virtualx-engine/thirdparty/zstd/common/xxhash.h

7020 lines
255 KiB
C++

/*
* xxHash - Extremely Fast Hash algorithm
* Header File
* Copyright (c) Yann Collet - Meta Platforms, Inc
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* Local adaptations for Zstandard */
#ifndef XXH_NO_XXH3
# define XXH_NO_XXH3
#endif
#ifndef XXH_NAMESPACE
# define XXH_NAMESPACE ZSTD_
#endif
/*!
* @mainpage xxHash
*
* xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
* limits.
*
* It is proposed in four flavors, in three families:
* 1. @ref XXH32_family
* - Classic 32-bit hash function. Simple, compact, and runs on almost all
* 32-bit and 64-bit systems.
* 2. @ref XXH64_family
* - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
* 64-bit systems (but _not_ 32-bit systems).
* 3. @ref XXH3_family
* - Modern 64-bit and 128-bit hash function family which features improved
* strength and performance across the board, especially on smaller data.
* It benefits greatly from SIMD and 64-bit without requiring it.
*
* Benchmarks
* ---
* The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
* The open source benchmark program is compiled with clang v10.0 using -O3 flag.
*
* | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity |
* | -------------------- | ------- | ----: | ---------------: | ------------------: |
* | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 |
* | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 |
* | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 |
* | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 |
* | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 |
* | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 |
* | RAM sequential read | | N/A | 28.0 GB/s | N/A |
* | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 |
* | City64 | | 64 | 22.0 GB/s | 76.6 |
* | T1ha2 | | 64 | 22.0 GB/s | 99.0 |
* | City128 | | 128 | 21.7 GB/s | 57.7 |
* | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 |
* | XXH64() | | 64 | 19.4 GB/s | 71.0 |
* | SpookyHash | | 64 | 19.3 GB/s | 53.2 |
* | Mum | | 64 | 18.0 GB/s | 67.0 |
* | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 |
* | XXH32() | | 32 | 9.7 GB/s | 71.9 |
* | City32 | | 32 | 9.1 GB/s | 66.0 |
* | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 |
* | Murmur3 | | 32 | 3.9 GB/s | 56.1 |
* | SipHash* | | 64 | 3.0 GB/s | 43.2 |
* | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 |
* | HighwayHash | | 64 | 1.4 GB/s | 6.0 |
* | FNV64 | | 64 | 1.2 GB/s | 62.7 |
* | Blake2* | | 256 | 1.1 GB/s | 5.1 |
* | SHA1* | | 160 | 0.8 GB/s | 5.6 |
* | MD5* | | 128 | 0.6 GB/s | 7.8 |
* @note
* - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
* even though it is mandatory on x64.
* - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
* by modern standards.
* - Small data velocity is a rough average of algorithm's efficiency for small
* data. For more accurate information, see the wiki.
* - More benchmarks and strength tests are found on the wiki:
* https://github.com/Cyan4973/xxHash/wiki
*
* Usage
* ------
* All xxHash variants use a similar API. Changing the algorithm is a trivial
* substitution.
*
* @pre
* For functions which take an input and length parameter, the following
* requirements are assumed:
* - The range from [`input`, `input + length`) is valid, readable memory.
* - The only exception is if the `length` is `0`, `input` may be `NULL`.
* - For C++, the objects must have the *TriviallyCopyable* property, as the
* functions access bytes directly as if it was an array of `unsigned char`.
*
* @anchor single_shot_example
* **Single Shot**
*
* These functions are stateless functions which hash a contiguous block of memory,
* immediately returning the result. They are the easiest and usually the fastest
* option.
*
* XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
*
* @code{.c}
* #include <string.h>
* #include "xxhash.h"
*
* // Example for a function which hashes a null terminated string with XXH32().
* XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
* {
* // NULL pointers are only valid if the length is zero
* size_t length = (string == NULL) ? 0 : strlen(string);
* return XXH32(string, length, seed);
* }
* @endcode
*
*
* @anchor streaming_example
* **Streaming**
*
* These groups of functions allow incremental hashing of unknown size, even
* more than what would fit in a size_t.
*
* XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
*
* @code{.c}
* #include <stdio.h>
* #include <assert.h>
* #include "xxhash.h"
* // Example for a function which hashes a FILE incrementally with XXH3_64bits().
* XXH64_hash_t hashFile(FILE* f)
* {
* // Allocate a state struct. Do not just use malloc() or new.
* XXH3_state_t* state = XXH3_createState();
* assert(state != NULL && "Out of memory!");
* // Reset the state to start a new hashing session.
* XXH3_64bits_reset(state);
* char buffer[4096];
* size_t count;
* // Read the file in chunks
* while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
* // Run update() as many times as necessary to process the data
* XXH3_64bits_update(state, buffer, count);
* }
* // Retrieve the finalized hash. This will not change the state.
* XXH64_hash_t result = XXH3_64bits_digest(state);
* // Free the state. Do not use free().
* XXH3_freeState(state);
* return result;
* }
* @endcode
*
* Streaming functions generate the xxHash value from an incremental input.
* This method is slower than single-call functions, due to state management.
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
*
* An XXH state must first be allocated using `XXH*_createState()`.
*
* Start a new hash by initializing the state with a seed using `XXH*_reset()`.
*
* Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
*
* The function returns an error code, with 0 meaning OK, and any other value
* meaning there is an error.
*
* Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
* This function returns the nn-bits hash as an int or long long.
*
* It's still possible to continue inserting input into the hash state after a
* digest, and generate new hash values later on by invoking `XXH*_digest()`.
*
* When done, release the state using `XXH*_freeState()`.
*
*
* @anchor canonical_representation_example
* **Canonical Representation**
*
* The default return values from XXH functions are unsigned 32, 64 and 128 bit
* integers.
* This the simplest and fastest format for further post-processing.
*
* However, this leaves open the question of what is the order on the byte level,
* since little and big endian conventions will store the same number differently.
*
* The canonical representation settles this issue by mandating big-endian
* convention, the same convention as human-readable numbers (large digits first).
*
* When writing hash values to storage, sending them over a network, or printing
* them, it's highly recommended to use the canonical representation to ensure
* portability across a wider range of systems, present and future.
*
* The following functions allow transformation of hash values to and from
* canonical format.
*
* XXH32_canonicalFromHash(), XXH32_hashFromCanonical(),
* XXH64_canonicalFromHash(), XXH64_hashFromCanonical(),
* XXH128_canonicalFromHash(), XXH128_hashFromCanonical(),
*
* @code{.c}
* #include <stdio.h>
* #include "xxhash.h"
*
* // Example for a function which prints XXH32_hash_t in human readable format
* void printXxh32(XXH32_hash_t hash)
* {
* XXH32_canonical_t cano;
* XXH32_canonicalFromHash(&cano, hash);
* size_t i;
* for(i = 0; i < sizeof(cano.digest); ++i) {
* printf("%02x", cano.digest[i]);
* }
* printf("\n");
* }
*
* // Example for a function which converts XXH32_canonical_t to XXH32_hash_t
* XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano)
* {
* XXH32_hash_t hash = XXH32_hashFromCanonical(&cano);
* return hash;
* }
* @endcode
*
*
* @file xxhash.h
* xxHash prototypes and implementation
*/
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************
* INLINE mode
******************************/
/*!
* @defgroup public Public API
* Contains details on the public xxHash functions.
* @{
*/
#ifdef XXH_DOXYGEN
/*!
* @brief Gives access to internal state declaration, required for static allocation.
*
* Incompatible with dynamic linking, due to risks of ABI changes.
*
* Usage:
* @code{.c}
* #define XXH_STATIC_LINKING_ONLY
* #include "xxhash.h"
* @endcode
*/
# define XXH_STATIC_LINKING_ONLY
/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
/*!
* @brief Gives access to internal definitions.
*
* Usage:
* @code{.c}
* #define XXH_STATIC_LINKING_ONLY
* #define XXH_IMPLEMENTATION
* #include "xxhash.h"
* @endcode
*/
# define XXH_IMPLEMENTATION
/* Do not undef XXH_IMPLEMENTATION for Doxygen */
/*!
* @brief Exposes the implementation and marks all functions as `inline`.
*
* Use these build macros to inline xxhash into the target unit.
* Inlining improves performance on small inputs, especially when the length is
* expressed as a compile-time constant:
*
* https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
*
* It also keeps xxHash symbols private to the unit, so they are not exported.
*
* Usage:
* @code{.c}
* #define XXH_INLINE_ALL
* #include "xxhash.h"
* @endcode
* Do not compile and link xxhash.o as a separate object, as it is not useful.
*/
# define XXH_INLINE_ALL
# undef XXH_INLINE_ALL
/*!
* @brief Exposes the implementation without marking functions as inline.
*/
# define XXH_PRIVATE_API
# undef XXH_PRIVATE_API
/*!
* @brief Emulate a namespace by transparently prefixing all symbols.
*
* If you want to include _and expose_ xxHash functions from within your own
* library, but also want to avoid symbol collisions with other libraries which
* may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
* any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
* (therefore, avoid empty or numeric values).
*
* Note that no change is required within the calling program as long as it
* includes `xxhash.h`: Regular symbol names will be automatically translated
* by this header.
*/
# define XXH_NAMESPACE /* YOUR NAME HERE */
# undef XXH_NAMESPACE
#endif
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
&& !defined(XXH_INLINE_ALL_31684351384)
/* this section should be traversed only once */
# define XXH_INLINE_ALL_31684351384
/* give access to the advanced API, required to compile implementations */
# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
# define XXH_STATIC_LINKING_ONLY
/* make all functions private */
# undef XXH_PUBLIC_API
# if defined(__GNUC__)
# define XXH_PUBLIC_API static __inline __attribute__((unused))
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define XXH_PUBLIC_API static inline
# elif defined(_MSC_VER)
# define XXH_PUBLIC_API static __inline
# else
/* note: this version may generate warnings for unused static functions */
# define XXH_PUBLIC_API static
# endif
/*
* This part deals with the special case where a unit wants to inline xxHash,
* but "xxhash.h" has previously been included without XXH_INLINE_ALL,
* such as part of some previously included *.h header file.
* Without further action, the new include would just be ignored,
* and functions would effectively _not_ be inlined (silent failure).
* The following macros solve this situation by prefixing all inlined names,
* avoiding naming collision with previous inclusions.
*/
/* Before that, we unconditionally #undef all symbols,
* in case they were already defined with XXH_NAMESPACE.
* They will then be redefined for XXH_INLINE_ALL
*/
# undef XXH_versionNumber
/* XXH32 */
# undef XXH32
# undef XXH32_createState
# undef XXH32_freeState
# undef XXH32_reset
# undef XXH32_update
# undef XXH32_digest
# undef XXH32_copyState
# undef XXH32_canonicalFromHash
# undef XXH32_hashFromCanonical
/* XXH64 */
# undef XXH64
# undef XXH64_createState
# undef XXH64_freeState
# undef XXH64_reset
# undef XXH64_update
# undef XXH64_digest
# undef XXH64_copyState
# undef XXH64_canonicalFromHash
# undef XXH64_hashFromCanonical
/* XXH3_64bits */
# undef XXH3_64bits
# undef XXH3_64bits_withSecret
# undef XXH3_64bits_withSeed
# undef XXH3_64bits_withSecretandSeed
# undef XXH3_createState
# undef XXH3_freeState
# undef XXH3_copyState
# undef XXH3_64bits_reset
# undef XXH3_64bits_reset_withSeed
# undef XXH3_64bits_reset_withSecret
# undef XXH3_64bits_update
# undef XXH3_64bits_digest
# undef XXH3_generateSecret
/* XXH3_128bits */
# undef XXH128
# undef XXH3_128bits
# undef XXH3_128bits_withSeed
# undef XXH3_128bits_withSecret
# undef XXH3_128bits_reset
# undef XXH3_128bits_reset_withSeed
# undef XXH3_128bits_reset_withSecret
# undef XXH3_128bits_reset_withSecretandSeed
# undef XXH3_128bits_update
# undef XXH3_128bits_digest
# undef XXH128_isEqual
# undef XXH128_cmp
# undef XXH128_canonicalFromHash
# undef XXH128_hashFromCanonical
/* Finally, free the namespace itself */
# undef XXH_NAMESPACE
/* employ the namespace for XXH_INLINE_ALL */
# define XXH_NAMESPACE XXH_INLINE_
/*
* Some identifiers (enums, type names) are not symbols,
* but they must nonetheless be renamed to avoid redeclaration.
* Alternative solution: do not redeclare them.
* However, this requires some #ifdefs, and has a more dispersed impact.
* Meanwhile, renaming can be achieved in a single place.
*/
# define XXH_IPREF(Id) XXH_NAMESPACE ## Id
# define XXH_OK XXH_IPREF(XXH_OK)
# define XXH_ERROR XXH_IPREF(XXH_ERROR)
# define XXH_errorcode XXH_IPREF(XXH_errorcode)
# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
# define XXH32_state_s XXH_IPREF(XXH32_state_s)
# define XXH32_state_t XXH_IPREF(XXH32_state_t)
# define XXH64_state_s XXH_IPREF(XXH64_state_s)
# define XXH64_state_t XXH_IPREF(XXH64_state_t)
# define XXH3_state_s XXH_IPREF(XXH3_state_s)
# define XXH3_state_t XXH_IPREF(XXH3_state_t)
# define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
/* Ensure the header is parsed again, even if it was previously included */
# undef XXHASH_H_5627135585666179
# undef XXHASH_H_STATIC_13879238742
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
/* ****************************************************************
* Stable API
*****************************************************************/
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1
/*! @brief Marks a global symbol. */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
# ifdef XXH_EXPORT
# define XXH_PUBLIC_API __declspec(dllexport)
# elif XXH_IMPORT
# define XXH_PUBLIC_API __declspec(dllimport)
# endif
# else
# define XXH_PUBLIC_API /* do nothing */
# endif
#endif
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
/* XXH32 */
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
/* XXH64 */
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
/* XXH3_64bits */
# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
/* XXH3_128bits */
# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
#endif
/* *************************************
* Compiler specifics
***************************************/
/* specific declaration modes for Windows */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
# ifdef XXH_EXPORT
# define XXH_PUBLIC_API __declspec(dllexport)
# elif XXH_IMPORT
# define XXH_PUBLIC_API __declspec(dllimport)
# endif
# else
# define XXH_PUBLIC_API /* do nothing */
# endif
#endif
#if defined (__GNUC__)
# define XXH_CONSTF __attribute__((const))
# define XXH_PUREF __attribute__((pure))
# define XXH_MALLOCF __attribute__((malloc))
#else
# define XXH_CONSTF /* disable */
# define XXH_PUREF
# define XXH_MALLOCF
#endif
/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
#define XXH_VERSION_MINOR 8
#define XXH_VERSION_RELEASE 2
/*! @brief Version number, encoded as two digits each */
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
/*!
* @brief Obtains the xxHash version.
*
* This is mostly useful when xxHash is compiled as a shared library,
* since the returned value comes from the library, as opposed to header file.
*
* @return @ref XXH_VERSION_NUMBER of the invoked library.
*/
XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
/* ****************************
* Common basic types
******************************/
#include <stddef.h> /* size_t */
/*!
* @brief Exit code for the streaming API.
*/
typedef enum {
XXH_OK = 0, /*!< OK */
XXH_ERROR /*!< Error */
} XXH_errorcode;
/*-**********************************************************************
* 32-bit hash
************************************************************************/
#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
/*!
* @brief An unsigned 32-bit integer.
*
* Not necessarily defined to `uint32_t` but functionally equivalent.
*/
typedef uint32_t XXH32_hash_t;
#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# ifdef _AIX
# include <inttypes.h>
# else
# include <stdint.h>
# endif
typedef uint32_t XXH32_hash_t;
#else
# include <limits.h>
# if UINT_MAX == 0xFFFFFFFFUL
typedef unsigned int XXH32_hash_t;
# elif ULONG_MAX == 0xFFFFFFFFUL
typedef unsigned long XXH32_hash_t;
# else
# error "unsupported platform: need a 32-bit type"
# endif
#endif
/*!
* @}
*
* @defgroup XXH32_family XXH32 family
* @ingroup public
* Contains functions used in the classic 32-bit xxHash algorithm.
*
* @note
* XXH32 is useful for older platforms, with no or poor 64-bit performance.
* Note that the @ref XXH3_family provides competitive speed for both 32-bit
* and 64-bit systems, and offers true 64/128 bit hash results.
*
* @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
* @see @ref XXH32_impl for implementation details
* @{
*/
/*!
* @brief Calculates the 32-bit hash of @p input using xxHash32.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 32-bit seed to alter the hash's output predictably.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 32-bit xxHash32 value.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
#ifndef XXH_NO_STREAM
/*!
* @typedef struct XXH32_state_s XXH32_state_t
* @brief The opaque state struct for the XXH32 streaming API.
*
* @see XXH32_state_s for details.
*/
typedef struct XXH32_state_s XXH32_state_t;
/*!
* @brief Allocates an @ref XXH32_state_t.
*
* @return An allocated pointer of @ref XXH32_state_t on success.
* @return `NULL` on failure.
*
* @note Must be freed with XXH32_freeState().
*/
XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
/*!
* @brief Frees an @ref XXH32_state_t.
*
* @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
*
* @return @ref XXH_OK.
*
* @note @p statePtr must be allocated with XXH32_createState().
*
*/
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
/*!
* @brief Copies one @ref XXH32_state_t to another.
*
* @param dst_state The state to copy to.
* @param src_state The state to copy from.
* @pre
* @p dst_state and @p src_state must not be `NULL` and must not overlap.
*/
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
/*!
* @brief Resets an @ref XXH32_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 32-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note This function resets and seeds a state. Call it before @ref XXH32_update().
*/
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
/*!
* @brief Consumes a block of @p input to an @ref XXH32_state_t.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note Call this to incrementally consume blocks of data.
*/
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
/*!
* @brief Returns the calculated hash value from an @ref XXH32_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated 32-bit xxHash32 value from that state.
*
* @note
* Calling XXH32_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*/
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*!
* @brief Canonical (big endian) representation of @ref XXH32_hash_t.
*/
typedef struct {
unsigned char digest[4]; /*!< Hash bytes, big endian */
} XXH32_canonical_t;
/*!
* @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
*
* @param dst The @ref XXH32_canonical_t pointer to be stored to.
* @param hash The @ref XXH32_hash_t to be converted.
*
* @pre
* @p dst must not be `NULL`.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
/*!
* @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
*
* @param src The @ref XXH32_canonical_t to convert.
*
* @pre
* @p src must not be `NULL`.
*
* @return The converted hash.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
/*! @cond Doxygen ignores this part */
#ifdef __has_attribute
# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
#else
# define XXH_HAS_ATTRIBUTE(x) 0
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
/*
* C23 __STDC_VERSION__ number hasn't been specified yet. For now
* leave as `201711L` (C17 + 1).
* TODO: Update to correct value when its been specified.
*/
#define XXH_C23_VN 201711L
/*! @endcond */
/*! @cond Doxygen ignores this part */
/* C-language Attributes are added in C23. */
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
#else
# define XXH_HAS_C_ATTRIBUTE(x) 0
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
#if defined(__cplusplus) && defined(__has_cpp_attribute)
# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define XXH_HAS_CPP_ATTRIBUTE(x) 0
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
/*
* Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
* introduced in CPP17 and C23.
* CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
* C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
*/
#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
# define XXH_FALLTHROUGH [[fallthrough]]
#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
#else
# define XXH_FALLTHROUGH /* fallthrough */
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
/*
* Define XXH_NOESCAPE for annotated pointers in public API.
* https://clang.llvm.org/docs/AttributeReference.html#noescape
* As of writing this, only supported by clang.
*/
#if XXH_HAS_ATTRIBUTE(noescape)
# define XXH_NOESCAPE __attribute__((noescape))
#else
# define XXH_NOESCAPE
#endif
/*! @endcond */
/*!
* @}
* @ingroup public
* @{
*/
#ifndef XXH_NO_LONG_LONG
/*-**********************************************************************
* 64-bit hash
************************************************************************/
#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
/*!
* @brief An unsigned 64-bit integer.
*
* Not necessarily defined to `uint64_t` but functionally equivalent.
*/
typedef uint64_t XXH64_hash_t;
#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# ifdef _AIX
# include <inttypes.h>
# else
# include <stdint.h>
# endif
typedef uint64_t XXH64_hash_t;
#else
# include <limits.h>
# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
/* LP64 ABI says uint64_t is unsigned long */
typedef unsigned long XXH64_hash_t;
# else
/* the following type must have a width of 64-bit */
typedef unsigned long long XXH64_hash_t;
# endif
#endif
/*!
* @}
*
* @defgroup XXH64_family XXH64 family
* @ingroup public
* @{
* Contains functions used in the classic 64-bit xxHash algorithm.
*
* @note
* XXH3 provides competitive speed for both 32-bit and 64-bit systems,
* and offers true 64/128 bit hash results.
* It provides better speed for systems with vector processing capabilities.
*/
/*!
* @brief Calculates the 64-bit hash of @p input using xxHash64.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 64-bit seed to alter the hash's output predictably.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 64-bit xxHash64 value.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
/******* Streaming *******/
#ifndef XXH_NO_STREAM
/*!
* @brief The opaque state struct for the XXH64 streaming API.
*
* @see XXH64_state_s for details.
*/
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
/*!
* @brief Allocates an @ref XXH64_state_t.
*
* @return An allocated pointer of @ref XXH64_state_t on success.
* @return `NULL` on failure.
*
* @note Must be freed with XXH64_freeState().
*/
XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
/*!
* @brief Frees an @ref XXH64_state_t.
*
* @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
*
* @return @ref XXH_OK.
*
* @note @p statePtr must be allocated with XXH64_createState().
*/
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
/*!
* @brief Copies one @ref XXH64_state_t to another.
*
* @param dst_state The state to copy to.
* @param src_state The state to copy from.
* @pre
* @p dst_state and @p src_state must not be `NULL` and must not overlap.
*/
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
/*!
* @brief Resets an @ref XXH64_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note This function resets and seeds a state. Call it before @ref XXH64_update().
*/
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
/*!
* @brief Consumes a block of @p input to an @ref XXH64_state_t.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note Call this to incrementally consume blocks of data.
*/
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Returns the calculated hash value from an @ref XXH64_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated 64-bit xxHash64 value from that state.
*
* @note
* Calling XXH64_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*!
* @brief Canonical (big endian) representation of @ref XXH64_hash_t.
*/
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
/*!
* @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
*
* @param dst The @ref XXH64_canonical_t pointer to be stored to.
* @param hash The @ref XXH64_hash_t to be converted.
*
* @pre
* @p dst must not be `NULL`.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
/*!
* @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
*
* @param src The @ref XXH64_canonical_t to convert.
*
* @pre
* @p src must not be `NULL`.
*
* @return The converted hash.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
#ifndef XXH_NO_XXH3
/*!
* @}
* ************************************************************************
* @defgroup XXH3_family XXH3 family
* @ingroup public
* @{
*
* XXH3 is a more recent hash algorithm featuring:
* - Improved speed for both small and large inputs
* - True 64-bit and 128-bit outputs
* - SIMD acceleration
* - Improved 32-bit viability
*
* Speed analysis methodology is explained here:
*
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
*
* Compared to XXH64, expect XXH3 to run approximately
* ~2x faster on large inputs and >3x faster on small ones,
* exact differences vary depending on platform.
*
* XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
* but does not require it.
* Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
* at competitive speeds, even without vector support. Further details are
* explained in the implementation.
*
* XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
* implementations for many common platforms:
* - AVX512
* - AVX2
* - SSE2
* - ARM NEON
* - WebAssembly SIMD128
* - POWER8 VSX
* - s390x ZVector
* This can be controlled via the @ref XXH_VECTOR macro, but it automatically
* selects the best version according to predefined macros. For the x86 family, an
* automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
*
* XXH3 implementation is portable:
* it has a generic C90 formulation that can be compiled on any platform,
* all implementations generate exactly the same hash value on all platforms.
* Starting from v0.8.0, it's also labelled "stable", meaning that
* any future version will also generate the same hash value.
*
* XXH3 offers 2 variants, _64bits and _128bits.
*
* When only 64 bits are needed, prefer invoking the _64bits variant, as it
* reduces the amount of mixing, resulting in faster speed on small inputs.
* It's also generally simpler to manipulate a scalar return type than a struct.
*
* The API supports one-shot hashing, streaming mode, and custom secrets.
*/
/*-**********************************************************************
* XXH3 64-bit variant
************************************************************************/
/*!
* @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 64-bit XXH3 hash value.
*
* @note
* This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however
* it may have slightly better performance due to constant propagation of the
* defaults.
*
* @see
* XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Calculates 64-bit seeded variant of XXH3 hash of @p input.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 64-bit XXH3 hash value.
*
* @note
* seed == 0 produces the same results as @ref XXH3_64bits().
*
* This variant generates a custom secret on the fly based on default secret
* altered using the @p seed value.
*
* While this operation is decently fast, note that it's not completely free.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
/*!
* The bare minimum size for a custom secret.
*
* @see
* XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
* XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
*/
#define XXH3_SECRET_SIZE_MIN 136
/*!
* @brief Calculates 64-bit variant of XXH3 with a custom "secret".
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @return The calculated 64-bit XXH3 hash value.
*
* @pre
* The memory between @p data and @p data + @p len must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p data may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
* This makes it more difficult for an external actor to prepare an intentional collision.
* The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
* However, the quality of the secret impacts the dispersion of the hash algorithm.
* Therefore, the secret _must_ look like a bunch of random bytes.
* Avoid "trivial" or structured data such as repeated sequences or a text document.
* Whenever in doubt about the "randomness" of the blob of bytes,
* consider employing @ref XXH3_generateSecret() instead (see below).
* It will generate a proper high entropy secret derived from the blob of bytes.
* Another advantage of using XXH3_generateSecret() is that
* it guarantees that all bits within the initial blob of bytes
* will impact every bit of the output.
* This is not necessarily the case when using the blob of bytes directly
* because, when hashing _small_ inputs, only a portion of the secret is employed.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
/******* Streaming *******/
#ifndef XXH_NO_STREAM
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
* As a consequence, streaming is slower than one-shot hashing.
* For better performance, prefer one-shot functions whenever applicable.
*/
/*!
* @brief The opaque state struct for the XXH3 streaming API.
*
* @see XXH3_state_s for details.
*/
typedef struct XXH3_state_s XXH3_state_t;
XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
/*!
* @brief Copies one @ref XXH3_state_t to another.
*
* @param dst_state The state to copy to.
* @param src_state The state to copy from.
* @pre
* @p dst_state and @p src_state must not be `NULL` and must not overlap.
*/
XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
/*!
* @brief Resets an @ref XXH3_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret with default parameters.
* - Call this function before @ref XXH3_64bits_update().
* - Digest will be equivalent to `XXH3_64bits()`.
*
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
/*!
* @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret from `seed`.
* - Call this function before @ref XXH3_64bits_update().
* - Digest will be equivalent to `XXH3_64bits_withSeed()`.
*
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* `secret` is referenced, it _must outlive_ the hash streaming session.
*
* Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
* and the quality of produced hash values depends on secret's entropy
* (secret's content should look like a bunch of random bytes).
* When in doubt about the randomness of a candidate `secret`,
* consider employing `XXH3_generateSecret()` instead (see below).
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
/*!
* @brief Consumes a block of @p input to an @ref XXH3_state_t.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note Call this to incrementally consume blocks of data.
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated XXH3 64-bit hash value from that state.
*
* @note
* Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/* note : canonical representation of XXH3 is the same as XXH64
* since they both produce XXH64_hash_t values */
/*-**********************************************************************
* XXH3 128-bit variant
************************************************************************/
/*!
* @brief The return value from 128-bit hashes.
*
* Stored in little endian order, although the fields themselves are in native
* endianness.
*/
typedef struct {
XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
XXH64_hash_t high64; /*!< `value >> 64` */
} XXH128_hash_t;
/*!
* @brief Calculates 128-bit unseeded variant of XXH3 of @p data.
*
* @param data The block of data to be hashed, at least @p length bytes in size.
* @param len The length of @p data, in bytes.
*
* @return The calculated 128-bit variant of XXH3 value.
*
* The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
* for shorter inputs.
*
* This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however
* it may have slightly better performance due to constant propagation of the
* defaults.
*
* @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
*
* @param data The block of data to be hashed, at least @p length bytes in size.
* @param len The length of @p data, in bytes.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @return The calculated 128-bit variant of XXH3 value.
*
* @note
* seed == 0 produces the same results as @ref XXH3_64bits().
*
* This variant generates a custom secret on the fly based on default secret
* altered using the @p seed value.
*
* While this operation is decently fast, note that it's not completely free.
*
* @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
/*!
* @brief Calculates 128-bit variant of XXH3 with a custom "secret".
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @return The calculated 128-bit variant of XXH3 value.
*
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
* This makes it more difficult for an external actor to prepare an intentional collision.
* The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
* However, the quality of the secret impacts the dispersion of the hash algorithm.
* Therefore, the secret _must_ look like a bunch of random bytes.
* Avoid "trivial" or structured data such as repeated sequences or a text document.
* Whenever in doubt about the "randomness" of the blob of bytes,
* consider employing @ref XXH3_generateSecret() instead (see below).
* It will generate a proper high entropy secret derived from the blob of bytes.
* Another advantage of using XXH3_generateSecret() is that
* it guarantees that all bits within the initial blob of bytes
* will impact every bit of the output.
* This is not necessarily the case when using the blob of bytes directly
* because, when hashing _small_ inputs, only a portion of the secret is employed.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
/******* Streaming *******/
#ifndef XXH_NO_STREAM
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
* As a consequence, streaming is slower than one-shot hashing.
* For better performance, prefer one-shot functions whenever applicable.
*
* XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
* Use already declared XXH3_createState() and XXH3_freeState().
*
* All reset and streaming functions have same meaning as their 64-bit counterpart.
*/
/*!
* @brief Resets an @ref XXH3_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret with default parameters.
* - Call it before @ref XXH3_128bits_update().
* - Digest will be equivalent to `XXH3_128bits()`.
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
/*!
* @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret from `seed`.
* - Call it before @ref XXH3_128bits_update().
* - Digest will be equivalent to `XXH3_128bits_withSeed()`.
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* `secret` is referenced, it _must outlive_ the hash streaming session.
* Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
* and the quality of produced hash values depends on secret's entropy
* (secret's content should look like a bunch of random bytes).
* When in doubt about the randomness of a candidate `secret`,
* consider employing `XXH3_generateSecret()` instead (see below).
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
/*!
* @brief Consumes a block of @p input to an @ref XXH3_state_t.
*
* Call this to incrementally consume blocks of data.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated XXH3 128-bit hash value from that state.
*
* @note
* Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/* Following helper functions make it possible to compare XXH128_hast_t values.
* Since XXH128_hash_t is a structure, this capability is not offered by the language.
* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
/*!
* @brief Check equality of two XXH128_hash_t values
*
* @param h1 The 128-bit hash value.
* @param h2 Another 128-bit hash value.
*
* @return `1` if `h1` and `h2` are equal.
* @return `0` if they are not.
*/
XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
/*!
* @brief Compares two @ref XXH128_hash_t
*
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
*
* @param h128_1 Left-hand side value
* @param h128_2 Right-hand side value
*
* @return >0 if @p h128_1 > @p h128_2
* @return =0 if @p h128_1 == @p h128_2
* @return <0 if @p h128_1 < @p h128_2
*/
XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
/******* Canonical representation *******/
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
/*!
* @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
*
* @param dst The @ref XXH128_canonical_t pointer to be stored to.
* @param hash The @ref XXH128_hash_t to be converted.
*
* @pre
* @p dst must not be `NULL`.
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
/*!
* @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
*
* @param src The @ref XXH128_canonical_t to convert.
*
* @pre
* @p src must not be `NULL`.
*
* @return The converted hash.
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
#endif /* !XXH_NO_XXH3 */
#endif /* XXH_NO_LONG_LONG */
/*!
* @}
*/
#endif /* XXHASH_H_5627135585666179 */
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
#define XXHASH_H_STATIC_13879238742
/* ****************************************************************************
* This section contains declarations which are not guaranteed to remain stable.
* They may change in future versions, becoming incompatible with a different
* version of the library.
* These declarations should only be used with static linking.
* Never use them in association with dynamic linking!
***************************************************************************** */
/*
* These definitions are only present to allow static allocation
* of XXH states, on stack or in a struct, for example.
* Never **ever** access their members directly.
*/
/*!
* @internal
* @brief Structure for XXH32 streaming API.
*
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
* an opaque type. This allows fields to safely be changed.
*
* Typedef'd to @ref XXH32_state_t.
* Do not access the members of this struct directly.
* @see XXH64_state_s, XXH3_state_s
*/
struct XXH32_state_s {
XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
XXH32_hash_t v[4]; /*!< Accumulator lanes */
XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */
}; /* typedef'd to XXH32_state_t */
#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
/*!
* @internal
* @brief Structure for XXH64 streaming API.
*
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
* an opaque type. This allows fields to safely be changed.
*
* Typedef'd to @ref XXH64_state_t.
* Do not access the members of this struct directly.
* @see XXH32_state_s, XXH3_state_s
*/
struct XXH64_state_s {
XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
XXH64_hash_t v[4]; /*!< Accumulator lanes */
XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */
}; /* typedef'd to XXH64_state_t */
#ifndef XXH_NO_XXH3
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
# include <stdalign.h>
# define XXH_ALIGN(n) alignas(n)
#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
/* In C++ alignas() is a keyword */
# define XXH_ALIGN(n) alignas(n)
#elif defined(__GNUC__)
# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
#elif defined(_MSC_VER)
# define XXH_ALIGN(n) __declspec(align(n))
#else
# define XXH_ALIGN(n) /* disabled */
#endif
/* Old GCC versions only accept the attribute after the type in structures. */
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
&& ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
&& defined(__GNUC__)
# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
#else
# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
#endif
/*!
* @brief The size of the internal XXH3 buffer.
*
* This is the optimal update size for incremental hashing.
*
* @see XXH3_64b_update(), XXH3_128b_update().
*/
#define XXH3_INTERNALBUFFER_SIZE 256
/*!
* @internal
* @brief Default size of the secret buffer (and @ref XXH3_kSecret).
*
* This is the size used in @ref XXH3_kSecret and the seeded functions.
*
* Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
*/
#define XXH3_SECRET_DEFAULT_SIZE 192
/*!
* @internal
* @brief Structure for XXH3 streaming API.
*
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
* Otherwise it is an opaque type.
* Never use this definition in combination with dynamic library.
* This allows fields to safely be changed in the future.
*
* @note ** This structure has a strict alignment requirement of 64 bytes!! **
* Do not allocate this with `malloc()` or `new`,
* it will not be sufficiently aligned.
* Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
*
* Typedef'd to @ref XXH3_state_t.
* Do never access the members of this struct directly.
*
* @see XXH3_INITSTATE() for stack initialization.
* @see XXH3_createState(), XXH3_freeState().
* @see XXH32_state_s, XXH64_state_s
*/
struct XXH3_state_s {
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
/*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
/*!< Used to store a custom secret generated from a seed. */
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
/*!< The internal buffer. @see XXH32_state_s::mem32 */
XXH32_hash_t bufferedSize;
/*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
XXH32_hash_t useSeed;
/*!< Reserved field. Needed for padding on 64-bit. */
size_t nbStripesSoFar;
/*!< Number or stripes processed. */
XXH64_hash_t totalLen;
/*!< Total length hashed. 64-bit even on 32-bit targets. */
size_t nbStripesPerBlock;
/*!< Number of stripes per block. */
size_t secretLimit;
/*!< Size of @ref customSecret or @ref extSecret */
XXH64_hash_t seed;
/*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
XXH64_hash_t reserved64;
/*!< Reserved field. */
const unsigned char* extSecret;
/*!< Reference to an external secret for the _withSecret variants, NULL
* for other variants. */
/* note: there may be some padding at the end due to alignment on 64 bytes */
}; /* typedef'd to XXH3_state_t */
#undef XXH_ALIGN_MEMBER
/*!
* @brief Initializes a stack-allocated `XXH3_state_s`.
*
* When the @ref XXH3_state_t structure is merely emplaced on stack,
* it should be initialized with XXH3_INITSTATE() or a memset()
* in case its first reset uses XXH3_NNbits_reset_withSeed().
* This init can be omitted if the first reset uses default or _withSecret mode.
* This operation isn't necessary when the state is created with XXH3_createState().
* Note that this doesn't prepare the state for a streaming operation,
* it's still necessary to use XXH3_NNbits_reset*() afterwards.
*/
#define XXH3_INITSTATE(XXH3_state_ptr) \
do { \
XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
tmp_xxh3_state_ptr->seed = 0; \
tmp_xxh3_state_ptr->extSecret = NULL; \
} while(0)
/*!
* @brief Calculates the 128-bit hash of @p data using XXH3.
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param seed The 64-bit seed to alter the hash's output predictably.
*
* @pre
* The memory between @p data and @p data + @p len must be valid,
* readable, contiguous memory. However, if @p len is `0`, @p data may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 128-bit XXH3 value.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
/* === Experimental API === */
/* Symbols defined below must be considered tied to a specific library version. */
/*!
* @brief Derive a high-entropy secret from any user-defined content, named customSeed.
*
* @param secretBuffer A writable buffer for derived high-entropy secret data.
* @param secretSize Size of secretBuffer, in bytes. Must be >= XXH3_SECRET_DEFAULT_SIZE.
* @param customSeed A user-defined content.
* @param customSeedSize Size of customSeed, in bytes.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* The generated secret can be used in combination with `*_withSecret()` functions.
* The `_withSecret()` variants are useful to provide a higher level of protection
* than 64-bit seed, as it becomes much more difficult for an external actor to
* guess how to impact the calculation logic.
*
* The function accepts as input a custom seed of any length and any content,
* and derives from it a high-entropy secret of length @p secretSize into an
* already allocated buffer @p secretBuffer.
*
* The generated secret can then be used with any `*_withSecret()` variant.
* The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
* @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
* are part of this list. They all accept a `secret` parameter
* which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
* _and_ feature very high entropy (consist of random-looking bytes).
* These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
* be employed to ensure proper quality.
*
* @p customSeed can be anything. It can have any size, even small ones,
* and its content can be anything, even "poor entropy" sources such as a bunch
* of zeroes. The resulting `secret` will nonetheless provide all required qualities.
*
* @pre
* - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
* - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
*
* Example code:
* @code{.c}
* #include <stdio.h>
* #include <stdlib.h>
* #include <string.h>
* #define XXH_STATIC_LINKING_ONLY // expose unstable API
* #include "xxhash.h"
* // Hashes argv[2] using the entropy from argv[1].
* int main(int argc, char* argv[])
* {
* char secret[XXH3_SECRET_SIZE_MIN];
* if (argv != 3) { return 1; }
* XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
* XXH64_hash_t h = XXH3_64bits_withSecret(
* argv[2], strlen(argv[2]),
* secret, sizeof(secret)
* );
* printf("%016llx\n", (unsigned long long) h);
* }
* @endcode
*/
XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
/*!
* @brief Generate the same secret as the _withSeed() variants.
*
* @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes
* @param seed The 64-bit seed to alter the hash result predictably.
*
* The generated secret can be used in combination with
*`*_withSecret()` and `_withSecretandSeed()` variants.
*
* Example C++ `std::string` hash class:
* @code{.cpp}
* #include <string>
* #define XXH_STATIC_LINKING_ONLY // expose unstable API
* #include "xxhash.h"
* // Slow, seeds each time
* class HashSlow {
* XXH64_hash_t seed;
* public:
* HashSlow(XXH64_hash_t s) : seed{s} {}
* size_t operator()(const std::string& x) const {
* return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
* }
* };
* // Fast, caches the seeded secret for future uses.
* class HashFast {
* unsigned char secret[XXH3_SECRET_SIZE_MIN];
* public:
* HashFast(XXH64_hash_t s) {
* XXH3_generateSecret_fromSeed(secret, seed);
* }
* size_t operator()(const std::string& x) const {
* return size_t{
* XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
* };
* }
* };
* @endcode
*/
XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
/*!
* @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data.
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* These variants generate hash values using either
* @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes)
* or @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX).
*
* This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
* `_withSeed()` has to generate the secret on the fly for "large" keys.
* It's fast, but can be perceptible for "not so large" keys (< 1 KB).
* `_withSecret()` has to generate the masks on the fly for "small" keys,
* which requires more instructions than _withSeed() variants.
* Therefore, _withSecretandSeed variant combines the best of both worlds.
*
* When @p secret has been generated by XXH3_generateSecret_fromSeed(),
* this variant produces *exactly* the same results as `_withSeed()` variant,
* hence offering only a pure speed benefit on "large" input,
* by skipping the need to regenerate the secret for every large input.
*
* Another usage scenario is to hash the secret to a 64-bit hash value,
* for example with XXH3_64bits(), which then becomes the seed,
* and then employ both the seed and the secret in _withSecretandSeed().
* On top of speed, an added benefit is that each bit in the secret
* has a 50% chance to swap each bit in the output, via its impact to the seed.
*
* This is not guaranteed when using the secret directly in "small data" scenarios,
* because only portions of the secret are employed for small data.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed);
/*!
* @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
*
* @param input The block of data to be hashed, at least @p len bytes in size.
* @param length The length of @p data, in bytes.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
* @param seed64 The 64-bit seed to alter the hash result predictably.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @see XXH3_64bits_withSecretandSeed()
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
#ifndef XXH_NO_STREAM
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
* @param seed64 The 64-bit seed to alter the hash result predictably.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @see XXH3_64bits_withSecretandSeed()
*/
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
* @param seed64 The 64-bit seed to alter the hash result predictably.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @see XXH3_64bits_withSecretandSeed()
*/
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
#endif /* !XXH_NO_STREAM */
#endif /* !XXH_NO_XXH3 */
#endif /* XXH_NO_LONG_LONG */
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
# define XXH_IMPLEMENTATION
#endif
#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
/* ======================================================================== */
/* ======================================================================== */
/* ======================================================================== */
/*-**********************************************************************
* xxHash implementation
*-**********************************************************************
* xxHash's implementation used to be hosted inside xxhash.c.
*
* However, inlining requires implementation to be visible to the compiler,
* hence be included alongside the header.
* Previously, implementation was hosted inside xxhash.c,
* which was then #included when inlining was activated.
* This construction created issues with a few build and install systems,
* as it required xxhash.c to be stored in /include directory.
*
* xxHash implementation is now directly integrated within xxhash.h.
* As a consequence, xxhash.c is no longer needed in /include.
*
* xxhash.c is still available and is still useful.
* In a "normal" setup, when xxhash is not inlined,
* xxhash.h only exposes the prototypes and public symbols,
* while xxhash.c can be built into an object file xxhash.o
* which can then be linked into the final binary.
************************************************************************/
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
|| defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
# define XXH_IMPLEM_13a8737387
/* *************************************
* Tuning parameters
***************************************/
/*!
* @defgroup tuning Tuning parameters
* @{
*
* Various macros to control xxHash's behavior.
*/
#ifdef XXH_DOXYGEN
/*!
* @brief Define this to disable 64-bit code.
*
* Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
*/
# define XXH_NO_LONG_LONG
# undef XXH_NO_LONG_LONG /* don't actually */
/*!
* @brief Controls how unaligned memory is accessed.
*
* By default, access to unaligned memory is controlled by `memcpy()`, which is
* safe and portable.
*
* Unfortunately, on some target/compiler combinations, the generated assembly
* is sub-optimal.
*
* The below switch allow selection of a different access method
* in the search for improved performance.
*
* @par Possible options:
*
* - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
* @par
* Use `memcpy()`. Safe and portable. Note that most modern compilers will
* eliminate the function call and treat it as an unaligned access.
*
* - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
* @par
* Depends on compiler extensions and is therefore not portable.
* This method is safe _if_ your compiler supports it,
* and *generally* as fast or faster than `memcpy`.
*
* - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
* @par
* Casts directly and dereferences. This method doesn't depend on the
* compiler, but it violates the C standard as it directly dereferences an
* unaligned pointer. It can generate buggy code on targets which do not
* support unaligned memory accesses, but in some circumstances, it's the
* only known way to get the most performance.
*
* - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
* @par
* Also portable. This can generate the best code on old compilers which don't
* inline small `memcpy()` calls, and it might also be faster on big-endian
* systems which lack a native byteswap instruction. However, some compilers
* will emit literal byteshifts even if the target supports unaligned access.
*
*
* @warning
* Methods 1 and 2 rely on implementation-defined behavior. Use these with
* care, as what works on one compiler/platform/optimization level may cause
* another to read garbage data or even crash.
*
* See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
*
* Prefer these methods in priority order (0 > 3 > 1 > 2)
*/
# define XXH_FORCE_MEMORY_ACCESS 0
/*!
* @def XXH_SIZE_OPT
* @brief Controls how much xxHash optimizes for size.
*
* xxHash, when compiled, tends to result in a rather large binary size. This
* is mostly due to heavy usage to forced inlining and constant folding of the
* @ref XXH3_family to increase performance.
*
* However, some developers prefer size over speed. This option can
* significantly reduce the size of the generated code. When using the `-Os`
* or `-Oz` options on GCC or Clang, this is defined to 1 by default,
* otherwise it is defined to 0.
*
* Most of these size optimizations can be controlled manually.
*
* This is a number from 0-2.
* - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
* comes first.
* - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
* conservative and disables hacks that increase code size. It implies the
* options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
* and @ref XXH3_NEON_LANES == 8 if they are not already defined.
* - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
* Performance may cry. For example, the single shot functions just use the
* streaming API.
*/
# define XXH_SIZE_OPT 0
/*!
* @def XXH_FORCE_ALIGN_CHECK
* @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
* and XXH64() only).
*
* This is an important performance trick for architectures without decent
* unaligned memory access performance.
*
* It checks for input alignment, and when conditions are met, uses a "fast
* path" employing direct 32-bit/64-bit reads, resulting in _dramatically
* faster_ read speed.
*
* The check costs one initial branch per hash, which is generally negligible,
* but not zero.
*
* Moreover, it's not useful to generate an additional code path if memory
* access uses the same instruction for both aligned and unaligned
* addresses (e.g. x86 and aarch64).
*
* In these cases, the alignment check can be removed by setting this macro to 0.
* Then the code will always use unaligned memory access.
* Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
* which are platforms known to offer good unaligned memory accesses performance.
*
* It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
*
* This option does not affect XXH3 (only XXH32 and XXH64).
*/
# define XXH_FORCE_ALIGN_CHECK 0
/*!
* @def XXH_NO_INLINE_HINTS
* @brief When non-zero, sets all functions to `static`.
*
* By default, xxHash tries to force the compiler to inline almost all internal
* functions.
*
* This can usually improve performance due to reduced jumping and improved
* constant folding, but significantly increases the size of the binary which
* might not be favorable.
*
* Additionally, sometimes the forced inlining can be detrimental to performance,
* depending on the architecture.
*
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
* compiler full control on whether to inline or not.
*
* When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
* @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
*/
# define XXH_NO_INLINE_HINTS 0
/*!
* @def XXH3_INLINE_SECRET
* @brief Determines whether to inline the XXH3 withSecret code.
*
* When the secret size is known, the compiler can improve the performance
* of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
*
* However, if the secret size is not known, it doesn't have any benefit. This
* happens when xxHash is compiled into a global symbol. Therefore, if
* @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
*
* Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
* that are *sometimes* force inline on -Og, and it is impossible to automatically
* detect this optimization level.
*/
# define XXH3_INLINE_SECRET 0
/*!
* @def XXH32_ENDJMP
* @brief Whether to use a jump for `XXH32_finalize`.
*
* For performance, `XXH32_finalize` uses multiple branches in the finalizer.
* This is generally preferable for performance,
* but depending on exact architecture, a jmp may be preferable.
*
* This setting is only possibly making a difference for very small inputs.
*/
# define XXH32_ENDJMP 0
/*!
* @internal
* @brief Redefines old internal names.
*
* For compatibility with code that uses xxHash's internals before the names
* were changed to improve namespacing. There is no other reason to use this.
*/
# define XXH_OLD_NAMES
# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
/*!
* @def XXH_NO_STREAM
* @brief Disables the streaming API.
*
* When xxHash is not inlined and the streaming functions are not used, disabling
* the streaming functions can improve code size significantly, especially with
* the @ref XXH3_family which tends to make constant folded copies of itself.
*/
# define XXH_NO_STREAM
# undef XXH_NO_STREAM /* don't actually */
#endif /* XXH_DOXYGEN */
/*!
* @}
*/
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
/* prefer __packed__ structures (method 1) for GCC
* < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
* which for some reason does unaligned loads. */
# if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
#ifndef XXH_SIZE_OPT
/* default to 1 for -Os or -Oz */
# if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
# define XXH_SIZE_OPT 1
# else
# define XXH_SIZE_OPT 0
# endif
#endif
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
/* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
# if XXH_SIZE_OPT >= 1 || \
defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
|| defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
# endif
#endif
#ifndef XXH_NO_INLINE_HINTS
# if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */
# define XXH_NO_INLINE_HINTS 1
# else
# define XXH_NO_INLINE_HINTS 0
# endif
#endif
#ifndef XXH3_INLINE_SECRET
# if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
|| !defined(XXH_INLINE_ALL)
# define XXH3_INLINE_SECRET 0
# else
# define XXH3_INLINE_SECRET 1
# endif
#endif
#ifndef XXH32_ENDJMP
/* generally preferable for performance */
# define XXH32_ENDJMP 0
#endif
/*!
* @defgroup impl Implementation
* @{
*/
/* *************************************
* Includes & Memory related functions
***************************************/
#if defined(XXH_NO_STREAM)
/* nothing */
#elif defined(XXH_NO_STDLIB)
/* When requesting to disable any mention of stdlib,
* the library loses the ability to invoked malloc / free.
* In practice, it means that functions like `XXH*_createState()`
* will always fail, and return NULL.
* This flag is useful in situations where
* xxhash.h is integrated into some kernel, embedded or limited environment
* without access to dynamic allocation.
*/
static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
static void XXH_free(void* p) { (void)p; }
#else
/*
* Modify the local functions below should you wish to use
* different memory routines for malloc() and free()
*/
#include <stdlib.h>
/*!
* @internal
* @brief Modify this function to use a different routine than malloc().
*/
static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
/*!
* @internal
* @brief Modify this function to use a different routine than free().
*/
static void XXH_free(void* p) { free(p); }
#endif /* XXH_NO_STDLIB */
#include <string.h>
/*!
* @internal
* @brief Modify this function to use a different routine than memcpy().
*/
static void* XXH_memcpy(void* dest, const void* src, size_t size)
{
return memcpy(dest,src,size);
}
#include <limits.h> /* ULLONG_MAX */
/* *************************************
* Compiler Specific Options
***************************************/
#ifdef _MSC_VER /* Visual Studio warning fix */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
#if XXH_NO_INLINE_HINTS /* disable inlining hints */
# if defined(__GNUC__) || defined(__clang__)
# define XXH_FORCE_INLINE static __attribute__((unused))
# else
# define XXH_FORCE_INLINE static
# endif
# define XXH_NO_INLINE static
/* enable inlining hints */
#elif defined(__GNUC__) || defined(__clang__)
# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
# define XXH_NO_INLINE static __attribute__((noinline))
#elif defined(_MSC_VER) /* Visual Studio */
# define XXH_FORCE_INLINE static __forceinline
# define XXH_NO_INLINE static __declspec(noinline)
#elif defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
# define XXH_FORCE_INLINE static inline
# define XXH_NO_INLINE static
#else
# define XXH_FORCE_INLINE static
# define XXH_NO_INLINE static
#endif
#if XXH3_INLINE_SECRET
# define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
#else
# define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
#endif
/* *************************************
* Debug
***************************************/
/*!
* @ingroup tuning
* @def XXH_DEBUGLEVEL
* @brief Sets the debugging level.
*
* XXH_DEBUGLEVEL is expected to be defined externally, typically via the
* compiler's command line options. The value must be a number.
*/
#ifndef XXH_DEBUGLEVEL
# ifdef DEBUGLEVEL /* backwards compat */
# define XXH_DEBUGLEVEL DEBUGLEVEL
# else
# define XXH_DEBUGLEVEL 0
# endif
#endif
#if (XXH_DEBUGLEVEL>=1)
# include <assert.h> /* note: can still be disabled with NDEBUG */
# define XXH_ASSERT(c) assert(c)
#else
# if defined(__INTEL_COMPILER)
# define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c))
# else
# define XXH_ASSERT(c) XXH_ASSUME(c)
# endif
#endif
/* note: use after variable declarations */
#ifndef XXH_STATIC_ASSERT
# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
# else
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
# endif
# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
#endif
/*!
* @internal
* @def XXH_COMPILER_GUARD(var)
* @brief Used to prevent unwanted optimizations for @p var.
*
* It uses an empty GCC inline assembly statement with a register constraint
* which forces @p var into a general purpose register (eg eax, ebx, ecx
* on x86) and marks it as modified.
*
* This is used in a few places to avoid unwanted autovectorization (e.g.
* XXH32_round()). All vectorization we want is explicit via intrinsics,
* and _usually_ isn't wanted elsewhere.
*
* We also use it to prevent unwanted constant folding for AArch64 in
* XXH3_initCustomSecret_scalar().
*/
#if defined(__GNUC__) || defined(__clang__)
# define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
#else
# define XXH_COMPILER_GUARD(var) ((void)0)
#endif
/* Specifically for NEON vectors which use the "w" constraint, on
* Clang. */
#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
# define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
#else
# define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
#endif
/* *************************************
* Basic Types
***************************************/
#if !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# ifdef _AIX
# include <inttypes.h>
# else
# include <stdint.h>
# endif
typedef uint8_t xxh_u8;
#else
typedef unsigned char xxh_u8;
#endif
typedef XXH32_hash_t xxh_u32;
#ifdef XXH_OLD_NAMES
# warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
# define BYTE xxh_u8
# define U8 xxh_u8
# define U32 xxh_u32
#endif
/* *** Memory access *** */
/*!
* @internal
* @fn xxh_u32 XXH_read32(const void* ptr)
* @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
*
* @param ptr The pointer to read from.
* @return The 32-bit native endian integer from the bytes at @p ptr.
*/
/*!
* @internal
* @fn xxh_u32 XXH_readLE32(const void* ptr)
* @brief Reads an unaligned 32-bit little endian integer from @p ptr.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
*
* @param ptr The pointer to read from.
* @return The 32-bit little endian integer from the bytes at @p ptr.
*/
/*!
* @internal
* @fn xxh_u32 XXH_readBE32(const void* ptr)
* @brief Reads an unaligned 32-bit big endian integer from @p ptr.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
*
* @param ptr The pointer to read from.
* @return The 32-bit big endian integer from the bytes at @p ptr.
*/
/*!
* @internal
* @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
* @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
* Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
* always @ref XXH_alignment::XXH_unaligned.
*
* @param ptr The pointer to read from.
* @param align Whether @p ptr is aligned.
* @pre
* If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
* aligned.
* @return The 32-bit little endian integer from the bytes at @p ptr.
*/
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
* Manual byteshift. Best for old compilers which don't inline memcpy.
* We actually directly use XXH_readLE32 and XXH_readBE32.
*/
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/*
* Force direct memory access. Only works on CPU which support unaligned memory
* access in hardware.
*/
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/*
* __attribute__((aligned(1))) is supported by gcc and clang. Originally the
* documentation claimed that it only increased the alignment, but actually it
* can decrease it on gcc, clang, and icc:
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
* https://gcc.godbolt.org/z/xYez1j67Y.
*/
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
#endif
static xxh_u32 XXH_read32(const void* ptr)
{
typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32;
return *((const xxh_unalign32*)ptr);
}
#else
/*
* Portable and safe solution. Generally efficient.
* see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
*/
static xxh_u32 XXH_read32(const void* memPtr)
{
xxh_u32 val;
XXH_memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
/* *** Endianness *** */
/*!
* @ingroup tuning
* @def XXH_CPU_LITTLE_ENDIAN
* @brief Whether the target is little endian.
*
* Defined to 1 if the target is little endian, or 0 if it is big endian.
* It can be defined externally, for example on the compiler command line.
*
* If it is not defined,
* a runtime check (which is usually constant folded) is used instead.
*
* @note
* This is not necessarily defined to an integer constant.
*
* @see XXH_isLittleEndian() for the runtime check.
*/
#ifndef XXH_CPU_LITTLE_ENDIAN
/*
* Try to detect endianness automatically, to avoid the nonstandard behavior
* in `XXH_isLittleEndian()`
*/
# if defined(_WIN32) /* Windows is always little endian */ \
|| defined(__LITTLE_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
# define XXH_CPU_LITTLE_ENDIAN 1
# elif defined(__BIG_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
# define XXH_CPU_LITTLE_ENDIAN 0
# else
/*!
* @internal
* @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
*
* Most compilers will constant fold this.
*/
static int XXH_isLittleEndian(void)
{
/*
* Portable and well-defined behavior.
* Don't use static: it is detrimental to performance.
*/
const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
return one.c[0];
}
# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
# endif
#endif
/* ****************************************
* Compiler-specific Functions and Macros
******************************************/
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#ifdef __has_builtin
# define XXH_HAS_BUILTIN(x) __has_builtin(x)
#else
# define XXH_HAS_BUILTIN(x) 0
#endif
/*
* C23 and future versions have standard "unreachable()".
* Once it has been implemented reliably we can add it as an
* additional case:
*
* ```
* #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
* # include <stddef.h>
* # ifdef unreachable
* # define XXH_UNREACHABLE() unreachable()
* # endif
* #endif
* ```
*
* Note C++23 also has std::unreachable() which can be detected
* as follows:
* ```
* #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
* # include <utility>
* # define XXH_UNREACHABLE() std::unreachable()
* #endif
* ```
* NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
* We don't use that as including `<utility>` in `extern "C"` blocks
* doesn't work on GCC12
*/
#if XXH_HAS_BUILTIN(__builtin_unreachable)
# define XXH_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
# define XXH_UNREACHABLE() __assume(0)
#else
# define XXH_UNREACHABLE()
#endif
#if XXH_HAS_BUILTIN(__builtin_assume)
# define XXH_ASSUME(c) __builtin_assume(c)
#else
# define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
#endif
/*!
* @internal
* @def XXH_rotl32(x,r)
* @brief 32-bit rotate left.
*
* @param x The 32-bit integer to be rotated.
* @param r The number of bits to rotate.
* @pre
* @p r > 0 && @p r < 32
* @note
* @p x and @p r may be evaluated multiple times.
* @return The rotated result.
*/
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
&& XXH_HAS_BUILTIN(__builtin_rotateleft64)
# define XXH_rotl32 __builtin_rotateleft32
# define XXH_rotl64 __builtin_rotateleft64
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
#elif defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
#endif
/*!
* @internal
* @fn xxh_u32 XXH_swap32(xxh_u32 x)
* @brief A 32-bit byteswap.
*
* @param x The 32-bit integer to byteswap.
* @return @p x, byteswapped.
*/
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap32 _byteswap_ulong
#elif XXH_GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
#else
static xxh_u32 XXH_swap32 (xxh_u32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
#endif
/* ***************************
* Memory reads
*****************************/
/*!
* @internal
* @brief Enum to indicate whether a pointer is aligned.
*/
typedef enum {
XXH_aligned, /*!< Aligned */
XXH_unaligned /*!< Possibly unaligned */
} XXH_alignment;
/*
* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
*
* This is ideal for older compilers which don't inline memcpy.
*/
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[0]
| ((xxh_u32)bytePtr[1] << 8)
| ((xxh_u32)bytePtr[2] << 16)
| ((xxh_u32)bytePtr[3] << 24);
}
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[3]
| ((xxh_u32)bytePtr[2] << 8)
| ((xxh_u32)bytePtr[1] << 16)
| ((xxh_u32)bytePtr[0] << 24);
}
#else
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
}
static xxh_u32 XXH_readBE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}
#endif
XXH_FORCE_INLINE xxh_u32
XXH_readLE32_align(const void* ptr, XXH_alignment align)
{
if (align==XXH_unaligned) {
return XXH_readLE32(ptr);
} else {
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
}
}
/* *************************************
* Misc
***************************************/
/*! @ingroup public */
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
/* *******************************************************************
* 32-bit hash functions
*********************************************************************/
/*!
* @}
* @defgroup XXH32_impl XXH32 implementation
* @ingroup impl
*
* Details on the XXH32 implementation.
* @{
*/
/* #define instead of static const, to be used as initializers */
#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */
#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */
#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */
#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */
#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */
#ifdef XXH_OLD_NAMES
# define PRIME32_1 XXH_PRIME32_1
# define PRIME32_2 XXH_PRIME32_2
# define PRIME32_3 XXH_PRIME32_3
# define PRIME32_4 XXH_PRIME32_4
# define PRIME32_5 XXH_PRIME32_5
#endif
/*!
* @internal
* @brief Normal stripe processing routine.
*
* This shuffles the bits so that any bit from @p input impacts several bits in
* @p acc.
*
* @param acc The accumulator lane.
* @param input The stripe of input to mix.
* @return The mixed accumulator lane.
*/
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
{
acc += input * XXH_PRIME32_2;
acc = XXH_rotl32(acc, 13);
acc *= XXH_PRIME32_1;
#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
/*
* UGLY HACK:
* A compiler fence is the only thing that prevents GCC and Clang from
* autovectorizing the XXH32 loop (pragmas and attributes don't work for some
* reason) without globally disabling SSE4.1.
*
* The reason we want to avoid vectorization is because despite working on
* 4 integers at a time, there are multiple factors slowing XXH32 down on
* SSE4:
* - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
* newer chips!) making it slightly slower to multiply four integers at
* once compared to four integers independently. Even when pmulld was
* fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
* just to multiply unless doing a long operation.
*
* - Four instructions are required to rotate,
* movqda tmp, v // not required with VEX encoding
* pslld tmp, 13 // tmp <<= 13
* psrld v, 19 // x >>= 19
* por v, tmp // x |= tmp
* compared to one for scalar:
* roll v, 13 // reliably fast across the board
* shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
*
* - Instruction level parallelism is actually more beneficial here because
* the SIMD actually serializes this operation: While v1 is rotating, v2
* can load data, while v3 can multiply. SSE forces them to operate
* together.
*
* This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
* the loop. NEON is only faster on the A53, and with the newer cores, it is less
* than half the speed.
*
* Additionally, this is used on WASM SIMD128 because it JITs to the same
* SIMD instructions and has the same issue.
*/
XXH_COMPILER_GUARD(acc);
#endif
return acc;
}
/*!
* @internal
* @brief Mixes all bits to finalize the hash.
*
* The final mix ensures that all input bits have a chance to impact any bit in
* the output digest, resulting in an unbiased distribution.
*
* @param hash The hash to avalanche.
* @return The avalanched hash.
*/
static xxh_u32 XXH32_avalanche(xxh_u32 hash)
{
hash ^= hash >> 15;
hash *= XXH_PRIME32_2;
hash ^= hash >> 13;
hash *= XXH_PRIME32_3;
hash ^= hash >> 16;
return hash;
}
#define XXH_get32bits(p) XXH_readLE32_align(p, align)
/*!
* @internal
* @brief Processes the last 0-15 bytes of @p ptr.
*
* There may be up to 15 bytes remaining to consume from the input.
* This final stage will digest them to ensure that all input bytes are present
* in the final mix.
*
* @param hash The hash to finalize.
* @param ptr The pointer to the remaining input.
* @param len The remaining length, modulo 16.
* @param align Whether @p ptr is aligned.
* @return The finalized hash.
* @see XXH64_finalize().
*/
static XXH_PUREF xxh_u32
XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
#define XXH_PROCESS1 do { \
hash += (*ptr++) * XXH_PRIME32_5; \
hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \
} while (0)
#define XXH_PROCESS4 do { \
hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \
ptr += 4; \
hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \
} while (0)
if (ptr==NULL) XXH_ASSERT(len == 0);
/* Compact rerolled version; generally faster */
if (!XXH32_ENDJMP) {
len &= 15;
while (len >= 4) {
XXH_PROCESS4;
len -= 4;
}
while (len > 0) {
XXH_PROCESS1;
--len;
}
return XXH32_avalanche(hash);
} else {
switch(len&15) /* or switch(bEnd - p) */ {
case 12: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 8: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 4: XXH_PROCESS4;
return XXH32_avalanche(hash);
case 13: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 9: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 5: XXH_PROCESS4;
XXH_PROCESS1;
return XXH32_avalanche(hash);
case 14: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 10: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 6: XXH_PROCESS4;
XXH_PROCESS1;
XXH_PROCESS1;
return XXH32_avalanche(hash);
case 15: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 11: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 7: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 3: XXH_PROCESS1;
XXH_FALLTHROUGH; /* fallthrough */
case 2: XXH_PROCESS1;
XXH_FALLTHROUGH; /* fallthrough */
case 1: XXH_PROCESS1;
XXH_FALLTHROUGH; /* fallthrough */
case 0: return XXH32_avalanche(hash);
}
XXH_ASSERT(0);
return hash; /* reaching this point is deemed impossible */
}
}
#ifdef XXH_OLD_NAMES
# define PROCESS1 XXH_PROCESS1
# define PROCESS4 XXH_PROCESS4
#else
# undef XXH_PROCESS1
# undef XXH_PROCESS4
#endif
/*!
* @internal
* @brief The implementation for @ref XXH32().
*
* @param input , len , seed Directly passed from @ref XXH32().
* @param align Whether @p input is aligned.
* @return The calculated hash.
*/
XXH_FORCE_INLINE XXH_PUREF xxh_u32
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
{
xxh_u32 h32;
if (input==NULL) XXH_ASSERT(len == 0);
if (len>=16) {
const xxh_u8* const bEnd = input + len;
const xxh_u8* const limit = bEnd - 15;
xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
xxh_u32 v2 = seed + XXH_PRIME32_2;
xxh_u32 v3 = seed + 0;
xxh_u32 v4 = seed - XXH_PRIME32_1;
do {
v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
} while (input < limit);
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
+ XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
} else {
h32 = seed + XXH_PRIME32_5;
}
h32 += (xxh_u32)len;
return XXH32_finalize(h32, input, len&15, align);
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
{
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH32_state_t state;
XXH32_reset(&state, seed);
XXH32_update(&state, (const xxh_u8*)input, len);
return XXH32_digest(&state);
#else
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
} }
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
#endif
}
/******* Hash streaming *******/
#ifndef XXH_NO_STREAM
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
{
XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
{
XXH_ASSERT(statePtr != NULL);
memset(statePtr, 0, sizeof(*statePtr));
statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
statePtr->v[1] = seed + XXH_PRIME32_2;
statePtr->v[2] = seed + 0;
statePtr->v[3] = seed - XXH_PRIME32_1;
return XXH_OK;
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
{
if (input==NULL) {
XXH_ASSERT(len == 0);
return XXH_OK;
}
{ const xxh_u8* p = (const xxh_u8*)input;
const xxh_u8* const bEnd = p + len;
state->total_len_32 += (XXH32_hash_t)len;
state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
if (state->memsize + len < 16) { /* fill in tmp buffer */
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
state->memsize += (XXH32_hash_t)len;
return XXH_OK;
}
if (state->memsize) { /* some data left from previous update */
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
{ const xxh_u32* p32 = state->mem32;
state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
}
p += 16-state->memsize;
state->memsize = 0;
}
if (p <= bEnd-16) {
const xxh_u8* const limit = bEnd - 16;
do {
state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
} while (p<=limit);
}
if (p < bEnd) {
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
}
return XXH_OK;
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
{
xxh_u32 h32;
if (state->large_len) {
h32 = XXH_rotl32(state->v[0], 1)
+ XXH_rotl32(state->v[1], 7)
+ XXH_rotl32(state->v[2], 12)
+ XXH_rotl32(state->v[3], 18);
} else {
h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
}
h32 += state->total_len_32;
return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
}
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*! @ingroup XXH32_family */
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
XXH_memcpy(dst, &hash, sizeof(*dst));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
}
#ifndef XXH_NO_LONG_LONG
/* *******************************************************************
* 64-bit hash functions
*********************************************************************/
/*!
* @}
* @ingroup impl
* @{
*/
/******* Memory access *******/
typedef XXH64_hash_t xxh_u64;
#ifdef XXH_OLD_NAMES
# define U64 xxh_u64
#endif
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
* Manual byteshift. Best for old compilers which don't inline memcpy.
* We actually directly use XXH_readLE64 and XXH_readBE64.
*/
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static xxh_u64 XXH_read64(const void* memPtr)
{
return *(const xxh_u64*) memPtr;
}
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/*
* __attribute__((aligned(1))) is supported by gcc and clang. Originally the
* documentation claimed that it only increased the alignment, but actually it
* can decrease it on gcc, clang, and icc:
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
* https://gcc.godbolt.org/z/xYez1j67Y.
*/
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
#endif
static xxh_u64 XXH_read64(const void* ptr)
{
typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64;
return *((const xxh_unalign64*)ptr);
}
#else
/*
* Portable and safe solution. Generally efficient.
* see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
*/
static xxh_u64 XXH_read64(const void* memPtr)
{
xxh_u64 val;
XXH_memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap64 _byteswap_uint64
#elif XXH_GCC_VERSION >= 403
# define XXH_swap64 __builtin_bswap64
#else
static xxh_u64 XXH_swap64(xxh_u64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[0]
| ((xxh_u64)bytePtr[1] << 8)
| ((xxh_u64)bytePtr[2] << 16)
| ((xxh_u64)bytePtr[3] << 24)
| ((xxh_u64)bytePtr[4] << 32)
| ((xxh_u64)bytePtr[5] << 40)
| ((xxh_u64)bytePtr[6] << 48)
| ((xxh_u64)bytePtr[7] << 56);
}
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[7]
| ((xxh_u64)bytePtr[6] << 8)
| ((xxh_u64)bytePtr[5] << 16)
| ((xxh_u64)bytePtr[4] << 24)
| ((xxh_u64)bytePtr[3] << 32)
| ((xxh_u64)bytePtr[2] << 40)
| ((xxh_u64)bytePtr[1] << 48)
| ((xxh_u64)bytePtr[0] << 56);
}
#else
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
}
static xxh_u64 XXH_readBE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}
#endif
XXH_FORCE_INLINE xxh_u64
XXH_readLE64_align(const void* ptr, XXH_alignment align)
{
if (align==XXH_unaligned)
return XXH_readLE64(ptr);
else
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
}
/******* xxh64 *******/
/*!
* @}
* @defgroup XXH64_impl XXH64 implementation
* @ingroup impl
*
* Details on the XXH64 implementation.
* @{
*/
/* #define rather that static const, to be used as initializers */
#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
#ifdef XXH_OLD_NAMES
# define PRIME64_1 XXH_PRIME64_1
# define PRIME64_2 XXH_PRIME64_2
# define PRIME64_3 XXH_PRIME64_3
# define PRIME64_4 XXH_PRIME64_4
# define PRIME64_5 XXH_PRIME64_5
#endif
/*! @copydoc XXH32_round */
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
{
acc += input * XXH_PRIME64_2;
acc = XXH_rotl64(acc, 31);
acc *= XXH_PRIME64_1;
#if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
/*
* DISABLE AUTOVECTORIZATION:
* A compiler fence is used to prevent GCC and Clang from
* autovectorizing the XXH64 loop (pragmas and attributes don't work for some
* reason) without globally disabling AVX512.
*
* Autovectorization of XXH64 tends to be detrimental,
* though the exact outcome may change depending on exact cpu and compiler version.
* For information, it has been reported as detrimental for Skylake-X,
* but possibly beneficial for Zen4.
*
* The default is to disable auto-vectorization,
* but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable.
*/
XXH_COMPILER_GUARD(acc);
#endif
return acc;
}
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
{
val = XXH64_round(0, val);
acc ^= val;
acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
return acc;
}
/*! @copydoc XXH32_avalanche */
static xxh_u64 XXH64_avalanche(xxh_u64 hash)
{
hash ^= hash >> 33;
hash *= XXH_PRIME64_2;
hash ^= hash >> 29;
hash *= XXH_PRIME64_3;
hash ^= hash >> 32;
return hash;
}
#define XXH_get64bits(p) XXH_readLE64_align(p, align)
/*!
* @internal
* @brief Processes the last 0-31 bytes of @p ptr.
*
* There may be up to 31 bytes remaining to consume from the input.
* This final stage will digest them to ensure that all input bytes are present
* in the final mix.
*
* @param hash The hash to finalize.
* @param ptr The pointer to the remaining input.
* @param len The remaining length, modulo 32.
* @param align Whether @p ptr is aligned.
* @return The finalized hash
* @see XXH32_finalize().
*/
static XXH_PUREF xxh_u64
XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
if (ptr==NULL) XXH_ASSERT(len == 0);
len &= 31;
while (len >= 8) {
xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
ptr += 8;
hash ^= k1;
hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
len -= 8;
}
if (len >= 4) {
hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
ptr += 4;
hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
len -= 4;
}
while (len > 0) {
hash ^= (*ptr++) * XXH_PRIME64_5;
hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
--len;
}
return XXH64_avalanche(hash);
}
#ifdef XXH_OLD_NAMES
# define PROCESS1_64 XXH_PROCESS1_64
# define PROCESS4_64 XXH_PROCESS4_64
# define PROCESS8_64 XXH_PROCESS8_64
#else
# undef XXH_PROCESS1_64
# undef XXH_PROCESS4_64
# undef XXH_PROCESS8_64
#endif
/*!
* @internal
* @brief The implementation for @ref XXH64().
*
* @param input , len , seed Directly passed from @ref XXH64().
* @param align Whether @p input is aligned.
* @return The calculated hash.
*/
XXH_FORCE_INLINE XXH_PUREF xxh_u64
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
{
xxh_u64 h64;
if (input==NULL) XXH_ASSERT(len == 0);
if (len>=32) {
const xxh_u8* const bEnd = input + len;
const xxh_u8* const limit = bEnd - 31;
xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
xxh_u64 v2 = seed + XXH_PRIME64_2;
xxh_u64 v3 = seed + 0;
xxh_u64 v4 = seed - XXH_PRIME64_1;
do {
v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
} while (input<limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = seed + XXH_PRIME64_5;
}
h64 += (xxh_u64) len;
return XXH64_finalize(h64, input, len, align);
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH64_state_t state;
XXH64_reset(&state, seed);
XXH64_update(&state, (const xxh_u8*)input, len);
return XXH64_digest(&state);
#else
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
} }
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
#endif
}
/******* Hash Streaming *******/
#ifndef XXH_NO_STREAM
/*! @ingroup XXH64_family*/
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
{
XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
{
XXH_ASSERT(statePtr != NULL);
memset(statePtr, 0, sizeof(*statePtr));
statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
statePtr->v[1] = seed + XXH_PRIME64_2;
statePtr->v[2] = seed + 0;
statePtr->v[3] = seed - XXH_PRIME64_1;
return XXH_OK;
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode
XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
if (input==NULL) {
XXH_ASSERT(len == 0);
return XXH_OK;
}
{ const xxh_u8* p = (const xxh_u8*)input;
const xxh_u8* const bEnd = p + len;
state->total_len += len;
if (state->memsize + len < 32) { /* fill in tmp buffer */
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
state->memsize += (xxh_u32)len;
return XXH_OK;
}
if (state->memsize) { /* tmp buffer is full */
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
p += 32 - state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd) {
const xxh_u8* const limit = bEnd - 32;
do {
state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
} while (p<=limit);
}
if (p < bEnd) {
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
}
return XXH_OK;
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
{
xxh_u64 h64;
if (state->total_len >= 32) {
h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
h64 = XXH64_mergeRound(h64, state->v[0]);
h64 = XXH64_mergeRound(h64, state->v[1]);
h64 = XXH64_mergeRound(h64, state->v[2]);
h64 = XXH64_mergeRound(h64, state->v[3]);
} else {
h64 = state->v[2] /*seed*/ + XXH_PRIME64_5;
}
h64 += (xxh_u64) state->total_len;
return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
}
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*! @ingroup XXH64_family */
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
XXH_memcpy(dst, &hash, sizeof(*dst));
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}
#ifndef XXH_NO_XXH3
/* *********************************************************************
* XXH3
* New generation hash designed for speed on small keys and vectorization
************************************************************************ */
/*!
* @}
* @defgroup XXH3_impl XXH3 implementation
* @ingroup impl
* @{
*/
/* === Compiler specifics === */
#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
# define XXH_RESTRICT /* disable */
#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
# define XXH_RESTRICT restrict
#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
|| (defined (__clang__)) \
|| (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
|| (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
/*
* There are a LOT more compilers that recognize __restrict but this
* covers the major ones.
*/
# define XXH_RESTRICT __restrict
#else
# define XXH_RESTRICT /* disable */
#endif
#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
|| (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
|| defined(__clang__)
# define XXH_likely(x) __builtin_expect(x, 1)
# define XXH_unlikely(x) __builtin_expect(x, 0)
#else
# define XXH_likely(x) (x)
# define XXH_unlikely(x) (x)
#endif
#ifndef XXH_HAS_INCLUDE
# ifdef __has_include
/*
* Not defined as XXH_HAS_INCLUDE(x) (function-like) because
* this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion)
*/
# define XXH_HAS_INCLUDE __has_include
# else
# define XXH_HAS_INCLUDE(x) 0
# endif
#endif
#if defined(__GNUC__) || defined(__clang__)
# if defined(__ARM_FEATURE_SVE)
# include <arm_sve.h>
# endif
# if defined(__ARM_NEON__) || defined(__ARM_NEON) \
|| (defined(_M_ARM) && _M_ARM >= 7) \
|| defined(_M_ARM64) || defined(_M_ARM64EC) \
|| (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
# define inline __inline__ /* circumvent a clang bug */
# include <arm_neon.h>
# undef inline
# elif defined(__AVX2__)
# include <immintrin.h>
# elif defined(__SSE2__)
# include <emmintrin.h>
# endif
#endif
#if defined(_MSC_VER)
# include <intrin.h>
#endif
/*
* One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
* remaining a true 64-bit/128-bit hash function.
*
* This is done by prioritizing a subset of 64-bit operations that can be
* emulated without too many steps on the average 32-bit machine.
*
* For example, these two lines seem similar, and run equally fast on 64-bit:
*
* xxh_u64 x;
* x ^= (x >> 47); // good
* x ^= (x >> 13); // bad
*
* However, to a 32-bit machine, there is a major difference.
*
* x ^= (x >> 47) looks like this:
*
* x.lo ^= (x.hi >> (47 - 32));
*
* while x ^= (x >> 13) looks like this:
*
* // note: funnel shifts are not usually cheap.
* x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
* x.hi ^= (x.hi >> 13);
*
* The first one is significantly faster than the second, simply because the
* shift is larger than 32. This means:
* - All the bits we need are in the upper 32 bits, so we can ignore the lower
* 32 bits in the shift.
* - The shift result will always fit in the lower 32 bits, and therefore,
* we can ignore the upper 32 bits in the xor.
*
* Thanks to this optimization, XXH3 only requires these features to be efficient:
*
* - Usable unaligned access
* - A 32-bit or 64-bit ALU
* - If 32-bit, a decent ADC instruction
* - A 32 or 64-bit multiply with a 64-bit result
* - For the 128-bit variant, a decent byteswap helps short inputs.
*
* The first two are already required by XXH32, and almost all 32-bit and 64-bit
* platforms which can run XXH32 can run XXH3 efficiently.
*
* Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
* notable exception.
*
* First of all, Thumb-1 lacks support for the UMULL instruction which
* performs the important long multiply. This means numerous __aeabi_lmul
* calls.
*
* Second of all, the 8 functional registers are just not enough.
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
* Lo registers, and this shuffling results in thousands more MOVs than A32.
*
* A32 and T32 don't have this limitation. They can access all 14 registers,
* do a 32->64 multiply with UMULL, and the flexible operand allowing free
* shifts is helpful, too.
*
* Therefore, we do a quick sanity check.
*
* If compiling Thumb-1 for a target which supports ARM instructions, we will
* emit a warning, as it is not a "sane" platform to compile for.
*
* Usually, if this happens, it is because of an accident and you probably need
* to specify -march, as you likely meant to compile for a newer architecture.
*
* Credit: large sections of the vectorial and asm source code paths
* have been contributed by @easyaspi314
*/
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
# warning "XXH3 is highly inefficient without ARM or Thumb-2."
#endif
/* ==========================================
* Vectorization detection
* ========================================== */
#ifdef XXH_DOXYGEN
/*!
* @ingroup tuning
* @brief Overrides the vectorization implementation chosen for XXH3.
*
* Can be defined to 0 to disable SIMD or any of the values mentioned in
* @ref XXH_VECTOR_TYPE.
*
* If this is not defined, it uses predefined macros to determine the best
* implementation.
*/
# define XXH_VECTOR XXH_SCALAR
/*!
* @ingroup tuning
* @brief Possible values for @ref XXH_VECTOR.
*
* Note that these are actually implemented as macros.
*
* If this is not defined, it is detected automatically.
* internal macro XXH_X86DISPATCH overrides this.
*/
enum XXH_VECTOR_TYPE /* fake enum */ {
XXH_SCALAR = 0, /*!< Portable scalar version */
XXH_SSE2 = 1, /*!<
* SSE2 for Pentium 4, Opteron, all x86_64.
*
* @note SSE2 is also guaranteed on Windows 10, macOS, and
* Android x86.
*/
XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
XXH_NEON = 4, /*!<
* NEON for most ARMv7-A, all AArch64, and WASM SIMD128
* via the SIMDeverywhere polyfill provided with the
* Emscripten SDK.
*/
XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */
};
/*!
* @ingroup tuning
* @brief Selects the minimum alignment for XXH3's accumulators.
*
* When using SIMD, this should match the alignment required for said vector
* type, so, for example, 32 for AVX2.
*
* Default: Auto detected.
*/
# define XXH_ACC_ALIGN 8
#endif
/* Actual definition */
#ifndef XXH_DOXYGEN
# define XXH_SCALAR 0
# define XXH_SSE2 1
# define XXH_AVX2 2
# define XXH_AVX512 3
# define XXH_NEON 4
# define XXH_VSX 5
# define XXH_SVE 6
#endif
#ifndef XXH_VECTOR /* can be defined on command line */
# if defined(__ARM_FEATURE_SVE)
# define XXH_VECTOR XXH_SVE
# elif ( \
defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
|| defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
|| (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
) && ( \
defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
)
# define XXH_VECTOR XXH_NEON
# elif defined(__AVX512F__)
# define XXH_VECTOR XXH_AVX512
# elif defined(__AVX2__)
# define XXH_VECTOR XXH_AVX2
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
# define XXH_VECTOR XXH_SSE2
# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
|| (defined(__s390x__) && defined(__VEC__)) \
&& defined(__GNUC__) /* TODO: IBM XL */
# define XXH_VECTOR XXH_VSX
# else
# define XXH_VECTOR XXH_SCALAR
# endif
#endif
/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
# ifdef _MSC_VER
# pragma warning(once : 4606)
# else
# warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
# endif
# undef XXH_VECTOR
# define XXH_VECTOR XXH_SCALAR
#endif
/*
* Controls the alignment of the accumulator,
* for compatibility with aligned vector loads, which are usually faster.
*/
#ifndef XXH_ACC_ALIGN
# if defined(XXH_X86DISPATCH)
# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
# elif XXH_VECTOR == XXH_SCALAR /* scalar */
# define XXH_ACC_ALIGN 8
# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
# define XXH_ACC_ALIGN 32
# elif XXH_VECTOR == XXH_NEON /* neon */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == XXH_VSX /* vsx */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
# define XXH_ACC_ALIGN 64
# elif XXH_VECTOR == XXH_SVE /* sve */
# define XXH_ACC_ALIGN 64
# endif
#endif
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
|| XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
# define XXH_SEC_ALIGN XXH_ACC_ALIGN
#elif XXH_VECTOR == XXH_SVE
# define XXH_SEC_ALIGN XXH_ACC_ALIGN
#else
# define XXH_SEC_ALIGN 8
#endif
#if defined(__GNUC__) || defined(__clang__)
# define XXH_ALIASING __attribute__((may_alias))
#else
# define XXH_ALIASING /* nothing */
#endif
/*
* UGLY HACK:
* GCC usually generates the best code with -O3 for xxHash.
*
* However, when targeting AVX2, it is overzealous in its unrolling resulting
* in code roughly 3/4 the speed of Clang.
*
* There are other issues, such as GCC splitting _mm256_loadu_si256 into
* _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
* only applies to Sandy and Ivy Bridge... which don't even support AVX2.
*
* That is why when compiling the AVX2 version, it is recommended to use either
* -O2 -mavx2 -march=haswell
* or
* -O2 -mavx2 -mno-avx256-split-unaligned-load
* for decent performance, or to use Clang instead.
*
* Fortunately, we can control the first one with a pragma that forces GCC into
* -O2, but the other one we can't control without "failed to inline always
* inline function due to target mismatch" warnings.
*/
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
# pragma GCC push_options
# pragma GCC optimize("-O2")
#endif
#if XXH_VECTOR == XXH_NEON
/*
* UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
* optimizes out the entire hashLong loop because of the aliasing violation.
*
* However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
* so the only option is to mark it as aliasing.
*/
typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
/*!
* @internal
* @brief `vld1q_u64` but faster and alignment-safe.
*
* On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
* *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
*
* GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
* prohibits load-store optimizations. Therefore, a direct dereference is used.
*
* Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
* unaligned load.
*/
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
{
return *(xxh_aliasing_uint64x2_t const *)ptr;
}
#else
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
{
return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
}
#endif
/*!
* @internal
* @brief `vmlal_u32` on low and high halves of a vector.
*
* This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
* inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
* with `vmlal_u32`.
*/
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
/* Inline assembly is the only way */
__asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
return acc;
}
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
/* This intrinsic works as expected */
return vmlal_high_u32(acc, lhs, rhs);
}
#else
/* Portable intrinsic versions */
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
}
/*! @copydoc XXH_vmlal_low_u32
* Assume the compiler converts this to vmlal_high_u32 on aarch64 */
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
}
#endif
/*!
* @ingroup tuning
* @brief Controls the NEON to scalar ratio for XXH3
*
* This can be set to 2, 4, 6, or 8.
*
* ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
*
* For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
* can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
* bandwidth.
*
* This is even more noticeable on the more advanced cores like the Cortex-A76 which
* can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
*
* Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
* and 2 scalar lanes, which is chosen by default.
*
* This does not apply to Apple processors or 32-bit processors, which run better with
* full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
*
* This change benefits CPUs with large micro-op buffers without negatively affecting
* most other CPUs:
*
* | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. |
* |:----------------------|:--------------------|----------:|-----------:|------:|
* | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% |
* | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% |
* | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% |
* | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% |
*
* It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
*
* When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
* it effectively becomes worse 4.
*
* @see XXH3_accumulate_512_neon()
*/
# ifndef XXH3_NEON_LANES
# if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
&& !defined(__APPLE__) && XXH_SIZE_OPT <= 0
# define XXH3_NEON_LANES 6
# else
# define XXH3_NEON_LANES XXH_ACC_NB
# endif
# endif
#endif /* XXH_VECTOR == XXH_NEON */
/*
* VSX and Z Vector helpers.
*
* This is very messy, and any pull requests to clean this up are welcome.
*
* There are a lot of problems with supporting VSX and s390x, due to
* inconsistent intrinsics, spotty coverage, and multiple endiannesses.
*/
#if XXH_VECTOR == XXH_VSX
/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
* and `pixel`. This is a problem for obvious reasons.
*
* These keywords are unnecessary; the spec literally says they are
* equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
* after including the header.
*
* We use pragma push_macro/pop_macro to keep the namespace clean. */
# pragma push_macro("bool")
# pragma push_macro("vector")
# pragma push_macro("pixel")
/* silence potential macro redefined warnings */
# undef bool
# undef vector
# undef pixel
# if defined(__s390x__)
# include <s390intrin.h>
# else
# include <altivec.h>
# endif
/* Restore the original macro values, if applicable. */
# pragma pop_macro("pixel")
# pragma pop_macro("vector")
# pragma pop_macro("bool")
typedef __vector unsigned long long xxh_u64x2;
typedef __vector unsigned char xxh_u8x16;
typedef __vector unsigned xxh_u32x4;
/*
* UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
*/
typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
# ifndef XXH_VSX_BE
# if defined(__BIG_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
# define XXH_VSX_BE 1
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
# warning "-maltivec=be is not recommended. Please use native endianness."
# define XXH_VSX_BE 1
# else
# define XXH_VSX_BE 0
# endif
# endif /* !defined(XXH_VSX_BE) */
# if XXH_VSX_BE
# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
# define XXH_vec_revb vec_revb
# else
/*!
* A polyfill for POWER9's vec_revb().
*/
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
{
xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
return vec_perm(val, val, vByteSwap);
}
# endif
# endif /* XXH_VSX_BE */
/*!
* Performs an unaligned vector load and byte swaps it on big endian.
*/
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
{
xxh_u64x2 ret;
XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
# if XXH_VSX_BE
ret = XXH_vec_revb(ret);
# endif
return ret;
}
/*
* vec_mulo and vec_mule are very problematic intrinsics on PowerPC
*
* These intrinsics weren't added until GCC 8, despite existing for a while,
* and they are endian dependent. Also, their meaning swap depending on version.
* */
# if defined(__s390x__)
/* s390x is always big endian, no issue on this platform */
# define XXH_vec_mulo vec_mulo
# define XXH_vec_mule vec_mule
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
/* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
# define XXH_vec_mulo __builtin_altivec_vmulouw
# define XXH_vec_mule __builtin_altivec_vmuleuw
# else
/* gcc needs inline assembly */
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
{
xxh_u64x2 result;
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
{
xxh_u64x2 result;
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
# endif /* XXH_vec_mulo, XXH_vec_mule */
#endif /* XXH_VECTOR == XXH_VSX */
#if XXH_VECTOR == XXH_SVE
#define ACCRND(acc, offset) \
do { \
svuint64_t input_vec = svld1_u64(mask, xinput + offset); \
svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \
svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \
svuint64_t swapped = svtbl_u64(input_vec, kSwap); \
svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \
svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \
svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
acc = svadd_u64_x(mask, acc, mul); \
} while (0)
#endif /* XXH_VECTOR == XXH_SVE */
/* prefetch
* can be disabled, by declaring XXH_NO_PREFETCH build macro */
#if defined(XXH_NO_PREFETCH)
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
#else
# if XXH_SIZE_OPT >= 1
# define XXH_PREFETCH(ptr) (void)(ptr)
# elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
# else
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
# endif
#endif /* XXH_NO_PREFETCH */
/* ==========================================
* XXH3 default settings
* ========================================== */
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
# error "default keyset is not large enough"
#endif
/*! Pseudorandom secret taken directly from FARSH. */
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
#ifdef XXH_OLD_NAMES
# define kSecret XXH3_kSecret
#endif
#ifdef XXH_DOXYGEN
/*!
* @brief Calculates a 32-bit to 64-bit long multiply.
*
* Implemented as a macro.
*
* Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
* need to (but it shouldn't need to anyways, it is about 7 instructions to do
* a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
* use that instead of the normal method.
*
* If you are compiling for platforms like Thumb-1 and don't have a better option,
* you may also want to write your own long multiply routine here.
*
* @param x, y Numbers to be multiplied
* @return 64-bit product of the low 32 bits of @p x and @p y.
*/
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64(xxh_u64 x, xxh_u64 y)
{
return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
}
#elif defined(_MSC_VER) && defined(_M_IX86)
# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
#else
/*
* Downcast + upcast is usually better than masking on older compilers like
* GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
*
* The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
* and perform a full 64x64 multiply -- entirely redundant on 32-bit.
*/
# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
#endif
/*!
* @brief Calculates a 64->128-bit long multiply.
*
* Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
* version.
*
* @param lhs , rhs The 64-bit integers to be multiplied
* @return The 128-bit result represented in an @ref XXH128_hash_t.
*/
static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
{
/*
* GCC/Clang __uint128_t method.
*
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
* This is usually the best way as it usually uses a native long 64-bit
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
*
* Usually.
*
* Despite being a 32-bit platform, Clang (and emscripten) define this type
* despite not having the arithmetic for it. This results in a laggy
* compiler builtin call which calculates a full 128-bit multiply.
* In that case it is best to use the portable one.
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
*/
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
&& defined(__SIZEOF_INT128__) \
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
XXH128_hash_t r128;
r128.low64 = (xxh_u64)(product);
r128.high64 = (xxh_u64)(product >> 64);
return r128;
/*
* MSVC for x64's _umul128 method.
*
* xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
*
* This compiles to single operand MUL on x64.
*/
#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
#ifndef _MSC_VER
# pragma intrinsic(_umul128)
#endif
xxh_u64 product_high;
xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
XXH128_hash_t r128;
r128.low64 = product_low;
r128.high64 = product_high;
return r128;
/*
* MSVC for ARM64's __umulh method.
*
* This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
*/
#elif defined(_M_ARM64) || defined(_M_ARM64EC)
#ifndef _MSC_VER
# pragma intrinsic(__umulh)
#endif
XXH128_hash_t r128;
r128.low64 = lhs * rhs;
r128.high64 = __umulh(lhs, rhs);
return r128;
#else
/*
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
*
* This is a fast and simple grade school multiply, which is shown below
* with base 10 arithmetic instead of base 0x100000000.
*
* 9 3 // D2 lhs = 93
* x 7 5 // D2 rhs = 75
* ----------
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
* ---------
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
* ---------
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
*
* The reasons for adding the products like this are:
* 1. It avoids manual carry tracking. Just like how
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
* This avoids a lot of complexity.
*
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
* instruction available in ARM's Digital Signal Processing extension
* in 32-bit ARMv6 and later, which is shown below:
*
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
* {
* xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
* *RdHi = (xxh_u32)(product >> 32);
* }
*
* This instruction was designed for efficient long multiplication, and
* allows this to be calculated in only 4 instructions at speeds
* comparable to some 64-bit ALUs.
*
* 3. It isn't terrible on other platforms. Usually this will be a couple
* of 32-bit ADD/ADCs.
*/
/* First calculate all of the cross products. */
xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
/* Now add the products together. These will never overflow. */
xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
XXH128_hash_t r128;
r128.low64 = lower;
r128.high64 = upper;
return r128;
#endif
}
/*!
* @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
*
* The reason for the separate function is to prevent passing too many structs
* around by value. This will hopefully inline the multiply, but we don't force it.
*
* @param lhs , rhs The 64-bit integers to multiply
* @return The low 64 bits of the product XOR'd by the high 64 bits.
* @see XXH_mult64to128()
*/
static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
{
XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
return product.low64 ^ product.high64;
}
/*! Seems to produce slightly better code on GCC for some reason. */
XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
{
XXH_ASSERT(0 <= shift && shift < 64);
return v64 ^ (v64 >> shift);
}
/*
* This is a fast avalanche stage,
* suitable when input bits are already partially mixed
*/
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
{
h64 = XXH_xorshift64(h64, 37);
h64 *= PRIME_MX1;
h64 = XXH_xorshift64(h64, 32);
return h64;
}
/*
* This is a stronger avalanche,
* inspired by Pelle Evensen's rrmxmx
* preferable when input has not been previously mixed
*/
static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
{
/* this mix is inspired by Pelle Evensen's rrmxmx */
h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
h64 *= PRIME_MX2;
h64 ^= (h64 >> 35) + len ;
h64 *= PRIME_MX2;
return XXH_xorshift64(h64, 28);
}
/* ==========================================
* Short keys
* ==========================================
* One of the shortcomings of XXH32 and XXH64 was that their performance was
* sub-optimal on short lengths. It used an iterative algorithm which strongly
* favored lengths that were a multiple of 4 or 8.
*
* Instead of iterating over individual inputs, we use a set of single shot
* functions which piece together a range of lengths and operate in constant time.
*
* Additionally, the number of multiplies has been significantly reduced. This
* reduces latency, especially when emulating 64-bit multiplies on 32-bit.
*
* Depending on the platform, this may or may not be faster than XXH32, but it
* is almost guaranteed to be faster than XXH64.
*/
/*
* At very short lengths, there isn't enough input to fully hide secrets, or use
* the entire secret.
*
* There is also only a limited amount of mixing we can do before significantly
* impacting performance.
*
* Therefore, we use different sections of the secret and always mix two secret
* samples with an XOR. This should have no effect on performance on the
* seedless or withSeed variants because everything _should_ be constant folded
* by modern compilers.
*
* The XOR mixing hides individual parts of the secret and increases entropy.
*
* This adds an extra layer of strength for custom secrets.
*/
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(1 <= len && len <= 3);
XXH_ASSERT(secret != NULL);
/*
* len = 1: combined = { input[0], 0x01, input[0], input[0] }
* len = 2: combined = { input[1], 0x02, input[0], input[1] }
* len = 3: combined = { input[2], 0x03, input[0], input[1] }
*/
{ xxh_u8 const c1 = input[0];
xxh_u8 const c2 = input[len >> 1];
xxh_u8 const c3 = input[len - 1];
xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
return XXH64_avalanche(keyed);
}
}
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(4 <= len && len <= 8);
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
{ xxh_u32 const input1 = XXH_readLE32(input);
xxh_u32 const input2 = XXH_readLE32(input + len - 4);
xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
xxh_u64 const keyed = input64 ^ bitflip;
return XXH3_rrmxmx(keyed, len);
}
}
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(9 <= len && len <= 16);
{ xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
xxh_u64 const acc = len
+ XXH_swap64(input_lo) + input_hi
+ XXH3_mul128_fold64(input_lo, input_hi);
return XXH3_avalanche(acc);
}
}
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
{ if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
}
}
/*
* DISCLAIMER: There are known *seed-dependent* multicollisions here due to
* multiplication by zero, affecting hashes of lengths 17 to 240.
*
* However, they are very unlikely.
*
* Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
* unseeded non-cryptographic hashes, it does not attempt to defend itself
* against specially crafted inputs, only random inputs.
*
* Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
* cancelling out the secret is taken an arbitrary number of times (addressed
* in XXH3_accumulate_512), this collision is very unlikely with random inputs
* and/or proper seeding:
*
* This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
* function that is only called up to 16 times per hash with up to 240 bytes of
* input.
*
* This is not too bad for a non-cryptographic hash function, especially with
* only 64 bit outputs.
*
* The 128-bit variant (which trades some speed for strength) is NOT affected
* by this, although it is always a good idea to use a proper seed if you care
* about strength.
*/
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
{
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
/*
* UGLY HACK:
* GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
* slower code.
*
* By forcing seed64 into a register, we disrupt the cost model and
* cause it to scalarize. See `XXH32_round()`
*
* FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
* XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
* GCC 9.2, despite both emitting scalar code.
*
* GCC generates much better scalar code than Clang for the rest of XXH3,
* which is why finding a more optimal codepath is an interest.
*/
XXH_COMPILER_GUARD(seed64);
#endif
{ xxh_u64 const input_lo = XXH_readLE64(input);
xxh_u64 const input_hi = XXH_readLE64(input+8);
return XXH3_mul128_fold64(
input_lo ^ (XXH_readLE64(secret) + seed64),
input_hi ^ (XXH_readLE64(secret+8) - seed64)
);
}
}
/* For mid range keys, XXH3 uses a Mum-hash variant. */
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(16 < len && len <= 128);
{ xxh_u64 acc = len * XXH_PRIME64_1;
#if XXH_SIZE_OPT >= 1
/* Smaller and cleaner, but slightly slower. */
unsigned int i = (unsigned int)(len - 1) / 32;
do {
acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
} while (i-- != 0);
#else
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc += XXH3_mix16B(input+48, secret+96, seed);
acc += XXH3_mix16B(input+len-64, secret+112, seed);
}
acc += XXH3_mix16B(input+32, secret+64, seed);
acc += XXH3_mix16B(input+len-48, secret+80, seed);
}
acc += XXH3_mix16B(input+16, secret+32, seed);
acc += XXH3_mix16B(input+len-32, secret+48, seed);
}
acc += XXH3_mix16B(input+0, secret+0, seed);
acc += XXH3_mix16B(input+len-16, secret+16, seed);
#endif
return XXH3_avalanche(acc);
}
}
/*!
* @brief Maximum size of "short" key in bytes.
*/
#define XXH3_MIDSIZE_MAX 240
XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
#define XXH3_MIDSIZE_STARTOFFSET 3
#define XXH3_MIDSIZE_LASTOFFSET 17
{ xxh_u64 acc = len * XXH_PRIME64_1;
xxh_u64 acc_end;
unsigned int const nbRounds = (unsigned int)len / 16;
unsigned int i;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
for (i=0; i<8; i++) {
acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
}
/* last bytes */
acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
XXH_ASSERT(nbRounds >= 8);
acc = XXH3_avalanche(acc);
#if defined(__clang__) /* Clang */ \
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
/*
* UGLY HACK:
* Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
* In everywhere else, it uses scalar code.
*
* For 64->128-bit multiplies, even if the NEON was 100% optimal, it
* would still be slower than UMAAL (see XXH_mult64to128).
*
* Unfortunately, Clang doesn't handle the long multiplies properly and
* converts them to the nonexistent "vmulq_u64" intrinsic, which is then
* scalarized into an ugly mess of VMOV.32 instructions.
*
* This mess is difficult to avoid without turning autovectorization
* off completely, but they are usually relatively minor and/or not
* worth it to fix.
*
* This loop is the easiest to fix, as unlike XXH32, this pragma
* _actually works_ because it is a loop vectorization instead of an
* SLP vectorization.
*/
#pragma clang loop vectorize(disable)
#endif
for (i=8 ; i < nbRounds; i++) {
/*
* Prevents clang for unrolling the acc loop and interleaving with this one.
*/
XXH_COMPILER_GUARD(acc);
acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
return XXH3_avalanche(acc + acc_end);
}
}
/* ======= Long Keys ======= */
#define XXH_STRIPE_LEN 64
#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
#ifdef XXH_OLD_NAMES
# define STRIPE_LEN XXH_STRIPE_LEN
# define ACC_NB XXH_ACC_NB
#endif
#ifndef XXH_PREFETCH_DIST
# ifdef __clang__
# define XXH_PREFETCH_DIST 320
# else
# if (XXH_VECTOR == XXH_AVX512)
# define XXH_PREFETCH_DIST 512
# else
# define XXH_PREFETCH_DIST 384
# endif
# endif /* __clang__ */
#endif /* XXH_PREFETCH_DIST */
/*
* These macros are to generate an XXH3_accumulate() function.
* The two arguments select the name suffix and target attribute.
*
* The name of this symbol is XXH3_accumulate_<name>() and it calls
* XXH3_accumulate_512_<name>().
*
* It may be useful to hand implement this function if the compiler fails to
* optimize the inline function.
*/
#define XXH3_ACCUMULATE_TEMPLATE(name) \
void \
XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \
const xxh_u8* XXH_RESTRICT input, \
const xxh_u8* XXH_RESTRICT secret, \
size_t nbStripes) \
{ \
size_t n; \
for (n = 0; n < nbStripes; n++ ) { \
const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \
XXH_PREFETCH(in + XXH_PREFETCH_DIST); \
XXH3_accumulate_512_##name( \
acc, \
in, \
secret + n*XXH_SECRET_CONSUME_RATE); \
} \
}
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
{
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
XXH_memcpy(dst, &v64, sizeof(v64));
}
/* Several intrinsic functions below are supposed to accept __int64 as argument,
* as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
* However, several environments do not define __int64 type,
* requiring a workaround.
*/
#if !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
typedef int64_t xxh_i64;
#else
/* the following type must have a width of 64-bit */
typedef long long xxh_i64;
#endif
/*
* XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
*
* It is a hardened version of UMAC, based off of FARSH's implementation.
*
* This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
* implementations, and it is ridiculously fast.
*
* We harden it by mixing the original input to the accumulators as well as the product.
*
* This means that in the (relatively likely) case of a multiply by zero, the
* original input is preserved.
*
* On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
* cross-pollination, as otherwise the upper and lower halves would be
* essentially independent.
*
* This doesn't matter on 64-bit hashes since they all get merged together in
* the end, so we skip the extra step.
*
* Both XXH3_64bits and XXH3_128bits use this subroutine.
*/
#if (XXH_VECTOR == XXH_AVX512) \
|| (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
#ifndef XXH_TARGET_AVX512
# define XXH_TARGET_AVX512 /* disable attribute target */
#endif
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
__m512i* const xacc = (__m512i *) acc;
XXH_ASSERT((((size_t)acc) & 63) == 0);
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
{
/* data_vec = input[0]; */
__m512i const data_vec = _mm512_loadu_si512 (input);
/* key_vec = secret[0]; */
__m512i const key_vec = _mm512_loadu_si512 (secret);
/* data_key = data_vec ^ key_vec; */
__m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
/* xacc[0] += swap(data_vec); */
__m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
__m512i const sum = _mm512_add_epi64(*xacc, data_swap);
/* xacc[0] += product; */
*xacc = _mm512_add_epi64(product, sum);
}
}
XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
/*
* XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
*
* Multiplication isn't perfect, as explained by Google in HighwayHash:
*
* // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
* // varying degrees. In descending order of goodness, bytes
* // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
* // As expected, the upper and lower bytes are much worse.
*
* Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
*
* Since our algorithm uses a pseudorandom secret to add some variance into the
* mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
*
* This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
* extraction.
*
* Both XXH3_64bits and XXH3_128bits use this subroutine.
*/
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 63) == 0);
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
{ __m512i* const xacc = (__m512i*) acc;
const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
/* xacc[0] ^= (xacc[0] >> 47) */
__m512i const acc_vec = *xacc;
__m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
/* xacc[0] ^= secret; */
__m512i const key_vec = _mm512_loadu_si512 (secret);
__m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
/* xacc[0] *= XXH_PRIME32_1; */
__m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
__m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
__m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
*xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
}
}
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
XXH_ASSERT(((size_t)customSecret & 63) == 0);
(void)(&XXH_writeLE64);
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
__m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
__m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
__m512i* const dest = ( __m512i*) customSecret;
int i;
XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
XXH_ASSERT(((size_t)dest & 63) == 0);
for (i=0; i < nbRounds; ++i) {
dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
} }
}
#endif
#if (XXH_VECTOR == XXH_AVX2) \
|| (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
#ifndef XXH_TARGET_AVX2
# define XXH_TARGET_AVX2 /* disable attribute target */
#endif
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 31) == 0);
{ __m256i* const xacc = (__m256i *) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xinput = (const __m256i *) input;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xsecret = (const __m256i *) secret;
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
/* data_vec = xinput[i]; */
__m256i const data_vec = _mm256_loadu_si256 (xinput+i);
/* key_vec = xsecret[i]; */
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
/* data_key = data_vec ^ key_vec; */
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
/* xacc[i] += swap(data_vec); */
__m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
__m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = _mm256_add_epi64(product, sum);
} }
}
XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 31) == 0);
{ __m256i* const xacc = (__m256i*) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xsecret = (const __m256i *) secret;
const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m256i const acc_vec = xacc[i];
__m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
__m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
/* xacc[i] ^= xsecret; */
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1; */
__m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
__m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
__m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
}
}
}
XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
(void)(&XXH_writeLE64);
XXH_PREFETCH(customSecret);
{ __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret);
__m256i* dest = ( __m256i*) customSecret;
# if defined(__GNUC__) || defined(__clang__)
/*
* On GCC & Clang, marking 'dest' as modified will cause the compiler:
* - do not extract the secret from sse registers in the internal loop
* - use less common registers, and avoid pushing these reg into stack
*/
XXH_COMPILER_GUARD(dest);
# endif
XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
XXH_ASSERT(((size_t)dest & 31) == 0);
/* GCC -O2 need unroll loop manually */
dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
}
}
#endif
/* x86dispatch always generates SSE2 */
#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
#ifndef XXH_TARGET_SSE2
# define XXH_TARGET_SSE2 /* disable attribute target */
#endif
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
/* SSE2 is just a half-scale version of the AVX2 version. */
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ __m128i* const xacc = (__m128i *) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xinput = (const __m128i *) input;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xsecret = (const __m128i *) secret;
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
/* data_vec = xinput[i]; */
__m128i const data_vec = _mm_loadu_si128 (xinput+i);
/* key_vec = xsecret[i]; */
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
/* data_key = data_vec ^ key_vec; */
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
/* xacc[i] += swap(data_vec); */
__m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
__m128i const sum = _mm_add_epi64(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = _mm_add_epi64(product, sum);
} }
}
XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ __m128i* const xacc = (__m128i*) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xsecret = (const __m128i *) secret;
const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m128i const acc_vec = xacc[i];
__m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
__m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1; */
__m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
__m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
__m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
}
}
}
XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
(void)(&XXH_writeLE64);
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
/* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
__m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
# else
__m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
# endif
int i;
const void* const src16 = XXH3_kSecret;
__m128i* dst16 = (__m128i*) customSecret;
# if defined(__GNUC__) || defined(__clang__)
/*
* On GCC & Clang, marking 'dest' as modified will cause the compiler:
* - do not extract the secret from sse registers in the internal loop
* - use less common registers, and avoid pushing these reg into stack
*/
XXH_COMPILER_GUARD(dst16);
# endif
XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
XXH_ASSERT(((size_t)dst16 & 15) == 0);
for (i=0; i < nbRounds; ++i) {
dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
} }
}
#endif
#if (XXH_VECTOR == XXH_NEON)
/* forward declarations for the scalar routines */
XXH_FORCE_INLINE void
XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
void const* XXH_RESTRICT secret, size_t lane);
XXH_FORCE_INLINE void
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
void const* XXH_RESTRICT secret, size_t lane);
/*!
* @internal
* @brief The bulk processing loop for NEON and WASM SIMD128.
*
* The NEON code path is actually partially scalar when running on AArch64. This
* is to optimize the pipelining and can have up to 15% speedup depending on the
* CPU, and it also mitigates some GCC codegen issues.
*
* @see XXH3_NEON_LANES for configuring this and details about this optimization.
*
* NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
* integers instead of the other platforms which mask full 64-bit vectors,
* so the setup is more complicated than just shifting right.
*
* Additionally, there is an optimization for 4 lanes at once noted below.
*
* Since, as stated, the most optimal amount of lanes for Cortexes is 6,
* there needs to be *three* versions of the accumulate operation used
* for the remaining 2 lanes.
*
* WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
* nearly perfectly.
*/
XXH_FORCE_INLINE void
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
{ /* GCC for darwin arm64 does not like aliasing here */
xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
uint8_t const* xinput = (const uint8_t *) input;
uint8_t const* xsecret = (const uint8_t *) secret;
size_t i;
#ifdef __wasm_simd128__
/*
* On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
* is constant propagated, which results in it converting it to this
* inside the loop:
*
* a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0)
* b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
* ...
*
* This requires a full 32-bit address immediate (and therefore a 6 byte
* instruction) as well as an add for each offset.
*
* Putting an asm guard prevents it from folding (at the cost of losing
* the alignment hint), and uses the free offset in `v128.load` instead
* of adding secret_offset each time which overall reduces code size by
* about a kilobyte and improves performance.
*/
XXH_COMPILER_GUARD(xsecret);
#endif
/* Scalar lanes use the normal scalarRound routine */
for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
XXH3_scalarRound(acc, input, secret, i);
}
i = 0;
/* 4 NEON lanes at a time. */
for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
/* data_vec = xinput[i]; */
uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16));
uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16));
/* key_vec = xsecret[i]; */
uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16));
uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16));
/* data_swap = swap(data_vec) */
uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
/* data_key = data_vec ^ key_vec; */
uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
/*
* If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
* de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
* get one vector with the low 32 bits of each lane, and one vector
* with the high 32 bits of each lane.
*
* The intrinsic returns a double vector because the original ARMv7-a
* instruction modified both arguments in place. AArch64 and SIMD128 emit
* two instructions from this intrinsic.
*
* [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
* [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
*/
uint32x4x2_t unzipped = vuzpq_u32(
vreinterpretq_u32_u64(data_key_1),
vreinterpretq_u32_u64(data_key_2)
);
/* data_key_lo = data_key & 0xFFFFFFFF */
uint32x4_t data_key_lo = unzipped.val[0];
/* data_key_hi = data_key >> 32 */
uint32x4_t data_key_hi = unzipped.val[1];
/*
* Then, we can split the vectors horizontally and multiply which, as for most
* widening intrinsics, have a variant that works on both high half vectors
* for free on AArch64. A similar instruction is available on SIMD128.
*
* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
*/
uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
/*
* Clang reorders
* a += b * c; // umlal swap.2d, dkl.2s, dkh.2s
* c += a; // add acc.2d, acc.2d, swap.2d
* to
* c += a; // add acc.2d, acc.2d, swap.2d
* c += b * c; // umlal acc.2d, dkl.2s, dkh.2s
*
* While it would make sense in theory since the addition is faster,
* for reasons likely related to umlal being limited to certain NEON
* pipelines, this is worse. A compiler guard fixes this.
*/
XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
/* xacc[i] = acc_vec + sum; */
xacc[i] = vaddq_u64(xacc[i], sum_1);
xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
}
/* Operate on the remaining NEON lanes 2 at a time. */
for (; i < XXH3_NEON_LANES / 2; i++) {
/* data_vec = xinput[i]; */
uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16));
/* key_vec = xsecret[i]; */
uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
/* acc_vec_2 = swap(data_vec) */
uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
/* data_key = data_vec ^ key_vec; */
uint64x2_t data_key = veorq_u64(data_vec, key_vec);
/* For two lanes, just use VMOVN and VSHRN. */
/* data_key_lo = data_key & 0xFFFFFFFF; */
uint32x2_t data_key_lo = vmovn_u64(data_key);
/* data_key_hi = data_key >> 32; */
uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
/* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
/* Same Clang workaround as before */
XXH_COMPILER_GUARD_CLANG_NEON(sum);
/* xacc[i] = acc_vec + sum; */
xacc[i] = vaddq_u64 (xacc[i], sum);
}
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc;
uint8_t const* xsecret = (uint8_t const*) secret;
size_t i;
/* WASM uses operator overloads and doesn't need these. */
#ifndef __wasm_simd128__
/* { prime32_1, prime32_1 } */
uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
/* { 0, prime32_1, 0, prime32_1 } */
uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
#endif
/* AArch64 uses both scalar and neon at the same time */
for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
XXH3_scalarScrambleRound(acc, secret, i);
}
for (i=0; i < XXH3_NEON_LANES / 2; i++) {
/* xacc[i] ^= (xacc[i] >> 47); */
uint64x2_t acc_vec = xacc[i];
uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
uint64x2_t data_key = veorq_u64(data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1 */
#ifdef __wasm_simd128__
/* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
xacc[i] = data_key * XXH_PRIME32_1;
#else
/*
* Expanded version with portable NEON intrinsics
*
* lo(x) * lo(y) + (hi(x) * lo(y) << 32)
*
* prod_hi = hi(data_key) * lo(prime) << 32
*
* Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
* as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
* and avoid the shift.
*/
uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
/* Extract low bits for vmlal_u32 */
uint32x2_t data_key_lo = vmovn_u64(data_key);
/* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
#endif
}
}
}
#endif
#if (XXH_VECTOR == XXH_VSX)
XXH_FORCE_INLINE void
XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
/* presumed aligned */
xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */
xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */
xxh_u64x2 const v32 = { 32, 32 };
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
/* data_vec = xinput[i]; */
xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
/* key_vec = xsecret[i]; */
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* shuffled = (data_key << 32) | (data_key >> 32); */
xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
/* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
/* acc_vec = xacc[i]; */
xxh_u64x2 acc_vec = xacc[i];
acc_vec += product;
/* swap high and low halves */
#ifdef __s390x__
acc_vec += vec_permi(data_vec, data_vec, 2);
#else
acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
#endif
xacc[i] = acc_vec;
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
const xxh_u8* const xsecret = (const xxh_u8*) secret;
/* constants */
xxh_u64x2 const v32 = { 32, 32 };
xxh_u64x2 const v47 = { 47, 47 };
xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
/* xacc[i] ^= (xacc[i] >> 47); */
xxh_u64x2 const acc_vec = xacc[i];
xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
/* xacc[i] ^= xsecret[i]; */
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* xacc[i] *= XXH_PRIME32_1 */
/* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
/* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
xacc[i] = prod_odd + (prod_even << v32);
} }
}
#endif
#if (XXH_VECTOR == XXH_SVE)
XXH_FORCE_INLINE void
XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
uint64_t *xacc = (uint64_t *)acc;
const uint64_t *xinput = (const uint64_t *)(const void *)input;
const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
uint64_t element_count = svcntd();
if (element_count >= 8) {
svbool_t mask = svptrue_pat_b64(SV_VL8);
svuint64_t vacc = svld1_u64(mask, xacc);
ACCRND(vacc, 0);
svst1_u64(mask, xacc, vacc);
} else if (element_count == 2) { /* sve128 */
svbool_t mask = svptrue_pat_b64(SV_VL2);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 2);
svuint64_t acc2 = svld1_u64(mask, xacc + 4);
svuint64_t acc3 = svld1_u64(mask, xacc + 6);
ACCRND(acc0, 0);
ACCRND(acc1, 2);
ACCRND(acc2, 4);
ACCRND(acc3, 6);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 2, acc1);
svst1_u64(mask, xacc + 4, acc2);
svst1_u64(mask, xacc + 6, acc3);
} else {
svbool_t mask = svptrue_pat_b64(SV_VL4);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 4);
ACCRND(acc0, 0);
ACCRND(acc1, 4);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 4, acc1);
}
}
XXH_FORCE_INLINE void
XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
const xxh_u8* XXH_RESTRICT input,
const xxh_u8* XXH_RESTRICT secret,
size_t nbStripes)
{
if (nbStripes != 0) {
uint64_t *xacc = (uint64_t *)acc;
const uint64_t *xinput = (const uint64_t *)(const void *)input;
const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
uint64_t element_count = svcntd();
if (element_count >= 8) {
svbool_t mask = svptrue_pat_b64(SV_VL8);
svuint64_t vacc = svld1_u64(mask, xacc + 0);
do {
/* svprfd(svbool_t, void *, enum svfprop); */
svprfd(mask, xinput + 128, SV_PLDL1STRM);
ACCRND(vacc, 0);
xinput += 8;
xsecret += 1;
nbStripes--;
} while (nbStripes != 0);
svst1_u64(mask, xacc + 0, vacc);
} else if (element_count == 2) { /* sve128 */
svbool_t mask = svptrue_pat_b64(SV_VL2);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 2);
svuint64_t acc2 = svld1_u64(mask, xacc + 4);
svuint64_t acc3 = svld1_u64(mask, xacc + 6);
do {
svprfd(mask, xinput + 128, SV_PLDL1STRM);
ACCRND(acc0, 0);
ACCRND(acc1, 2);
ACCRND(acc2, 4);
ACCRND(acc3, 6);
xinput += 8;
xsecret += 1;
nbStripes--;
} while (nbStripes != 0);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 2, acc1);
svst1_u64(mask, xacc + 4, acc2);
svst1_u64(mask, xacc + 6, acc3);
} else {
svbool_t mask = svptrue_pat_b64(SV_VL4);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 4);
do {
svprfd(mask, xinput + 128, SV_PLDL1STRM);
ACCRND(acc0, 0);
ACCRND(acc1, 4);
xinput += 8;
xsecret += 1;
nbStripes--;
} while (nbStripes != 0);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 4, acc1);
}
}
}
#endif
/* scalar variants - universal */
#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
/*
* In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
* emit an excess mask and a full 64-bit multiply-add (MADD X-form).
*
* While this might not seem like much, as AArch64 is a 64-bit architecture, only
* big Cortex designs have a full 64-bit multiplier.
*
* On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
* multiplies expand to 2-3 multiplies in microcode. This has a major penalty
* of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
*
* Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
* not have this penalty and does the mask automatically.
*/
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
{
xxh_u64 ret;
/* note: %x = 64-bit register, %w = 32-bit register */
__asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
return ret;
}
#else
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
{
return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
}
#endif
/*!
* @internal
* @brief Scalar round for @ref XXH3_accumulate_512_scalar().
*
* This is extracted to its own function because the NEON path uses a combination
* of NEON and scalar.
*/
XXH_FORCE_INLINE void
XXH3_scalarRound(void* XXH_RESTRICT acc,
void const* XXH_RESTRICT input,
void const* XXH_RESTRICT secret,
size_t lane)
{
xxh_u64* xacc = (xxh_u64*) acc;
xxh_u8 const* xinput = (xxh_u8 const*) input;
xxh_u8 const* xsecret = (xxh_u8 const*) secret;
XXH_ASSERT(lane < XXH_ACC_NB);
XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
{
xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
}
}
/*!
* @internal
* @brief Processes a 64 byte block of data using the scalar path.
*/
XXH_FORCE_INLINE void
XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
size_t i;
/* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
#if defined(__GNUC__) && !defined(__clang__) \
&& (defined(__arm__) || defined(__thumb2__)) \
&& defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
&& XXH_SIZE_OPT <= 0
# pragma GCC unroll 8
#endif
for (i=0; i < XXH_ACC_NB; i++) {
XXH3_scalarRound(acc, input, secret, i);
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
/*!
* @internal
* @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
*
* This is extracted to its own function because the NEON path uses a combination
* of NEON and scalar.
*/
XXH_FORCE_INLINE void
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
void const* XXH_RESTRICT secret,
size_t lane)
{
xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
XXH_ASSERT(lane < XXH_ACC_NB);
{
xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
xxh_u64 acc64 = xacc[lane];
acc64 = XXH_xorshift64(acc64, 47);
acc64 ^= key64;
acc64 *= XXH_PRIME32_1;
xacc[lane] = acc64;
}
}
/*!
* @internal
* @brief Scrambles the accumulators after a large chunk has been read
*/
XXH_FORCE_INLINE void
XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
size_t i;
for (i=0; i < XXH_ACC_NB; i++) {
XXH3_scalarScrambleRound(acc, secret, i);
}
}
XXH_FORCE_INLINE void
XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
/*
* We need a separate pointer for the hack below,
* which requires a non-const pointer.
* Any decent compiler will optimize this out otherwise.
*/
const xxh_u8* kSecretPtr = XXH3_kSecret;
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
#if defined(__GNUC__) && defined(__aarch64__)
/*
* UGLY HACK:
* GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
* placed sequentially, in order, at the top of the unrolled loop.
*
* While MOVK is great for generating constants (2 cycles for a 64-bit
* constant compared to 4 cycles for LDR), it fights for bandwidth with
* the arithmetic instructions.
*
* I L S
* MOVK
* MOVK
* MOVK
* MOVK
* ADD
* SUB STR
* STR
* By forcing loads from memory (as the asm line causes the compiler to assume
* that XXH3_kSecretPtr has been changed), the pipelines are used more
* efficiently:
* I L S
* LDR
* ADD LDR
* SUB STR
* STR
*
* See XXH3_NEON_LANES for details on the pipsline.
*
* XXH3_64bits_withSeed, len == 256, Snapdragon 835
* without hack: 2654.4 MB/s
* with hack: 3202.9 MB/s
*/
XXH_COMPILER_GUARD(kSecretPtr);
#endif
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
int i;
for (i=0; i < nbRounds; i++) {
/*
* The asm hack causes the compiler to assume that kSecretPtr aliases with
* customSecret, and on aarch64, this prevented LDP from merging two
* loads together for free. Putting the loads together before the stores
* properly generates LDP.
*/
xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
} }
}
typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
#if (XXH_VECTOR == XXH_AVX512)
#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
#define XXH3_accumulate XXH3_accumulate_avx512
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
#elif (XXH_VECTOR == XXH_AVX2)
#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
#define XXH3_accumulate XXH3_accumulate_avx2
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
#elif (XXH_VECTOR == XXH_SSE2)
#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
#define XXH3_accumulate XXH3_accumulate_sse2
#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
#elif (XXH_VECTOR == XXH_NEON)
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
#define XXH3_accumulate XXH3_accumulate_neon
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_VSX)
#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
#define XXH3_accumulate XXH3_accumulate_vsx
#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_SVE)
#define XXH3_accumulate_512 XXH3_accumulate_512_sve
#define XXH3_accumulate XXH3_accumulate_sve
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#else /* scalar */
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
#define XXH3_accumulate XXH3_accumulate_scalar
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#endif
#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
# undef XXH3_initCustomSecret
# define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#endif
XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
size_t const nb_blocks = (len - 1) / block_len;
size_t n;
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
for (n = 0; n < nb_blocks; n++) {
f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
}
/* last partial block */
XXH_ASSERT(len > XXH_STRIPE_LEN);
{ size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
/* last stripe */
{ const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
} }
}
XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
{
return XXH3_mul128_fold64(
acc[0] ^ XXH_readLE64(secret),
acc[1] ^ XXH_readLE64(secret+8) );
}
static XXH64_hash_t
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
{
xxh_u64 result64 = start;
size_t i = 0;
for (i = 0; i < 4; i++) {
result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
#if defined(__clang__) /* Clang */ \
&& (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
/*
* UGLY HACK:
* Prevent autovectorization on Clang ARMv7-a. Exact same problem as
* the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
* XXH3_64bits, len == 256, Snapdragon 835:
* without hack: 2063.7 MB/s
* with hack: 2560.7 MB/s
*/
XXH_COMPILER_GUARD(result64);
#endif
}
return XXH3_avalanche(result64);
}
#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
const void* XXH_RESTRICT secret, size_t secretSize,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
/* do not align on 8, so that the secret is different from the accumulator */
#define XXH_SECRET_MERGEACCS_START 11
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
}
/*
* It's important for performance to transmit secret's size (when it's static)
* so that the compiler can properly optimize the vectorized loop.
* This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
* When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
* breaks -Og, this is XXH_NO_INLINE.
*/
XXH3_WITH_SECRET_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64;
return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
}
/*
* It's preferable for performance that XXH3_hashLong is not inlined,
* as it results in a smaller function for small data, easier to the instruction cache.
* Note that inside this no_inline function, we do inline the internal loop,
* and provide a statically defined secret size to allow optimization of vector loop.
*/
XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
}
/*
* XXH3_hashLong_64b_withSeed():
* Generate a custom key based on alteration of default XXH3_kSecret with the seed,
* and then use this key for long mode hashing.
*
* This operation is decently fast but nonetheless costs a little bit of time.
* Try to avoid it whenever possible (typically when seed==0).
*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
XXH64_hash_t seed,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble,
XXH3_f_initCustomSecret f_initSec)
{
#if XXH_SIZE_OPT <= 0
if (seed == 0)
return XXH3_hashLong_64b_internal(input, len,
XXH3_kSecret, sizeof(XXH3_kSecret),
f_acc, f_scramble);
#endif
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
f_initSec(secret, seed);
return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
f_acc, f_scramble);
}
}
/*
* It's important for performance that XXH3_hashLong is not inlined.
*/
XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)secret; (void)secretLen;
return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}
typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
XXH_FORCE_INLINE XXH64_hash_t
XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
XXH3_hashLong64_f f_hashLong)
{
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
/*
* If an action is to be taken if `secretLen` condition is not respected,
* it should be done here.
* For now, it's a contract pre-condition.
* Adding a check and a branch here would cost performance at every hash.
* Also, note that function signature doesn't offer room to return an error.
*/
if (len <= 16)
return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
if (len <= 128)
return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
}
/* === Public entry point === */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
{
return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
{
return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
}
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
if (length <= XXH3_MIDSIZE_MAX)
return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
}
/* === XXH3 streaming === */
#ifndef XXH_NO_STREAM
/*
* Malloc's a pointer that is always aligned to align.
*
* This must be freed with `XXH_alignedFree()`.
*
* malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
* alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
* or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
*
* This underalignment previously caused a rather obvious crash which went
* completely unnoticed due to XXH3_createState() not actually being tested.
* Credit to RedSpah for noticing this bug.
*
* The alignment is done manually: Functions like posix_memalign or _mm_malloc
* are avoided: To maintain portability, we would have to write a fallback
* like this anyways, and besides, testing for the existence of library
* functions without relying on external build tools is impossible.
*
* The method is simple: Overallocate, manually align, and store the offset
* to the original behind the returned pointer.
*
* Align must be a power of 2 and 8 <= align <= 128.
*/
static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
{
XXH_ASSERT(align <= 128 && align >= 8); /* range check */
XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
{ /* Overallocate to make room for manual realignment and an offset byte */
xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
if (base != NULL) {
/*
* Get the offset needed to align this pointer.
*
* Even if the returned pointer is aligned, there will always be
* at least one byte to store the offset to the original pointer.
*/
size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
/* Add the offset for the now-aligned pointer */
xxh_u8* ptr = base + offset;
XXH_ASSERT((size_t)ptr % align == 0);
/* Store the offset immediately before the returned pointer. */
ptr[-1] = (xxh_u8)offset;
return ptr;
}
return NULL;
}
}
/*
* Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
* normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
*/
static void XXH_alignedFree(void* p)
{
if (p != NULL) {
xxh_u8* ptr = (xxh_u8*)p;
/* Get the offset byte we added in XXH_malloc. */
xxh_u8 offset = ptr[-1];
/* Free the original malloc'd pointer */
xxh_u8* base = ptr - offset;
XXH_free(base);
}
}
/*! @ingroup XXH3_family */
/*!
* @brief Allocate an @ref XXH3_state_t.
*
* @return An allocated pointer of @ref XXH3_state_t on success.
* @return `NULL` on failure.
*
* @note Must be freed with XXH3_freeState().
*/
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
{
XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
if (state==NULL) return NULL;
XXH3_INITSTATE(state);
return state;
}
/*! @ingroup XXH3_family */
/*!
* @brief Frees an @ref XXH3_state_t.
*
* @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
*
* @return @ref XXH_OK.
*
* @note Must be allocated with XXH3_createState().
*/
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
{
XXH_alignedFree(statePtr);
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
{
XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
}
static void
XXH3_reset_internal(XXH3_state_t* statePtr,
XXH64_hash_t seed,
const void* secret, size_t secretSize)
{
size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
XXH_ASSERT(statePtr != NULL);
/* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
memset((char*)statePtr + initStart, 0, initLength);
statePtr->acc[0] = XXH_PRIME32_3;
statePtr->acc[1] = XXH_PRIME64_1;
statePtr->acc[2] = XXH_PRIME64_2;
statePtr->acc[3] = XXH_PRIME64_3;
statePtr->acc[4] = XXH_PRIME64_4;
statePtr->acc[5] = XXH_PRIME32_2;
statePtr->acc[6] = XXH_PRIME64_5;
statePtr->acc[7] = XXH_PRIME32_1;
statePtr->seed = seed;
statePtr->useSeed = (seed != 0);
statePtr->extSecret = (const unsigned char*)secret;
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_reset_internal(statePtr, 0, secret, secretSize);
if (secret == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
if (statePtr == NULL) return XXH_ERROR;
if (seed==0) return XXH3_64bits_reset(statePtr);
if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
XXH3_initCustomSecret(statePtr->customSecret, seed);
XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
{
if (statePtr == NULL) return XXH_ERROR;
if (secret == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
XXH3_reset_internal(statePtr, seed64, secret, secretSize);
statePtr->useSeed = 1; /* always, even if seed64==0 */
return XXH_OK;
}
/*!
* @internal
* @brief Processes a large input for XXH3_update() and XXH3_digest_long().
*
* Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
*
* @param acc Pointer to the 8 accumulator lanes
* @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block*
* @param nbStripesPerBlock Number of stripes in a block
* @param input Input pointer
* @param nbStripes Number of stripes to process
* @param secret Secret pointer
* @param secretLimit Offset of the last block in @p secret
* @param f_acc Pointer to an XXH3_accumulate implementation
* @param f_scramble Pointer to an XXH3_scrambleAcc implementation
* @return Pointer past the end of @p input after processing
*/
XXH_FORCE_INLINE const xxh_u8 *
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
/* Process full blocks */
if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
/* Process the initial partial block... */
size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
do {
/* Accumulate and scramble */
f_acc(acc, input, initialSecret, nbStripesThisIter);
f_scramble(acc, secret + secretLimit);
input += nbStripesThisIter * XXH_STRIPE_LEN;
nbStripes -= nbStripesThisIter;
/* Then continue the loop with the full block size */
nbStripesThisIter = nbStripesPerBlock;
initialSecret = secret;
} while (nbStripes >= nbStripesPerBlock);
*nbStripesSoFarPtr = 0;
}
/* Process a partial block */
if (nbStripes > 0) {
f_acc(acc, input, initialSecret, nbStripes);
input += nbStripes * XXH_STRIPE_LEN;
*nbStripesSoFarPtr += nbStripes;
}
/* Return end pointer */
return input;
}
#ifndef XXH3_STREAM_USE_STACK
# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
# define XXH3_STREAM_USE_STACK 1
# endif
#endif
/*
* Both XXH3_64bits_update and XXH3_128bits_update use this routine.
*/
XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
const xxh_u8* XXH_RESTRICT input, size_t len,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
if (input==NULL) {
XXH_ASSERT(len == 0);
return XXH_OK;
}
XXH_ASSERT(state != NULL);
{ const xxh_u8* const bEnd = input + len;
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
/* For some reason, gcc and MSVC seem to suffer greatly
* when operating accumulators directly into state.
* Operating into stack space seems to enable proper optimization.
* clang, on the other hand, doesn't seem to need this trick */
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
XXH_memcpy(acc, state->acc, sizeof(acc));
#else
xxh_u64* XXH_RESTRICT const acc = state->acc;
#endif
state->totalLen += len;
XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
/* small input : just fill in tmp buffer */
if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
state->bufferedSize += (XXH32_hash_t)len;
return XXH_OK;
}
/* total input is now > XXH3_INTERNALBUFFER_SIZE */
#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
/*
* Internal buffer is partially filled (always, except at beginning)
* Complete it, then consume it.
*/
if (state->bufferedSize) {
size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
input += loadSize;
XXH3_consumeStripes(acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, XXH3_INTERNALBUFFER_STRIPES,
secret, state->secretLimit,
f_acc, f_scramble);
state->bufferedSize = 0;
}
XXH_ASSERT(input < bEnd);
if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
input = XXH3_consumeStripes(acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
input, nbStripes,
secret, state->secretLimit,
f_acc, f_scramble);
XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
}
/* Some remaining input (always) : buffer it */
XXH_ASSERT(input < bEnd);
XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
XXH_ASSERT(state->bufferedSize == 0);
XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
state->bufferedSize = (XXH32_hash_t)(bEnd-input);
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
/* save stack accumulators into state */
XXH_memcpy(state->acc, acc, sizeof(acc));
#endif
}
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_update(state, (const xxh_u8*)input, len,
XXH3_accumulate, XXH3_scrambleAcc);
}
XXH_FORCE_INLINE void
XXH3_digest_long (XXH64_hash_t* acc,
const XXH3_state_t* state,
const unsigned char* secret)
{
xxh_u8 lastStripe[XXH_STRIPE_LEN];
const xxh_u8* lastStripePtr;
/*
* Digest on a local copy. This way, the state remains unaltered, and it can
* continue ingesting more input afterwards.
*/
XXH_memcpy(acc, state->acc, sizeof(state->acc));
if (state->bufferedSize >= XXH_STRIPE_LEN) {
/* Consume remaining stripes then point to remaining data in buffer */
size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
size_t nbStripesSoFar = state->nbStripesSoFar;
XXH3_consumeStripes(acc,
&nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, nbStripes,
secret, state->secretLimit,
XXH3_accumulate, XXH3_scrambleAcc);
lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
} else { /* bufferedSize < XXH_STRIPE_LEN */
/* Copy to temp buffer */
size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
lastStripePtr = lastStripe;
}
/* Last stripe */
XXH3_accumulate_512(acc,
lastStripePtr,
secret + state->secretLimit - XXH_SECRET_LASTACC_START);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
if (state->totalLen > XXH3_MIDSIZE_MAX) {
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
XXH3_digest_long(acc, state, secret);
return XXH3_mergeAccs(acc,
secret + XXH_SECRET_MERGEACCS_START,
(xxh_u64)state->totalLen * XXH_PRIME64_1);
}
/* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
if (state->useSeed)
return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
secret, state->secretLimit + XXH_STRIPE_LEN);
}
#endif /* !XXH_NO_STREAM */
/* ==========================================
* XXH3 128 bits (a.k.a XXH128)
* ==========================================
* XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
* even without counting the significantly larger output size.
*
* For example, extra steps are taken to avoid the seed-dependent collisions
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
*
* This strength naturally comes at the cost of some speed, especially on short
* lengths. Note that longer hashes are about as fast as the 64-bit version
* due to it using only a slight modification of the 64-bit loop.
*
* XXH128 is also more oriented towards 64-bit machines. It is still extremely
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
*/
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
/* A doubled version of 1to3_64b with different constants. */
XXH_ASSERT(input != NULL);
XXH_ASSERT(1 <= len && len <= 3);
XXH_ASSERT(secret != NULL);
/*
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
*/
{ xxh_u8 const c1 = input[0];
xxh_u8 const c2 = input[len >> 1];
xxh_u8 const c3 = input[len - 1];
xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
XXH128_hash_t h128;
h128.low64 = XXH64_avalanche(keyed_lo);
h128.high64 = XXH64_avalanche(keyed_hi);
return h128;
}
}
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(4 <= len && len <= 8);
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
{ xxh_u32 const input_lo = XXH_readLE32(input);
xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
xxh_u64 const keyed = input_64 ^ bitflip;
/* Shift len to the left to ensure it is even, this avoids even multiplies. */
XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
m128.high64 += (m128.low64 << 1);
m128.low64 ^= (m128.high64 >> 3);
m128.low64 = XXH_xorshift64(m128.low64, 35);
m128.low64 *= PRIME_MX2;
m128.low64 = XXH_xorshift64(m128.low64, 28);
m128.high64 = XXH3_avalanche(m128.high64);
return m128;
}
}
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(9 <= len && len <= 16);
{ xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
xxh_u64 const input_lo = XXH_readLE64(input);
xxh_u64 input_hi = XXH_readLE64(input + len - 8);
XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
/*
* Put len in the middle of m128 to ensure that the length gets mixed to
* both the low and high bits in the 128x64 multiply below.
*/
m128.low64 += (xxh_u64)(len - 1) << 54;
input_hi ^= bitfliph;
/*
* Add the high 32 bits of input_hi to the high 32 bits of m128, then
* add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
* the high 64 bits of m128.
*
* The best approach to this operation is different on 32-bit and 64-bit.
*/
if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
/*
* 32-bit optimized version, which is more readable.
*
* On 32-bit, it removes an ADC and delays a dependency between the two
* halves of m128.high64, but it generates an extra mask on 64-bit.
*/
m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
} else {
/*
* 64-bit optimized (albeit more confusing) version.
*
* Uses some properties of addition and multiplication to remove the mask:
*
* Let:
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
* c = XXH_PRIME32_2
*
* a + (b * c)
* Inverse Property: x + y - x == y
* a + (b * (1 + c - 1))
* Distributive Property: x * (y + z) == (x * y) + (x * z)
* a + (b * 1) + (b * (c - 1))
* Identity Property: x * 1 == x
* a + b + (b * (c - 1))
*
* Substitute a, b, and c:
* input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
*
* Since input_hi.hi + input_hi.lo == input_hi, we get this:
* input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
*/
m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
}
/* m128 ^= XXH_swap64(m128 >> 64); */
m128.low64 ^= XXH_swap64(m128.high64);
{ /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
h128.high64 += m128.high64 * XXH_PRIME64_2;
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = XXH3_avalanche(h128.high64);
return h128;
} }
}
/*
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
*/
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
{ if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
{ XXH128_hash_t h128;
xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
h128.low64 = XXH64_avalanche(seed ^ bitflipl);
h128.high64 = XXH64_avalanche( seed ^ bitfliph);
return h128;
} }
}
/*
* A bit slower than XXH3_mix16B, but handles multiply by zero better.
*/
XXH_FORCE_INLINE XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
const xxh_u8* secret, XXH64_hash_t seed)
{
acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
return acc;
}
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(16 < len && len <= 128);
{ XXH128_hash_t acc;
acc.low64 = len * XXH_PRIME64_1;
acc.high64 = 0;
#if XXH_SIZE_OPT >= 1
{
/* Smaller, but slightly slower. */
unsigned int i = (unsigned int)(len - 1) / 32;
do {
acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
} while (i-- != 0);
}
#else
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
}
acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
}
acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
}
acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
#endif
{ XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ (acc.high64 * XXH_PRIME64_4)
+ ((len - seed) * XXH_PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
}
}
XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
{ XXH128_hash_t acc;
unsigned i;
acc.low64 = len * XXH_PRIME64_1;
acc.high64 = 0;
/*
* We set as `i` as offset + 32. We do this so that unchanged
* `len` can be used as upper bound. This reaches a sweet spot
* where both x86 and aarch64 get simple agen and good codegen
* for the loop.
*/
for (i = 32; i < 160; i += 32) {
acc = XXH128_mix32B(acc,
input + i - 32,
input + i - 16,
secret + i - 32,
seed);
}
acc.low64 = XXH3_avalanche(acc.low64);
acc.high64 = XXH3_avalanche(acc.high64);
/*
* NB: `i <= len` will duplicate the last 32-bytes if
* len % 32 was zero. This is an unfortunate necessity to keep
* the hash result stable.
*/
for (i=160; i <= len; i += 32) {
acc = XXH128_mix32B(acc,
input + i - 32,
input + i - 16,
secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
seed);
}
/* last bytes */
acc = XXH128_mix32B(acc,
input + len - 16,
input + len - 32,
secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
(XXH64_hash_t)0 - seed);
{ XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ (acc.high64 * XXH_PRIME64_4)
+ ((len - seed) * XXH_PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
}
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
{ XXH128_hash_t h128;
h128.low64 = XXH3_mergeAccs(acc,
secret + XXH_SECRET_MERGEACCS_START,
(xxh_u64)len * XXH_PRIME64_1);
h128.high64 = XXH3_mergeAccs(acc,
secret + secretSize
- sizeof(acc) - XXH_SECRET_MERGEACCS_START,
~((xxh_u64)len * XXH_PRIME64_2));
return h128;
}
}
/*
* It's important for performance that XXH3_hashLong() is not inlined.
*/
XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_accumulate, XXH3_scrambleAcc);
}
/*
* It's important for performance to pass @p secretLen (when it's static)
* to the compiler, so that it can properly optimize the vectorized loop.
*
* When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
* breaks -Og, this is XXH_NO_INLINE.
*/
XXH3_WITH_SECRET_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64;
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
XXH3_accumulate, XXH3_scrambleAcc);
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble,
XXH3_f_initCustomSecret f_initSec)
{
if (seed64 == 0)
return XXH3_hashLong_128b_internal(input, len,
XXH3_kSecret, sizeof(XXH3_kSecret),
f_acc, f_scramble);
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
f_initSec(secret, seed64);
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
f_acc, f_scramble);
}
}
/*
* It's important for performance that XXH3_hashLong is not inlined.
*/
XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed(const void* input, size_t len,
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)secret; (void)secretLen;
return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}
typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
XXH64_hash_t, const void* XXH_RESTRICT, size_t);
XXH_FORCE_INLINE XXH128_hash_t
XXH3_128bits_internal(const void* input, size_t len,
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
XXH3_hashLong128_f f_hl128)
{
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
/*
* If an action is to be taken if `secret` conditions are not respected,
* it should be done here.
* For now, it's a contract pre-condition.
* Adding a check and a branch here would cost performance at every hash.
*/
if (len <= 16)
return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
if (len <= 128)
return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
return f_hl128(input, len, seed64, secret, secretLen);
}
/* === Public XXH128 API === */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_128bits_internal(input, len, 0,
XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_hashLong_128b_default);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_128bits_internal(input, len, 0,
(const xxh_u8*)secret, secretSize,
XXH3_hashLong_128b_withSecret);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_internal(input, len, seed,
XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_hashLong_128b_withSeed);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_withSeed(input, len, seed);
}
/* === XXH3 128-bit streaming === */
#ifndef XXH_NO_STREAM
/*
* All initialization and update functions are identical to 64-bit streaming variant.
* The only difference is the finalization routine.
*/
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
return XXH3_64bits_reset(statePtr);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
return XXH3_64bits_reset_withSeed(statePtr, seed);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_64bits_update(state, input, len);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
if (state->totalLen > XXH3_MIDSIZE_MAX) {
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
XXH3_digest_long(acc, state, secret);
XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
{ XXH128_hash_t h128;
h128.low64 = XXH3_mergeAccs(acc,
secret + XXH_SECRET_MERGEACCS_START,
(xxh_u64)state->totalLen * XXH_PRIME64_1);
h128.high64 = XXH3_mergeAccs(acc,
secret + state->secretLimit + XXH_STRIPE_LEN
- sizeof(acc) - XXH_SECRET_MERGEACCS_START,
~((xxh_u64)state->totalLen * XXH_PRIME64_2));
return h128;
}
}
/* len <= XXH3_MIDSIZE_MAX : short code */
if (state->seed)
return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
secret, state->secretLimit + XXH_STRIPE_LEN);
}
#endif /* !XXH_NO_STREAM */
/* 128-bit utility functions */
#include <string.h> /* memcmp, memcpy */
/* return : 1 is equal, 0 if different */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
{
/* note : XXH128_hash_t is compact, it has no padding byte */
return !(memcmp(&h1, &h2, sizeof(h1)));
}
/* This prototype is compatible with stdlib's qsort().
* @return : >0 if *h128_1 > *h128_2
* <0 if *h128_1 < *h128_2
* =0 if *h128_1 == *h128_2 */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
{
XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
/* note : bets that, in most cases, hash values are different */
if (hcmp) return hcmp;
return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
}
/*====== Canonical representation ======*/
/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) {
hash.high64 = XXH_swap64(hash.high64);
hash.low64 = XXH_swap64(hash.low64);
}
XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
{
XXH128_hash_t h;
h.high64 = XXH_readBE64(src);
h.low64 = XXH_readBE64(src->digest + 8);
return h;
}
/* ==========================================
* Secret generators
* ==========================================
*/
#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
{
XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
{
#if (XXH_DEBUGLEVEL >= 1)
XXH_ASSERT(secretBuffer != NULL);
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
#else
/* production mode, assert() are disabled */
if (secretBuffer == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
#endif
if (customSeedSize == 0) {
customSeed = XXH3_kSecret;
customSeedSize = XXH_SECRET_DEFAULT_SIZE;
}
#if (XXH_DEBUGLEVEL >= 1)
XXH_ASSERT(customSeed != NULL);
#else
if (customSeed == NULL) return XXH_ERROR;
#endif
/* Fill secretBuffer with a copy of customSeed - repeat as needed */
{ size_t pos = 0;
while (pos < secretSize) {
size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
memcpy((char*)secretBuffer + pos, customSeed, toCopy);
pos += toCopy;
} }
{ size_t const nbSeg16 = secretSize / 16;
size_t n;
XXH128_canonical_t scrambler;
XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
for (n=0; n<nbSeg16; n++) {
XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
XXH3_combine16((char*)secretBuffer + n*16, h128);
}
/* last segment */
XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
}
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
{
XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
XXH3_initCustomSecret(secret, seed);
XXH_ASSERT(secretBuffer != NULL);
memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
}
/* Pop our optimization override from above */
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
# pragma GCC pop_options
#endif
#endif /* XXH_NO_LONG_LONG */
#endif /* XXH_NO_XXH3 */
/*!
* @}
*/
#endif /* XXH_IMPLEMENTATION */
#if defined (__cplusplus)
} /* extern "C" */
#endif