size;
}
GenProbesOctree octree;
octree.size = subdiv;
for (int i = 0; i < mesh_data.size(); i++) {
if (p_bake_step) {
float p = (float)(i) / mesh_data.size();
p_bake_step(0.3 + p * 0.1, vformat(RTR("Creating probes from mesh %d/%d"), i, mesh_data.size()), p_bake_userdata, false);
}
for (int j = 0; j < mesh_data[i].points.size(); j += 3) {
Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position };
_plot_triangle_into_octree(&octree, subdiv_cell_size, points);
}
}
LocalVector<Vector3> new_probe_positions;
HashMap<Vector3i, bool> positions_used;
for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints
Vector3i pos;
if (i & 1) {
pos.x += bound_limit.x;
}
if (i & 2) {
pos.y += bound_limit.y;
}
if (i & 4) {
pos.z += bound_limit.z;
}
positions_used[pos] = true;
Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability
new_probe_positions.push_back(real_pos);
}
//skip first level, since probes are always added at bounds endpoints anyway (code above this)
for (int i = 0; i < 8; i++) {
if (octree.children[i]) {
_gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds);
}
}
for (uint32_t i = 0; i < new_probe_positions.size(); i++) {
probes_found.push_back(new_probe_positions[i]);
}
}
// Add everything to lightmapper
if (p_bake_step) {
p_bake_step(0.4, RTR("Preparing Lightmapper"), p_bake_userdata, true);
}
{
for (int i = 0; i < mesh_data.size(); i++) {
lightmapper->add_mesh(mesh_data[i]);
}
for (int i = 0; i < lights_found.size(); i++) {
Light3D *light = lights_found[i].light;
Transform3D xf = lights_found[i].xform;
Color linear_color = light->get_color().srgb_to_linear();
float energy = light->get_param(Light3D::PARAM_ENERGY);
if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) {
energy *= light->get_param(Light3D::PARAM_INTENSITY);
linear_color *= light->get_correlated_color().srgb_to_linear();
}
if (Object::cast_to<DirectionalLight3D>(light)) {
DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light);
lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
} else if (Object::cast_to<OmniLight3D>(light)) {
OmniLight3D *l = Object::cast_to<OmniLight3D>(light);
if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) {
energy *= (1.0 / (Math_PI * 4.0));
}
lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, linear_color, energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
} else if (Object::cast_to<SpotLight3D>(light)) {
SpotLight3D *l = Object::cast_to<SpotLight3D>(light);
if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) {
energy *= (1.0 / Math_PI);
}
lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
}
}
for (int i = 0; i < probes_found.size(); i++) {
lightmapper->add_probe(probes_found[i]);
}
}
Ref<Image> environment_image;
Basis environment_transform;
// Add everything to lightmapper
if (environment_mode != ENVIRONMENT_MODE_DISABLED) {
if (p_bake_step) {
p_bake_step(4.1, RTR("Preparing Environment"), p_bake_userdata, true);
}
environment_transform = get_global_transform().basis;
switch (environment_mode) {
case ENVIRONMENT_MODE_DISABLED: {
//nothing
} break;
case ENVIRONMENT_MODE_SCENE: {
Ref<World3D> world = get_world_3d();
if (world.is_valid()) {
Ref<Environment> env = world->get_environment();
if (env.is_null()) {
env = world->get_fallback_environment();
}
if (env.is_valid()) {
environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64));
}
}
} break;
case ENVIRONMENT_MODE_CUSTOM_SKY: {
if (environment_custom_sky.is_valid()) {
environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64));
}
} break;
case ENVIRONMENT_MODE_CUSTOM_COLOR: {
environment_image.instantiate();
environment_image->initialize_data(128, 64, false, Image::FORMAT_RGBAF);
Color c = environment_custom_color;
c.r *= environment_custom_energy;
c.g *= environment_custom_energy;
c.b *= environment_custom_energy;
environment_image->fill(c);
} break;
}
}
float exposure_normalization = 1.0;
if (camera_attributes.is_valid()) {
exposure_normalization = camera_attributes->get_exposure_multiplier();
if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) {
exposure_normalization = camera_attributes->calculate_exposure_normalization();
}
}
Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, bounces, bias, max_texture_size, directional, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud, exposure_normalization);
if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) {
return BAKE_ERROR_MESHES_INVALID;
}
/* POSTBAKE: Save Light Data */
Ref<LightmapGIData> gi_data;
if (get_light_data().is_valid()) {
gi_data = get_light_data();
set_light_data(Ref<LightmapGIData>()); //clear
gi_data->clear();
} else {
gi_data.instantiate();
}
Ref<Texture2DArray> texture;
{
Vector<Ref<Image>> images;
for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) {
images.push_back(lightmapper->get_bake_texture(i));
}
texture.instantiate();
texture->create_from_images(images);
}
gi_data->set_light_texture(texture);
gi_data->set_uses_spherical_harmonics(directional);
for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) {
Dictionary d = lightmapper->get_bake_mesh_userdata(i);
NodePath np = d["path"];
int32_t subindex = -1;
if (d.has("subindex")) {
subindex = d["subindex"];
}
Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i);
int slice_index = lightmapper->get_bake_mesh_texture_slice(i);
gi_data->add_user(np, uv_scale, slice_index, subindex);
}
{
// create tetrahedrons
Vector<Vector3> points;
Vector<Color> sh;
points.resize(lightmapper->get_bake_probe_count());
sh.resize(lightmapper->get_bake_probe_count() * 9);
for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) {
points.write[i] = lightmapper->get_bake_probe_point(i);
Vector<Color> colors = lightmapper->get_bake_probe_sh(i);
ERR_CONTINUE(colors.size() != 9);
for (int j = 0; j < 9; j++) {
sh.write[i * 9 + j] = colors[j];
}
}
//Obtain solved simplices
if (p_bake_step) {
p_bake_step(0.8, RTR("Generating Probe Volumes"), p_bake_userdata, true);
}
Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points);
LocalVector<BSPSimplex> bsp_simplices;
LocalVector<Plane> bsp_planes;
LocalVector<int32_t> bsp_simplex_indices;
PackedInt32Array tetrahedrons;
for (int i = 0; i < solved_simplices.size(); i++) {
//Prepare a special representation of the simplex, which uses a BSP Tree
BSPSimplex bsp_simplex;
for (int j = 0; j < 4; j++) {
bsp_simplex.vertices[j] = solved_simplices[i].points[j];
}
for (int j = 0; j < 4; j++) {
static const int face_order[4][3] = {
{ 0, 1, 2 },
{ 0, 2, 3 },
{ 0, 1, 3 },
{ 1, 2, 3 }
};
Vector3 a = points[solved_simplices[i].points[face_order[j][0]]];
Vector3 b = points[solved_simplices[i].points[face_order[j][1]]];
Vector3 c = points[solved_simplices[i].points[face_order[j][2]]];
//store planes in an array, but ensure they are reused, to speed up processing
Plane p(a, b, c);
int plane_index = -1;
for (uint32_t k = 0; k < bsp_planes.size(); k++) {
if (bsp_planes[k].is_equal_approx_any_side(p)) {
plane_index = k;
break;
}
}
if (plane_index == -1) {
plane_index = bsp_planes.size();
bsp_planes.push_back(p);
}
bsp_simplex.planes[j] = plane_index;
//also fill simplex array
tetrahedrons.push_back(solved_simplices[i].points[j]);
}
bsp_simplex_indices.push_back(bsp_simplices.size());
bsp_simplices.push_back(bsp_simplex);
}
//#define DEBUG_SIMPLICES_AS_OBJ_FILE
#ifdef DEBUG_SIMPLICES_AS_OBJ_FILE
{
Ref<FileAccess> f = FileAccess::open("res://bsp.obj", FileAccess::WRITE);
for (uint32_t i = 0; i < bsp_simplices.size(); i++) {
f->store_line("o Simplex" + itos(i));
for (int j = 0; j < 4; j++) {
f->store_line(vformat("v %f %f %f", points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z));
}
static const int face_order[4][3] = {
{ 1, 2, 3 },
{ 1, 3, 4 },
{ 1, 2, 4 },
{ 2, 3, 4 }
};
for (int j = 0; j < 4; j++) {
f->store_line(vformat("f %d %d %d", 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2]));
}
}
}
#endif
LocalVector<BSPNode> bsp_nodes;
LocalVector<int32_t> planes_tested;
planes_tested.resize(bsp_planes.size());
for (uint32_t i = 0; i < planes_tested.size(); i++) {
planes_tested[i] = 0x7FFFFFFF;
}
if (p_bake_step) {
p_bake_step(0.9, RTR("Generating Probe Acceleration Structures"), p_bake_userdata, true);
}
_compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes);
PackedInt32Array bsp_array;
bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node
{
float *fptr = (float *)bsp_array.ptrw();
int32_t *iptr = (int32_t *)bsp_array.ptrw();
for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x;
fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y;
fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z;
fptr[i * 6 + 3] = bsp_nodes[i].plane.d;
iptr[i * 6 + 4] = bsp_nodes[i].over;
iptr[i * 6 + 5] = bsp_nodes[i].under;
}
//#define DEBUG_BSP_TREE
#ifdef DEBUG_BSP_TREE
Ref<FileAccess> f = FileAccess::open("res://bsp.txt", FileAccess::WRITE);
for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under));
}
#endif
}
/* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */
gi_data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array, exposure_normalization);
/* Compute a BSP tree of the simplices, so it's easy to find the exact one */
}
gi_data->set_path(p_image_data_path);
Error err = ResourceSaver::save(gi_data);
if (err != OK) {
return BAKE_ERROR_CANT_CREATE_IMAGE;
}
set_light_data(gi_data);
return BAKE_ERROR_OK;
}
void LightmapGI::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_POST_ENTER_TREE: {
if (light_data.is_valid()) {
_assign_lightmaps();
}
} break;
case NOTIFICATION_EXIT_TREE: {
if (light_data.is_valid()) {
_clear_lightmaps();
}
} break;
}
}
void LightmapGI::_assign_lightmaps() {
ERR_FAIL_COND(!light_data.is_valid());
for (int i = 0; i < light_data->get_user_count(); i++) {
Node *node = get_node(light_data->get_user_path(i));
int instance_idx = light_data->get_user_sub_instance(i);
if (instance_idx >= 0) {
RID instance_id = node->call("get_bake_mesh_instance", instance_idx);
if (instance_id.is_valid()) {
RS::get_singleton()->instance_geometry_set_lightmap(instance_id, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
}
} else {
VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
ERR_CONTINUE(!vi);
RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
}
}
}
void LightmapGI::_clear_lightmaps() {
ERR_FAIL_COND(!light_data.is_valid());
for (int i = 0; i < light_data->get_user_count(); i++) {
Node *node = get_node(light_data->get_user_path(i));
int instance_idx = light_data->get_user_sub_instance(i);
if (instance_idx >= 0) {
RID instance_id = node->call("get_bake_mesh_instance", instance_idx);
if (instance_id.is_valid()) {
RS::get_singleton()->instance_geometry_set_lightmap(instance_id, RID(), Rect2(), 0);
}
} else {
VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
ERR_CONTINUE(!vi);
RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0);
}
}
}
void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) {
if (light_data.is_valid()) {
if (is_inside_tree()) {
_clear_lightmaps();
}
set_base(RID());
}
light_data = p_data;
if (light_data.is_valid()) {
set_base(light_data->get_rid());
if (is_inside_tree()) {
_assign_lightmaps();
}
}
update_gizmos();
}
Ref<LightmapGIData> LightmapGI::get_light_data() const {
return light_data;
}
void LightmapGI::set_bake_quality(BakeQuality p_quality) {
bake_quality = p_quality;
}
LightmapGI::BakeQuality LightmapGI::get_bake_quality() const {
return bake_quality;
}
AABB LightmapGI::get_aabb() const {
return AABB();
}
void LightmapGI::set_use_denoiser(bool p_enable) {
use_denoiser = p_enable;
}
bool LightmapGI::is_using_denoiser() const {
return use_denoiser;
}
void LightmapGI::set_directional(bool p_enable) {
directional = p_enable;
}
bool LightmapGI::is_directional() const {
return directional;
}
void LightmapGI::set_interior(bool p_enable) {
interior = p_enable;
}
bool LightmapGI::is_interior() const {
return interior;
}
void LightmapGI::set_environment_mode(EnvironmentMode p_mode) {
environment_mode = p_mode;
notify_property_list_changed();
}
LightmapGI::EnvironmentMode LightmapGI::get_environment_mode() const {
return environment_mode;
}
void LightmapGI::set_environment_custom_sky(const Ref<Sky> &p_sky) {
environment_custom_sky = p_sky;
}
Ref<Sky> LightmapGI::get_environment_custom_sky() const {
return environment_custom_sky;
}
void LightmapGI::set_environment_custom_color(const Color &p_color) {
environment_custom_color = p_color;
}
Color LightmapGI::get_environment_custom_color() const {
return environment_custom_color;
}
void LightmapGI::set_environment_custom_energy(float p_energy) {
environment_custom_energy = p_energy;
}
float LightmapGI::get_environment_custom_energy() const {
return environment_custom_energy;
}
void LightmapGI::set_bounces(int p_bounces) {
ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16);
bounces = p_bounces;
}
int LightmapGI::get_bounces() const {
return bounces;
}
void LightmapGI::set_bias(float p_bias) {
ERR_FAIL_COND(p_bias < 0.00001);
bias = p_bias;
}
float LightmapGI::get_bias() const {
return bias;
}
void LightmapGI::set_max_texture_size(int p_size) {
ERR_FAIL_COND_MSG(p_size < 2048, vformat("The LightmapGI maximum texture size supplied (%d) is too small. The minimum allowed value is 2048.", p_size));
ERR_FAIL_COND_MSG(p_size > 16384, vformat("The LightmapGI maximum texture size supplied (%d) is too large. The maximum allowed value is 16384.", p_size));
max_texture_size = p_size;
}
int LightmapGI::get_max_texture_size() const {
return max_texture_size;
}
void LightmapGI::set_generate_probes(GenerateProbes p_generate_probes) {
gen_probes = p_generate_probes;
}
LightmapGI::GenerateProbes LightmapGI::get_generate_probes() const {
return gen_probes;
}
void LightmapGI::set_camera_attributes(const Ref<CameraAttributes> &p_camera_attributes) {
camera_attributes = p_camera_attributes;
}
Ref<CameraAttributes> LightmapGI::get_camera_attributes() const {
return camera_attributes;
}
void LightmapGI::_validate_property(PropertyInfo &p_property) const {
if (p_property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
p_property.usage = PROPERTY_USAGE_NONE;
}
}
void LightmapGI::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_light_data", "data"), &LightmapGI::set_light_data);
ClassDB::bind_method(D_METHOD("get_light_data"), &LightmapGI::get_light_data);
ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &LightmapGI::set_bake_quality);
ClassDB::bind_method(D_METHOD("get_bake_quality"), &LightmapGI::get_bake_quality);
ClassDB::bind_method(D_METHOD("set_bounces", "bounces"), &LightmapGI::set_bounces);
ClassDB::bind_method(D_METHOD("get_bounces"), &LightmapGI::get_bounces);
ClassDB::bind_method(D_METHOD("set_generate_probes", "subdivision"), &LightmapGI::set_generate_probes);
ClassDB::bind_method(D_METHOD("get_generate_probes"), &LightmapGI::get_generate_probes);
ClassDB::bind_method(D_METHOD("set_bias", "bias"), &LightmapGI::set_bias);
ClassDB::bind_method(D_METHOD("get_bias"), &LightmapGI::get_bias);
ClassDB::bind_method(D_METHOD("set_environment_mode", "mode"), &LightmapGI::set_environment_mode);
ClassDB::bind_method(D_METHOD("get_environment_mode"), &LightmapGI::get_environment_mode);
ClassDB::bind_method(D_METHOD("set_environment_custom_sky", "sky"), &LightmapGI::set_environment_custom_sky);
ClassDB::bind_method(D_METHOD("get_environment_custom_sky"), &LightmapGI::get_environment_custom_sky);
ClassDB::bind_method(D_METHOD("set_environment_custom_color", "color"), &LightmapGI::set_environment_custom_color);
ClassDB::bind_method(D_METHOD("get_environment_custom_color"), &LightmapGI::get_environment_custom_color);
ClassDB::bind_method(D_METHOD("set_environment_custom_energy", "energy"), &LightmapGI::set_environment_custom_energy);
ClassDB::bind_method(D_METHOD("get_environment_custom_energy"), &LightmapGI::get_environment_custom_energy);
ClassDB::bind_method(D_METHOD("set_max_texture_size", "max_texture_size"), &LightmapGI::set_max_texture_size);
ClassDB::bind_method(D_METHOD("get_max_texture_size"), &LightmapGI::get_max_texture_size);
ClassDB::bind_method(D_METHOD("set_use_denoiser", "use_denoiser"), &LightmapGI::set_use_denoiser);
ClassDB::bind_method(D_METHOD("is_using_denoiser"), &LightmapGI::is_using_denoiser);
ClassDB::bind_method(D_METHOD("set_interior", "enable"), &LightmapGI::set_interior);
ClassDB::bind_method(D_METHOD("is_interior"), &LightmapGI::is_interior);
ClassDB::bind_method(D_METHOD("set_directional", "directional"), &LightmapGI::set_directional);
ClassDB::bind_method(D_METHOD("is_directional"), &LightmapGI::is_directional);
ClassDB::bind_method(D_METHOD("set_camera_attributes", "camera_attributes"), &LightmapGI::set_camera_attributes);
ClassDB::bind_method(D_METHOD("get_camera_attributes"), &LightmapGI::get_camera_attributes);
// ClassDB::bind_method(D_METHOD("bake", "from_node"), &LightmapGI::bake, DEFVAL(Variant()));
ADD_GROUP("Tweaks", "");
ADD_PROPERTY(PropertyInfo(Variant::INT, "quality", PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra"), "set_bake_quality", "get_bake_quality");
ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,16,1"), "set_bounces", "get_bounces");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater"), "set_bias", "get_bias");
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size", PROPERTY_HINT_RANGE, "2048,16384,1"), "set_max_texture_size", "get_max_texture_size");
ADD_GROUP("Environment", "environment_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode", PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color"), "set_environment_mode", "get_environment_mode");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky", PROPERTY_HINT_RESOURCE_TYPE, "Sky"), "set_environment_custom_sky", "get_environment_custom_sky");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color", "get_environment_custom_color");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_environment_custom_energy", "get_environment_custom_energy");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "camera_attributes", PROPERTY_HINT_RESOURCE_TYPE, "CameraAttributesPractical,CameraAttributesPhysical"), "set_camera_attributes", "get_camera_attributes");
ADD_GROUP("Gen Probes", "generate_probes_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv", PROPERTY_HINT_ENUM, "Disabled,4,8,16,32"), "set_generate_probes", "get_generate_probes");
ADD_GROUP("Data", "");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "LightmapGIData"), "set_light_data", "get_light_data");
BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW);
BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM);
BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH);
BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA);
BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32);
BIND_ENUM_CONSTANT(BAKE_ERROR_OK);
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER);
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH);
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES);
BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID);
BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE);
BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR);
}
LightmapGI::LightmapGI() {
}