virtualx-engine/scene/3d/room_manager.cpp
lawnjelly 7f3800ece2 Portals - include in bound and special cases in start room
* Re-introduces a property for portals to decide whether they are included in room bounds during room conversion.
* Adds a special case for portals that extend into the start room, which may be caused by level design inaccuracies.
2024-01-31 09:22:33 +00:00

2327 lines
71 KiB
C++

/**************************************************************************/
/* room_manager.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "room_manager.h"
#include "core/bitfield_dynamic.h"
#include "core/engine.h"
#include "core/math/quick_hull.h"
#include "core/os/os.h"
#include "editor/editor_node.h"
#include "mesh_instance.h"
#include "multimesh_instance.h"
#include "portal.h"
#include "room_group.h"
#include "scene/3d/camera.h"
#include "scene/3d/light.h"
#include "scene/3d/particles.h"
#include "scene/3d/sprite_3d.h"
#include "visibility_notifier.h"
#ifdef TOOLS_ENABLED
#include "editor/plugins/spatial_editor_plugin.h"
#endif
#include "modules/modules_enabled.gen.h" // For csg.
#ifdef MODULE_CSG_ENABLED
#include "modules/csg/csg_shape.h"
#endif
// #define GODOT_PORTALS_USE_BULLET_CONVEX_HULL
#ifdef GODOT_PORTALS_USE_BULLET_CONVEX_HULL
#include "core/math/convex_hull.h"
#endif
// This needs to be static because it cannot easily be propagated to portals
// during load (as the RoomManager may be loaded before Portals enter the scene tree)
real_t RoomManager::_default_portal_margin = 1.0;
#ifdef TOOLS_ENABLED
RoomManager *RoomManager::active_room_manager = nullptr;
// static versions of functions for use from editor toolbars
void RoomManager::static_rooms_set_active(bool p_active) {
if (active_room_manager) {
active_room_manager->rooms_set_active(p_active);
active_room_manager->property_list_changed_notify();
}
}
bool RoomManager::static_rooms_get_active() {
if (active_room_manager) {
return active_room_manager->rooms_get_active();
}
return false;
}
bool RoomManager::static_rooms_get_active_and_loaded() {
if (active_room_manager) {
if (active_room_manager->rooms_get_active()) {
Ref<World> world = active_room_manager->get_world();
RID scenario = world->get_scenario();
return active_room_manager->rooms_get_active() && VisualServer::get_singleton()->rooms_is_loaded(scenario);
}
}
return false;
}
void RoomManager::static_rooms_convert() {
if (active_room_manager) {
return active_room_manager->rooms_convert();
}
}
#endif
RoomManager::RoomManager() {
// some high value, we want room manager to be processed after other
// nodes because the camera should be moved first
set_process_priority(10000);
}
RoomManager::~RoomManager() {
}
String RoomManager::get_configuration_warning() const {
String warning = Spatial::get_configuration_warning();
if (_settings_path_roomlist == NodePath()) {
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("The RoomList has not been assigned.");
} else {
Spatial *roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!roomlist) {
// possibly also check (roomlist->get_class_name() != StringName("Spatial"))
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("The RoomList node should be a Spatial (or derived from Spatial).");
}
}
if (_settings_portal_depth_limit == 0) {
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("Portal Depth Limit is set to Zero.\nOnly the Room that the Camera is in will render.");
}
if (Room::detect_nodes_of_type<RoomManager>(this)) {
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("There should only be one RoomManager in the SceneTree.");
}
return warning;
}
void RoomManager::_preview_camera_update() {
Ref<World> world = get_world();
RID scenario = world->get_scenario();
if (_godot_preview_camera_ID != (ObjectID)-1) {
Camera *cam = Object::cast_to<Camera>(ObjectDB::get_instance(_godot_preview_camera_ID));
if (!cam) {
_godot_preview_camera_ID = (ObjectID)-1;
} else {
// get camera position and direction
Vector3 camera_pos = cam->get_global_transform().origin;
Vector<Plane> planes = cam->get_frustum();
// only update the visual server when there is a change.. as it will request a screen redraw
// this is kinda silly, but the other way would be keeping track of the override camera in visual server
// and tracking the camera deletes, which might be more error prone for a debug feature...
bool changed = false;
if (camera_pos != _godot_camera_pos) {
changed = true;
}
// check planes
if (!changed) {
if (planes.size() != _godot_camera_planes.size()) {
changed = true;
}
}
if (!changed) {
// num of planes must be identical
for (int n = 0; n < planes.size(); n++) {
if (planes[n] != _godot_camera_planes[n]) {
changed = true;
break;
}
}
}
if (changed) {
_godot_camera_pos = camera_pos;
_godot_camera_planes = planes;
VisualServer::get_singleton()->rooms_override_camera(scenario, true, camera_pos, &planes);
}
}
}
}
void RoomManager::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
if (Engine::get_singleton()->is_editor_hint()) {
set_process_internal(_godot_preview_camera_ID != (ObjectID)-1);
#ifdef TOOLS_ENABLED
// note this mechanism may fail to work correctly if the user creates two room managers,
// but should not create major problems as it is just used to auto update when portals etc
// are changed in the editor, and there is a check for nullptr.
active_room_manager = this;
SpatialEditor *spatial_editor = SpatialEditor::get_singleton();
if (spatial_editor) {
spatial_editor->update_portal_tools();
}
#endif
} else {
if (_settings_gameplay_monitor_enabled) {
set_process_internal(true);
}
}
} break;
case NOTIFICATION_EXIT_TREE: {
#ifdef TOOLS_ENABLED
active_room_manager = nullptr;
if (Engine::get_singleton()->is_editor_hint()) {
SpatialEditor *spatial_editor = SpatialEditor::get_singleton();
if (spatial_editor) {
spatial_editor->update_portal_tools();
}
}
#endif
} break;
case NOTIFICATION_INTERNAL_PROCESS: {
// can't call visual server if not inside world
if (!is_inside_world()) {
return;
}
if (Engine::get_singleton()->is_editor_hint()) {
_preview_camera_update();
return;
}
if (_settings_gameplay_monitor_enabled) {
Ref<World> world = get_world();
RID scenario = world->get_scenario();
List<Camera *> cameras;
world->get_camera_list(&cameras);
Vector<Vector3> positions;
for (int n = 0; n < cameras.size(); n++) {
positions.push_back(cameras[n]->get_global_transform().origin);
}
VisualServer::get_singleton()->rooms_update_gameplay_monitor(scenario, positions);
}
} break;
}
}
void RoomManager::_bind_methods() {
BIND_ENUM_CONSTANT(PVS_MODE_DISABLED);
BIND_ENUM_CONSTANT(PVS_MODE_PARTIAL);
BIND_ENUM_CONSTANT(PVS_MODE_FULL);
// main functions
ClassDB::bind_method(D_METHOD("rooms_convert"), &RoomManager::rooms_convert);
ClassDB::bind_method(D_METHOD("rooms_clear"), &RoomManager::rooms_clear);
ClassDB::bind_method(D_METHOD("set_pvs_mode", "pvs_mode"), &RoomManager::set_pvs_mode);
ClassDB::bind_method(D_METHOD("get_pvs_mode"), &RoomManager::get_pvs_mode);
ClassDB::bind_method(D_METHOD("set_roomlist_path", "p_path"), &RoomManager::set_roomlist_path);
ClassDB::bind_method(D_METHOD("get_roomlist_path"), &RoomManager::get_roomlist_path);
// These are commented out for now, but available in case we want to cache PVS to disk, the functionality exists
// ClassDB::bind_method(D_METHOD("set_pvs_filename", "pvs_filename"), &RoomManager::set_pvs_filename);
// ClassDB::bind_method(D_METHOD("get_pvs_filename"), &RoomManager::get_pvs_filename);
// just some macros to make setting inspector values easier
#define LPORTAL_STRINGIFY(x) #x
#define LPORTAL_TOSTRING(x) LPORTAL_STRINGIFY(x)
#define LIMPL_PROPERTY(P_TYPE, P_NAME, P_SET, P_GET) \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_NAME)), &RoomManager::P_SET); \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_GET)), &RoomManager::P_GET); \
ADD_PROPERTY(PropertyInfo(P_TYPE, LPORTAL_TOSTRING(P_NAME)), LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_GET));
#define LIMPL_PROPERTY_RANGE(P_TYPE, P_NAME, P_SET, P_GET, P_RANGE_STRING) \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_NAME)), &RoomManager::P_SET); \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_GET)), &RoomManager::P_GET); \
ADD_PROPERTY(PropertyInfo(P_TYPE, LPORTAL_TOSTRING(P_NAME), PROPERTY_HINT_RANGE, P_RANGE_STRING), LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_GET));
ADD_GROUP("Main", "");
LIMPL_PROPERTY(Variant::BOOL, active, rooms_set_active, rooms_get_active);
ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "roomlist", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Spatial"), "set_roomlist_path", "get_roomlist_path");
ADD_GROUP("PVS", "");
ADD_PROPERTY(PropertyInfo(Variant::INT, "pvs_mode", PROPERTY_HINT_ENUM, "Disabled,Partial,Full"), "set_pvs_mode", "get_pvs_mode");
// ADD_PROPERTY(PropertyInfo(Variant::STRING, "pvs_filename", PROPERTY_HINT_FILE, "*.pvs"), "set_pvs_filename", "get_pvs_filename");
ADD_GROUP("Gameplay", "");
LIMPL_PROPERTY(Variant::BOOL, gameplay_monitor, set_gameplay_monitor_enabled, get_gameplay_monitor_enabled);
LIMPL_PROPERTY(Variant::BOOL, use_secondary_pvs, set_use_secondary_pvs, get_use_secondary_pvs);
ADD_GROUP("Optimize", "");
LIMPL_PROPERTY(Variant::BOOL, merge_meshes, set_merge_meshes, get_merge_meshes);
ADD_GROUP("Debug", "");
LIMPL_PROPERTY(Variant::BOOL, show_margins, set_show_margins, get_show_margins);
LIMPL_PROPERTY(Variant::BOOL, debug_sprawl, set_debug_sprawl, get_debug_sprawl);
LIMPL_PROPERTY_RANGE(Variant::INT, overlap_warning_threshold, set_overlap_warning_threshold, get_overlap_warning_threshold, "1,1000,1");
LIMPL_PROPERTY(Variant::NODE_PATH, preview_camera, set_preview_camera_path, get_preview_camera_path);
ADD_GROUP("Advanced", "");
LIMPL_PROPERTY_RANGE(Variant::INT, portal_depth_limit, set_portal_depth_limit, get_portal_depth_limit, "0,255,1");
LIMPL_PROPERTY_RANGE(Variant::REAL, room_simplify, set_room_simplify, get_room_simplify, "0.0,1.0,0.005");
LIMPL_PROPERTY_RANGE(Variant::REAL, default_portal_margin, set_default_portal_margin, get_default_portal_margin, "0.0, 10.0, 0.01");
LIMPL_PROPERTY_RANGE(Variant::REAL, roaming_expansion_margin, set_roaming_expansion_margin, get_roaming_expansion_margin, "0.0, 3.0, 0.01");
#undef LIMPL_PROPERTY
#undef LIMPL_PROPERTY_RANGE
#undef LPORTAL_STRINGIFY
#undef LPORTAL_TOSTRING
}
void RoomManager::_refresh_from_project_settings() {
_settings_use_simple_pvs = GLOBAL_GET("rendering/portals/pvs/use_simple_pvs");
_settings_log_pvs_generation = GLOBAL_GET("rendering/portals/pvs/pvs_logging");
_settings_use_signals = GLOBAL_GET("rendering/portals/gameplay/use_signals");
_settings_remove_danglers = GLOBAL_GET("rendering/portals/optimize/remove_danglers");
_show_debug = GLOBAL_GET("rendering/portals/debug/logging");
Portal::_portal_plane_convention = GLOBAL_GET("rendering/portals/advanced/flip_imported_portals");
// Disallow logs on final exports.
#ifndef TOOLS_ENABLED
_show_debug = false;
_settings_log_pvs_generation = false;
#endif
}
void RoomManager::set_roomlist_path(const NodePath &p_path) {
_settings_path_roomlist = p_path;
update_configuration_warning();
}
void RoomManager::set_preview_camera_path(const NodePath &p_path) {
_settings_path_preview_camera = p_path;
resolve_preview_camera_path();
bool camera_on = _godot_preview_camera_ID != (ObjectID)-1;
// make sure the cached camera planes are invalid, this will
// force an update to the visual server on the next internal_process
_godot_camera_planes.clear();
// if in the editor, turn processing on or off
// according to whether the camera is overridden
if (Engine::get_singleton()->is_editor_hint()) {
if (is_inside_tree()) {
set_process_internal(camera_on);
}
}
// if we are turning camera override off, must inform visual server
if (!camera_on && is_inside_world() && get_world().is_valid() && get_world()->get_scenario().is_valid()) {
VisualServer::get_singleton()->rooms_override_camera(get_world()->get_scenario(), false, Vector3(), nullptr);
}
// we couldn't resolve the path, let's set it to null
if (!camera_on) {
_settings_path_preview_camera = NodePath();
}
}
void RoomManager::set_room_simplify(real_t p_value) {
_room_simplify_info.set_simplify(p_value);
}
real_t RoomManager::get_room_simplify() const {
return _room_simplify_info._plane_simplify;
}
void RoomManager::set_portal_depth_limit(int p_limit) {
_settings_portal_depth_limit = p_limit;
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_set_params(get_world()->get_scenario(), p_limit, _settings_roaming_expansion_margin);
}
}
void RoomManager::set_roaming_expansion_margin(real_t p_dist) {
_settings_roaming_expansion_margin = p_dist;
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_set_params(get_world()->get_scenario(), _settings_portal_depth_limit, _settings_roaming_expansion_margin);
}
}
void RoomManager::set_default_portal_margin(real_t p_dist) {
_default_portal_margin = p_dist;
// send to portals
Spatial *roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!roomlist) {
return;
}
_update_portal_gizmos(roomlist);
}
void RoomManager::_update_portal_gizmos(Spatial *p_node) {
Portal *portal = Object::cast_to<Portal>(p_node);
if (portal) {
portal->update_gizmo();
}
// recurse
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_update_portal_gizmos(child);
}
}
}
real_t RoomManager::get_default_portal_margin() const {
return _default_portal_margin;
}
void RoomManager::set_show_margins(bool p_show) {
Portal::_settings_gizmo_show_margins = p_show;
Spatial *roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!roomlist) {
return;
}
_update_gizmos_recursive(roomlist);
}
bool RoomManager::get_show_margins() const {
return Portal::_settings_gizmo_show_margins;
}
void RoomManager::set_debug_sprawl(bool p_enable) {
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_set_debug_feature(get_world()->get_scenario(), VisualServer::ROOMS_DEBUG_SPRAWL, p_enable);
_debug_sprawl = p_enable;
}
}
bool RoomManager::get_debug_sprawl() const {
return _debug_sprawl;
}
void RoomManager::set_merge_meshes(bool p_enable) {
_settings_merge_meshes = p_enable;
}
bool RoomManager::get_merge_meshes() const {
return _settings_merge_meshes;
}
void RoomManager::show_warning(const String &p_string, bool p_skippable, bool p_alert) {
if (p_skippable && !Engine::get_singleton()->is_editor_hint() && !_show_debug) {
return;
}
WARN_PRINT(p_string);
// OS::get_singleton()->alert(p_string, p_title);
#ifdef TOOLS_ENABLED
if (p_alert && Engine::get_singleton()->is_editor_hint()) {
EditorNode::get_singleton()->show_warning(TTRGET(p_string));
}
#endif
}
void RoomManager::debug_print_line(String p_string, int p_priority) {
if (_show_debug) {
if (!p_priority) {
print_verbose(p_string);
} else {
print_line(p_string);
}
}
}
void RoomManager::rooms_set_active(bool p_active) {
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_set_active(get_world()->get_scenario(), p_active);
_active = p_active;
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
SpatialEditor *spatial_editor = SpatialEditor::get_singleton();
if (spatial_editor) {
spatial_editor->update_portal_tools();
}
}
#endif
}
}
bool RoomManager::rooms_get_active() const {
return _active;
}
void RoomManager::set_pvs_mode(PVSMode p_mode) {
_pvs_mode = p_mode;
}
RoomManager::PVSMode RoomManager::get_pvs_mode() const {
return _pvs_mode;
}
void RoomManager::set_pvs_filename(String p_filename) {
_pvs_filename = p_filename;
}
String RoomManager::get_pvs_filename() const {
return _pvs_filename;
}
void RoomManager::_rooms_changed(String p_reason) {
_rooms.clear();
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_unload(get_world()->get_scenario(), p_reason);
}
}
void RoomManager::rooms_clear() {
_rooms.clear();
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_and_portals_clear(get_world()->get_scenario());
}
}
void RoomManager::rooms_flip_portals() {
// this is a helper emergency function to deal with situations where the user has ended up with Portal nodes
// pointing in the wrong direction (by doing initial conversion with flip_portal_meshes set incorrectly).
_roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!_roomlist) {
WARN_PRINT("Cannot resolve nodepath");
show_warning(TTR("RoomList path is invalid.\nPlease check the RoomList branch has been assigned in the RoomManager."));
return;
}
_flip_portals_recursive(_roomlist);
_rooms_changed("flipped Portals");
}
void RoomManager::rooms_convert() {
// set all error conditions to false
_warning_misnamed_nodes_detected = false;
_warning_portal_link_room_not_found = false;
_warning_portal_autolink_failed = false;
_warning_room_overlap_detected = false;
_refresh_from_project_settings();
_roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!_roomlist) {
WARN_PRINT("Cannot resolve nodepath");
show_warning(TTR("RoomList path is invalid.\nPlease check the RoomList branch has been assigned in the RoomManager."));
return;
}
ERR_FAIL_COND(!is_inside_world() || !get_world().is_valid());
// every time we run convert we increment this,
// to prevent individual rooms / portals being converted
// more than once in one run
_conversion_tick++;
rooms_clear();
// first check that the roomlist is valid, and the user hasn't made
// a silly scene tree
if (!_check_roomlist_validity(_roomlist)) {
return;
}
LocalVector<Portal *> portals;
LocalVector<RoomGroup *> roomgroups;
// find the rooms and portals
_convert_rooms_recursive(_roomlist, portals, roomgroups);
if (!_rooms.size()) {
rooms_clear();
show_warning(TTR("RoomList contains no Rooms, aborting."));
return;
}
// add portal links
_second_pass_portals(_roomlist, portals);
// create the statics
_second_pass_rooms(roomgroups, portals);
// third pass
// autolink portals that are not already manually linked
// and finalize the portals
_autolink_portals(_roomlist, portals);
// Find the statics AGAIN and only this time add them to the PortalRenderer.
// We need to do this twice because the room points determine the room bound...
// but the bound is needed for autolinking,
// and the autolinking needs to be done BEFORE adding to the PortalRenderer so that
// the static objects will correctly sprawl. It is a chicken and egg situation.
// Also finalize the room hulls.
_third_pass_rooms(portals);
// now we run autoplace to place any statics that have not been explicitly placed in rooms.
// These will by definition not affect the room bounds, but is convenient for users to edit
// levels in a more freeform manner
convert_log("");
_autoplace_recursive(_roomlist);
bool generate_pvs = false;
bool pvs_cull = false;
switch (_pvs_mode) {
default: {
} break;
case PVS_MODE_PARTIAL: {
generate_pvs = true;
} break;
case PVS_MODE_FULL: {
generate_pvs = true;
pvs_cull = true;
} break;
}
VisualServer::get_singleton()->rooms_finalize(get_world()->get_scenario(), generate_pvs, pvs_cull, _settings_use_secondary_pvs, _settings_use_signals, _pvs_filename, _settings_use_simple_pvs, _settings_log_pvs_generation);
// refresh portal depth limit
set_portal_depth_limit(get_portal_depth_limit());
#ifdef TOOLS_ENABLED
_generate_room_overlap_zones();
#endif
// just delete any intermediate data
_cleanup_after_conversion();
// display error dialogs
if (_warning_misnamed_nodes_detected) {
show_warning(TTR("Misnamed nodes detected, check output log for details. Aborting."));
rooms_clear();
}
if (_warning_portal_link_room_not_found) {
show_warning(TTR("Portal link room not found, check output log for details."), true);
}
if (_warning_portal_autolink_failed) {
show_warning(TTR("Portal autolink failed, check output log for details.\nCheck the portal is facing outwards from the source room."), true);
}
if (_warning_room_overlap_detected) {
show_warning(TTR("Room overlap detected, cameras may work incorrectly in overlapping area.\nCheck output log for details."), true);
}
}
void RoomManager::_second_pass_room(Room *p_room, const LocalVector<RoomGroup *> &p_roomgroups, const LocalVector<Portal *> &p_portals) {
if (_settings_merge_meshes) {
_merge_meshes_in_room(p_room);
}
// find statics and manual bound
bool manual_bound_found = false;
// points making up the room geometry, in world space, to create the convex hull
Vector<Vector3> room_pts;
for (int n = 0; n < p_room->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_room->get_child(n));
if (child) {
if (_node_is_type<Portal>(child) || child->is_queued_for_deletion()) {
// the adding of portal points is done after this stage, because
// we need to take into account incoming as well as outgoing portals
} else if (_name_ends_with(child, "-bound")) {
manual_bound_found = _convert_manual_bound(p_room, child, p_portals);
} else {
// don't add the instances to the portal renderer on the first pass of _find_statics,
// just find the geometry points in order to make sure the bound is correct.
_find_statics_recursive(p_room, child, room_pts, false);
}
}
}
// Has the bound been specified using points in the room?
// in that case, overwrite the room_pts
if (p_room->_bound_pts.size() && p_room->is_inside_tree()) {
Transform tr = p_room->get_global_transform();
room_pts.clear();
room_pts.resize(p_room->_bound_pts.size());
for (int n = 0; n < room_pts.size(); n++) {
room_pts.set(n, tr.xform(p_room->_bound_pts[n]));
}
// we override and manual bound with the room points
manual_bound_found = false;
}
if (!manual_bound_found) {
// rough aabb for checking portals for warning conditions
AABB aabb;
aabb.create_from_points(room_pts);
for (int n = 0; n < p_room->_portals.size(); n++) {
int portal_id = p_room->_portals[n];
Portal *portal = p_portals[portal_id];
// only checking portals out from source room
if (portal->_linkedroom_ID[0] != p_room->_room_ID) {
continue;
}
// don't add portals to the world bound that are internal to this room!
if (portal->is_portal_internal(p_room->_room_ID)) {
continue;
}
// check portal for suspect conditions, like a long way from the room AABB,
// or possibly flipped the wrong way
_check_portal_for_warnings(portal, aabb);
}
// create convex hull
_convert_room_hull_preliminary(p_room, room_pts, p_portals);
}
// add the room to roomgroups
for (int n = 0; n < p_room->_roomgroups.size(); n++) {
int roomgroup_id = p_room->_roomgroups[n];
p_roomgroups[roomgroup_id]->add_room(p_room);
}
}
void RoomManager::_second_pass_rooms(const LocalVector<RoomGroup *> &p_roomgroups, const LocalVector<Portal *> &p_portals) {
for (int n = 0; n < _rooms.size(); n++) {
_second_pass_room(_rooms[n], p_roomgroups, p_portals);
}
}
#ifdef TOOLS_ENABLED
void RoomManager::_generate_room_overlap_zones() {
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
// no planes .. no overlap
if (!room->_planes.size()) {
continue;
}
for (int c = n + 1; c < _rooms.size(); c++) {
if (c == n) {
continue;
}
Room *other = _rooms[c];
// do a quick reject AABB
if (!room->_aabb.intersects(other->_aabb) || (!other->_planes.size())) {
continue;
}
// if the room priorities are different (i.e. an internal room), they are allowed to overlap
if (room->_room_priority != other->_room_priority) {
continue;
}
// get all the planes of both rooms in a contiguous list
LocalVector<Plane, int32_t> planes;
planes.resize(room->_planes.size() + other->_planes.size());
Plane *dest = planes.ptr();
memcpy(dest, &room->_planes[0], room->_planes.size() * sizeof(Plane));
dest += room->_planes.size();
memcpy(dest, &other->_planes[0], other->_planes.size() * sizeof(Plane));
Vector<Vector3> overlap_pts = Geometry::compute_convex_mesh_points(planes.ptr(), planes.size());
if (overlap_pts.size() < 4) {
continue;
}
// there is an overlap, create a mesh from the points
Geometry::MeshData md;
Error err = _build_convex_hull(overlap_pts, md);
if (err != OK) {
WARN_PRINT("QuickHull failed building room overlap hull");
continue;
}
// only if the volume is more than some threshold
real_t volume = Geometry::calculate_convex_hull_volume(md);
if (volume > _overlap_warning_threshold) {
WARN_PRINT("Room overlap of " + String(Variant(volume)) + " detected between " + room->get_name() + " and " + other->get_name());
room->_gizmo_overlap_zones.push_back(md);
_warning_room_overlap_detected = true;
}
}
}
}
#endif
void RoomManager::_third_pass_rooms(const LocalVector<Portal *> &p_portals) {
bool found_errors = false;
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
// no need to do all these string operations if we are not debugging and don't need logs
if (_show_debug) {
String room_short_name = _find_name_before(room, "-room", true);
convert_log("ROOM\t" + room_short_name);
// log output the portals associated with this room
for (int p = 0; p < room->_portals.size(); p++) {
const Portal &portal = *p_portals[room->_portals[p]];
bool portal_links_out = portal._linkedroom_ID[0] == room->_room_ID;
int linked_room_id = (portal_links_out) ? portal._linkedroom_ID[1] : portal._linkedroom_ID[0];
// this shouldn't be out of range, but just in case
if ((linked_room_id >= 0) && (linked_room_id < _rooms.size())) {
Room *linked_room = _rooms[linked_room_id];
String portal_link_room_name = _find_name_before(linked_room, "-room", true);
String in_or_out = (portal_links_out) ? "POUT" : "PIN ";
// display the name of the room linked to
convert_log("\t\t" + in_or_out + "\t" + portal_link_room_name);
} else {
WARN_PRINT_ONCE("linked_room_id is out of range");
}
}
} // if _show_debug
// do a second pass finding the statics, where they are
// finally added to the rooms in the portal_renderer.
Vector<Vector3> room_pts;
// the true indicates we DO want to add to the portal renderer this second time
// we call _find_statics_recursive
_find_statics_recursive(room, room, room_pts, true);
if (!_convert_room_hull_final(room, p_portals)) {
found_errors = true;
}
room->update_gizmo();
room->update_configuration_warning();
}
if (found_errors) {
show_warning(TTR("Error calculating room bounds.\nEnsure all rooms contain geometry or manual bounds."));
}
}
void RoomManager::_second_pass_portals(Spatial *p_roomlist, LocalVector<Portal *> &r_portals) {
for (unsigned int n = 0; n < r_portals.size(); n++) {
Portal *portal = r_portals[n];
// we have a choice here.
// If we are importing, we will try linking using the naming convention method.
// We do this by setting the assigned nodepath if we find the link room, then
// the resolving links is done in the usual manner from the nodepath.
if (portal->_importing_portal) {
String string_link_room_shortname = _find_name_before(portal, "-portal");
String string_link_room = string_link_room_shortname + "-room";
if (string_link_room_shortname != "") {
// try the room name plus the postfix first, this will be the most common case during import
Room *linked_room = Object::cast_to<Room>(p_roomlist->find_node(string_link_room, true, false));
// try the short name as a last ditch attempt
if (!linked_room) {
linked_room = Object::cast_to<Room>(p_roomlist->find_node(string_link_room_shortname, true, false));
}
if (linked_room) {
NodePath path = portal->get_path_to(linked_room);
portal->set_linked_room_internal(path);
} else {
WARN_PRINT("Portal link room : " + string_link_room + " not found.");
_warning_portal_link_room_not_found = true;
}
}
}
// get the room we are linking from
int room_from_id = portal->_linkedroom_ID[0];
if (room_from_id != -1) {
Room *room_from = _rooms[room_from_id];
portal->resolve_links(_rooms, room_from->_room_rid);
// add the portal id to the room from and the room to.
// These are used so we can later add the portal geometry to the room bounds.
room_from->_portals.push_back(n);
int room_to_id = portal->_linkedroom_ID[1];
if (room_to_id != -1) {
Room *room_to = _rooms[room_to_id];
room_to->_portals.push_back(n);
// make the portal internal if necessary
portal->_internal = room_from->_room_priority > room_to->_room_priority;
}
}
}
}
void RoomManager::_autolink_portals(Spatial *p_roomlist, LocalVector<Portal *> &r_portals) {
for (unsigned int n = 0; n < r_portals.size(); n++) {
Portal *portal = r_portals[n];
// all portals should have a source room
DEV_ASSERT(portal->_linkedroom_ID[0] != -1);
const Room *source_room = _rooms[portal->_linkedroom_ID[0]];
if (portal->_linkedroom_ID[1] != -1) {
// already manually linked
continue;
}
bool autolink_found = false;
// try to autolink
// try points iteratively out from the portal center and find the first that is in a room that isn't the source room
for (int attempt = 0; attempt < 4; attempt++) {
// found
if (portal->_linkedroom_ID[1] != -1) {
break;
}
// these numbers are arbitrary .. we could alternatively reuse the portal margins for this?
real_t dist = 0.01;
switch (attempt) {
default: {
dist = 0.01;
} break;
case 1: {
dist = 0.1;
} break;
case 2: {
dist = 1.0;
} break;
case 3: {
dist = 2.0;
} break;
}
Vector3 test_pos = portal->_pt_center_world + (dist * portal->_plane.normal);
int best_priority = -1000;
int best_room = -1;
for (int r = 0; r < _rooms.size(); r++) {
Room *room = _rooms[r];
if (room->_room_ID == portal->_linkedroom_ID[0]) {
// can't link back to the source room
continue;
}
// first do a rough aabb check
if (!room->_aabb.has_point(test_pos)) {
continue;
}
bool outside = false;
for (int p = 0; p < room->_preliminary_planes.size(); p++) {
const Plane &plane = room->_preliminary_planes[p];
if (plane.distance_to(test_pos) > 0.0) {
outside = true;
break;
}
} // for through planes
if (!outside) {
// we found a suitable room, but we want the highest priority in
// case there are internal rooms...
if (room->_room_priority > best_priority) {
best_priority = room->_room_priority;
best_room = r;
}
}
} // for through rooms
// found a suitable link room
if (best_room != -1) {
Room *room = _rooms[best_room];
// great, we found a linked room!
convert_log("\t\tAUTOLINK OK from " + source_room->get_name() + " to " + room->get_name(), 1);
portal->_linkedroom_ID[1] = best_room;
// add the portal to the portals list for the receiving room
room->_portals.push_back(n);
// send complete link to visual server so the portal will be active in the visual server room system
VisualServer::get_singleton()->portal_link(portal->_portal_rid, source_room->_room_rid, room->_room_rid, portal->_settings_two_way);
// make the portal internal if necessary
// (this prevents the portal plane clipping the room bound)
portal->_internal = source_room->_room_priority > room->_room_priority;
autolink_found = true;
break;
}
} // for attempt
// error condition
if (!autolink_found) {
if (_show_debug) {
WARN_PRINT("Portal AUTOLINK failed for " + portal->get_name() + " from " + source_room->get_name());
}
_warning_portal_autolink_failed = true;
#ifdef TOOLS_ENABLED
portal->_warning_autolink_failed = true;
portal->update_gizmo();
#endif
}
} // for portal
}
// to prevent users creating mistakes for themselves, we limit what can be put into the room list branch.
// returns invalid node, or NULL
bool RoomManager::_check_roomlist_validity(Node *p_node) {
// restrictions lifted here, but we can add more if required
return true;
}
void RoomManager::_convert_rooms_recursive(Spatial *p_node, LocalVector<Portal *> &r_portals, LocalVector<RoomGroup *> &r_roomgroups, int p_roomgroup) {
// is this a room?
if (_node_is_type<Room>(p_node) || _name_ends_with(p_node, "-room")) {
_convert_room(p_node, r_portals, r_roomgroups, p_roomgroup);
}
// is this a roomgroup?
if (_node_is_type<RoomGroup>(p_node) || _name_ends_with(p_node, "-roomgroup")) {
p_roomgroup = _convert_roomgroup(p_node, r_roomgroups);
}
// recurse through children
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_convert_rooms_recursive(child, r_portals, r_roomgroups, p_roomgroup);
}
}
}
int RoomManager::_convert_roomgroup(Spatial *p_node, LocalVector<RoomGroup *> &r_roomgroups) {
String string_full_name = p_node->get_name();
// is it already a roomgroup?
RoomGroup *roomgroup = Object::cast_to<RoomGroup>(p_node);
// if not already a RoomGroup, convert the node and move all children
if (!roomgroup) {
// create a RoomGroup
roomgroup = _change_node_type<RoomGroup>(p_node, "G");
} else {
// already hit this tick?
if (roomgroup->_conversion_tick == _conversion_tick) {
return roomgroup->_roomgroup_ID;
}
}
convert_log("convert_roomgroup : " + string_full_name, 1);
// make sure the roomgroup is blank, especially if already created
roomgroup->clear();
// make sure the object ID is sent to the visual server
VisualServer::get_singleton()->roomgroup_prepare(roomgroup->_room_group_rid, roomgroup->get_instance_id());
// mark so as only to convert once
roomgroup->_conversion_tick = _conversion_tick;
roomgroup->_roomgroup_ID = r_roomgroups.size();
r_roomgroups.push_back(roomgroup);
return r_roomgroups.size() - 1;
}
void RoomManager::_convert_room(Spatial *p_node, LocalVector<Portal *> &r_portals, const LocalVector<RoomGroup *> &p_roomgroups, int p_roomgroup) {
String string_full_name = p_node->get_name();
// is it already an lroom?
Room *room = Object::cast_to<Room>(p_node);
// if not already a Room, convert the node and move all children
if (!room) {
// create a Room
room = _change_node_type<Room>(p_node, "G");
} else {
// already hit this tick?
if (room->_conversion_tick == _conversion_tick) {
return;
}
}
// make sure the room is blank, especially if already created
room->clear();
// mark so as only to convert once
room->_conversion_tick = _conversion_tick;
// set roomgroup
if (p_roomgroup != -1) {
room->_roomgroups.push_back(p_roomgroup);
room->_room_priority = p_roomgroups[p_roomgroup]->_settings_priority;
VisualServer::get_singleton()->room_prepare(room->_room_rid, room->_room_priority);
}
// add to the list of rooms
room->_room_ID = _rooms.size();
_rooms.push_back(room);
_find_portals_recursive(room, room, r_portals);
}
void RoomManager::_find_portals_recursive(Spatial *p_node, Room *p_room, LocalVector<Portal *> &r_portals) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if (_node_is_type<Portal>(p_node) || (mi && _name_ends_with(mi, "-portal"))) {
_convert_portal(p_room, p_node, r_portals);
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_find_portals_recursive(child, p_room, r_portals);
}
}
}
void RoomManager::_check_portal_for_warnings(Portal *p_portal, const AABB &p_room_aabb_without_portals) {
#ifdef TOOLS_ENABLED
AABB bb = p_room_aabb_without_portals;
bb = bb.grow(bb.get_longest_axis_size() * 0.5);
bool changed = false;
// far outside the room?
const Vector3 &pos = p_portal->get_global_transform().origin;
bool old_outside = p_portal->_warning_outside_room_aabb;
p_portal->_warning_outside_room_aabb = !bb.has_point(pos);
if (p_portal->_warning_outside_room_aabb != old_outside) {
changed = true;
}
if (p_portal->_warning_outside_room_aabb) {
WARN_PRINT(String(p_portal->get_name()) + " possibly in the wrong room.");
}
// facing wrong way?
Vector3 offset = pos - bb.get_center();
real_t dot = offset.dot(p_portal->_plane.normal);
bool old_facing = p_portal->_warning_facing_wrong_way;
p_portal->_warning_facing_wrong_way = dot < 0.0;
if (p_portal->_warning_facing_wrong_way != old_facing) {
changed = true;
}
if (p_portal->_warning_facing_wrong_way) {
WARN_PRINT(String(p_portal->get_name()) + " possibly facing the wrong way.");
}
// handled later
p_portal->_warning_autolink_failed = false;
if (changed) {
p_portal->update_gizmo();
}
#endif
}
bool RoomManager::_autoplace_object(VisualInstance *p_vi) {
// note we could alternatively use the portal_renderer to do this more efficiently
// (as it has a BSP) but at a cost of returning result from the visual server
AABB bb = p_vi->get_transformed_aabb();
Vector3 centre = bb.get_center();
// in order to deal with internal rooms, we can't just stop at the first
// room the point is within, as there could be later rooms with a higher priority
int best_priority = -INT32_MAX;
Room *best_room = nullptr;
// if not set to zero (no preference) this can override a preference
// for a certain RoomGroup priority to ensure the instance gets placed in the correct
// RoomGroup (e.g. outside, for building exteriors)
int preferred_priority = p_vi->get_portal_autoplace_priority();
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
if (room->contains_point(centre)) {
// the standard routine autoplaces in the highest priority room
if (room->_room_priority > best_priority) {
best_priority = room->_room_priority;
best_room = room;
}
// if we override the preferred priority we always choose this
if (preferred_priority && (room->_room_priority == preferred_priority)) {
best_room = room;
break;
}
}
}
if (best_room) {
// just dummies, we won't use these this time
Vector<Vector3> room_pts;
// we can reuse this function
_process_static(best_room, p_vi, room_pts, true, true);
return true;
}
return false;
}
void RoomManager::_autoplace_recursive(Spatial *p_node) {
if (p_node->is_queued_for_deletion()) {
return;
}
// as soon as we hit a room, quit the recursion as the objects
// will already have been added inside rooms
if (Object::cast_to<Room>(p_node)) {
return;
}
VisualInstance *vi = Object::cast_to<VisualInstance>(p_node);
// we are only interested in VIs with static or dynamic mode
if (vi) {
switch (vi->get_portal_mode()) {
default: {
} break;
case CullInstance::PORTAL_MODE_DYNAMIC:
case CullInstance::PORTAL_MODE_STATIC: {
_autoplace_object(vi);
} break;
}
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_autoplace_recursive(child);
}
}
}
void RoomManager::_process_static(Room *p_room, Spatial *p_node, Vector<Vector3> &r_room_pts, bool p_add_to_portal_renderer, bool p_autoplaced) {
bool ignore = false;
VisualInstance *vi = Object::cast_to<VisualInstance>(p_node);
bool is_dynamic = false;
// we are only interested in VIs with static or dynamic mode
if (vi) {
switch (vi->get_portal_mode()) {
default: {
ignore = true;
} break;
case CullInstance::PORTAL_MODE_DYNAMIC: {
is_dynamic = true;
} break;
case CullInstance::PORTAL_MODE_STATIC:
break;
}
}
if (!ignore) {
String prefix = "\t\t\t";
if (p_autoplaced) {
prefix = "AUTOPLACED in " + p_room->get_name() + "\t";
}
// We'll have a done flag. This isn't strictly speaking necessary
// because the types should be mutually exclusive, but this would
// break if something changes the inheritance hierarchy of the nodes
// at a later date, so having a done flag makes it more robust.
bool done = false;
Light *light = Object::cast_to<Light>(p_node);
if (!done && light) {
done = true;
// lights (don't affect bound, so aren't added in first pass)
if (p_add_to_portal_renderer) {
Vector<Vector3> dummy_pts;
VisualServer::get_singleton()->room_add_instance(p_room->_room_rid, light->get_instance(), light->get_transformed_aabb(), dummy_pts);
convert_log(prefix + "LIGHT\t" + light->get_name());
}
}
GeometryInstance *gi = Object::cast_to<GeometryInstance>(p_node);
if (!done && gi) {
done = true;
// MeshInstance is the most interesting type for portalling, so we handle this explicitly
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if (mi) {
bool added = false;
Vector<Vector3> object_pts;
AABB aabb;
// get the object points and don't immediately add to the room
// points, as we want to use these points for sprawling algorithm in
// the visual server.
if (_bound_findpoints_mesh_instance(mi, object_pts, aabb)) {
// need to keep track of room bound
// NOTE the is_visible check MAY cause problems if conversion run on nodes that
// aren't properly in the tree. It can optionally be removed. Certainly calling is_visible_in_tree
// DID cause problems.
if (!is_dynamic && mi->get_include_in_bound() && mi->is_visible()) {
r_room_pts.append_array(object_pts);
}
if (p_add_to_portal_renderer) {
// We are sending the VisualInstance AABB rather than the manually calced AABB, maybe we don't need to calc the AABB.
// If this works okay we can maybe later remove the manual AABB calculation in _bound_findpoints_mesh_instance().
VisualServer::get_singleton()->room_add_instance(p_room->_room_rid, mi->get_instance(), mi->get_transformed_aabb().grow(mi->get_extra_cull_margin()), object_pts);
added = true;
}
} // if bound found points
if (p_add_to_portal_renderer) {
String msg = prefix + "MESH\t" + mi->get_name();
if (!added) {
msg += "\t(unrecognized)";
}
convert_log(msg);
}
} else {
// geometry instance but not a mesh instance ..
Vector<Vector3> object_pts;
AABB aabb;
bool added = false;
// attempt to recognise this GeometryInstance and read back the geometry
// Note: never attempt to add dynamics to the room aabb
if (is_dynamic || _bound_findpoints_geom_instance(gi, object_pts, aabb)) {
// need to keep track of room bound
// NOTE the is_visible check MAY cause problems if conversion run on nodes that
// aren't properly in the tree. It can optionally be removed. Certainly calling is_visible_in_tree
// DID cause problems.
if (!is_dynamic && gi->get_include_in_bound() && gi->is_visible()) {
r_room_pts.append_array(object_pts);
}
if (p_add_to_portal_renderer) {
// if dynamic, we won't have properly calculated the aabb yet
if (is_dynamic) {
aabb = gi->get_transformed_aabb();
}
aabb.grow_by(gi->get_extra_cull_margin());
VisualServer::get_singleton()->room_add_instance(p_room->_room_rid, gi->get_instance(), aabb, object_pts);
added = true;
}
} // if bound found points
if (p_add_to_portal_renderer) {
String msg = prefix + "GEOM\t" + gi->get_name();
if (!added) {
msg += "\t(unrecognized)";
}
convert_log(msg);
}
}
} // if gi
VisibilityNotifier *vn = Object::cast_to<VisibilityNotifier>(p_node);
if (!done && vn && ((vn->get_portal_mode() == CullInstance::PORTAL_MODE_DYNAMIC) || (vn->get_portal_mode() == CullInstance::PORTAL_MODE_STATIC))) {
done = true;
if (p_add_to_portal_renderer) {
AABB world_aabb = vn->get_global_transform().xform(vn->get_aabb());
VisualServer::get_singleton()->room_add_ghost(p_room->_room_rid, vn->get_instance_id(), world_aabb);
convert_log("\t\t\tVIS \t" + vn->get_name());
}
}
} // if not ignore
}
void RoomManager::_find_statics_recursive(Room *p_room, Spatial *p_node, Vector<Vector3> &r_room_pts, bool p_add_to_portal_renderer) {
// don't process portal MeshInstances that are being deleted
// (and replaced by proper Portal nodes)
if (p_node->is_queued_for_deletion()) {
return;
}
_process_static(p_room, p_node, r_room_pts, p_add_to_portal_renderer, false);
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_find_statics_recursive(p_room, child, r_room_pts, p_add_to_portal_renderer);
}
}
}
bool RoomManager::_convert_manual_bound(Room *p_room, Spatial *p_node, const LocalVector<Portal *> &p_portals) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if (!mi) {
return false;
}
Vector<Vector3> points;
AABB aabb;
if (!_bound_findpoints_mesh_instance(mi, points, aabb)) {
return false;
}
mi->set_portal_mode(CullInstance::PORTAL_MODE_IGNORE);
// hide bounds after conversion
// set to portal mode ignore?
mi->hide();
return _convert_room_hull_preliminary(p_room, points, p_portals);
}
bool RoomManager::_convert_room_hull_preliminary(Room *p_room, const Vector<Vector3> &p_room_pts, const LocalVector<Portal *> &p_portals) {
if (p_room_pts.size() <= 3) {
return false;
}
Geometry::MeshData md;
Error err = OK;
// if there are too many room points, quickhull will fail or freeze etc, so we will revert
// to a bounding rect and send an error message
if (p_room_pts.size() > 100000) {
WARN_PRINT(String(p_room->get_name()) + " contains too many vertices to find convex hull, use a manual bound instead.");
AABB aabb;
aabb.create_from_points(p_room_pts);
LocalVector<Vector3> pts;
Vector3 mins = aabb.position;
Vector3 maxs = mins + aabb.size;
pts.push_back(Vector3(mins.x, mins.y, mins.z));
pts.push_back(Vector3(mins.x, maxs.y, mins.z));
pts.push_back(Vector3(maxs.x, maxs.y, mins.z));
pts.push_back(Vector3(maxs.x, mins.y, mins.z));
pts.push_back(Vector3(mins.x, mins.y, maxs.z));
pts.push_back(Vector3(mins.x, maxs.y, maxs.z));
pts.push_back(Vector3(maxs.x, maxs.y, maxs.z));
pts.push_back(Vector3(maxs.x, mins.y, maxs.z));
err = _build_convex_hull(pts, md);
} else {
err = _build_room_convex_hull(p_room, p_room_pts, md);
}
if (err != OK) {
return false;
}
// add any existing portals planes first, as these will trump any other existing planes further out
for (int n = 0; n < p_room->_portals.size(); n++) {
int portal_id = p_room->_portals[n];
Portal *portal = p_portals[portal_id];
// don't add portals to the hull that are internal to this room!
if (portal->is_portal_internal(p_room->_room_ID)) {
continue;
}
Plane plane = portal->_plane;
// does it need to be reversed? (i.e. is the portal incoming rather than outgoing)
if (portal->_linkedroom_ID[1] == p_room->_room_ID) {
plane = -plane;
}
_add_plane_if_unique(p_room, p_room->_preliminary_planes, plane);
}
// add the planes from the geometry or manual bound
for (int n = 0; n < md.faces.size(); n++) {
const Plane &p = md.faces[n].plane;
_add_plane_if_unique(p_room, p_room->_preliminary_planes, p);
}
// temporary copy of mesh data for the boundary points
// to form a new hull in _convert_room_hull_final
p_room->_bound_mesh_data = md;
// aabb (should later include portals too, these are added in _convert_room_hull_final)
p_room->_aabb.create_from_points(md.vertices);
return true;
}
bool RoomManager::_convert_room_hull_final(Room *p_room, const LocalVector<Portal *> &p_portals) {
Vector<Vector3> vertices_including_portals = p_room->_bound_mesh_data.vertices;
// add the portals planes first, as these will trump any other existing planes further out
int num_portals_added = 0;
for (int n = 0; n < p_room->_portals.size(); n++) {
int portal_id = p_room->_portals[n];
Portal *portal = p_portals[portal_id];
// User can select whether to include in bound.
if (!portal->get_include_in_bound()) {
continue;
}
// don't add portals to the world bound that are internal to this room!
if (portal->is_portal_internal(p_room->_room_ID)) {
continue;
}
Plane plane = portal->_plane;
// does it need to be reversed? (i.e. is the portal incoming rather than outgoing)
if (portal->_linkedroom_ID[1] == p_room->_room_ID) {
plane = -plane;
}
if (_add_plane_if_unique(p_room, p_room->_planes, plane)) {
num_portals_added++;
}
// add any new portals to the aabb of the room
for (int p = 0; p < portal->_pts_world.size(); p++) {
const Vector3 &pt = portal->_pts_world[p];
vertices_including_portals.push_back(pt);
p_room->_aabb.expand_to(pt);
}
}
// create new convex hull
Geometry::MeshData md;
Error err = _build_room_convex_hull(p_room, vertices_including_portals, md);
if (err != OK) {
return false;
}
// add the planes from the new hull
for (int n = 0; n < md.faces.size(); n++) {
const Plane &p = md.faces[n].plane;
_add_plane_if_unique(p_room, p_room->_planes, p);
}
// recreate the points within the new simplified bound, and then recreate the convex hull
// by running quickhull a second time... (this enables the gizmo to accurately show the simplified hull)
int num_planes_before_simplification = p_room->_planes.size();
Geometry::MeshData md_simplified;
_build_simplified_bound(p_room, md_simplified, p_room->_planes, num_portals_added);
if (num_planes_before_simplification != p_room->_planes.size()) {
convert_log("\t\t\tcontained " + itos(num_planes_before_simplification) + " planes before simplification, " + itos(p_room->_planes.size()) + " planes after.");
}
// make a copy of the mesh data for debugging
// note this could be avoided in release builds? NYI
p_room->_bound_mesh_data = md_simplified;
// send bound to visual server
VisualServer::get_singleton()->room_set_bound(p_room->_room_rid, p_room->get_instance_id(), p_room->_planes, p_room->_aabb, md_simplified.vertices);
return true;
}
#ifdef TOOLS_ENABLED
bool RoomManager::_room_regenerate_bound(Room *p_room) {
// for a preview, we allow the editor to change the bound
ERR_FAIL_COND_V(!p_room, false);
if (!p_room->_bound_pts.size()) {
return false;
}
// can't do yet if not in the tree
if (!p_room->is_inside_tree()) {
return false;
}
Transform tr = p_room->get_global_transform();
Vector<Vector3> pts;
pts.resize(p_room->_bound_pts.size());
for (int n = 0; n < pts.size(); n++) {
pts.set(n, tr.xform(p_room->_bound_pts[n]));
}
Geometry::MeshData md;
Error err = _build_room_convex_hull(p_room, pts, md);
if (err != OK) {
return false;
}
p_room->_bound_mesh_data = md;
p_room->update_gizmo();
return true;
}
#endif
void RoomManager::_build_simplified_bound(const Room *p_room, Geometry::MeshData &r_md, LocalVector<Plane, int32_t> &r_planes, int p_num_portal_planes) {
if (!r_planes.size()) {
return;
}
Vector<Vector3> pts = Geometry::compute_convex_mesh_points(&r_planes[0], r_planes.size(), 0.001);
Error err = _build_room_convex_hull(p_room, pts, r_md);
if (err != OK) {
WARN_PRINT("QuickHull failed building simplified bound");
return;
}
// if the number of faces is less than the number of planes, we can use this simplified version to reduce the number of planes
if (r_md.faces.size() < r_planes.size()) {
// always include the portal planes
r_planes.resize(p_num_portal_planes);
for (int n = 0; n < r_md.faces.size(); n++) {
_add_plane_if_unique(p_room, r_planes, r_md.faces[n].plane);
}
}
}
Error RoomManager::_build_room_convex_hull(const Room *p_room, const Vector<Vector3> &p_points, Geometry::MeshData &r_mesh) {
// calculate an epsilon based on the simplify value, and use this to build the hull
real_t s = 0.0;
DEV_ASSERT(p_room);
if (p_room->_use_default_simplify) {
s = _room_simplify_info._plane_simplify;
} else {
s = p_room->_simplify_info._plane_simplify;
}
// value between 0.3 (accurate) and 10.0 (very rough)
// * UNIT_EPSILON
s *= s;
s *= 40.0;
s += 0.3; // minimum
s *= UNIT_EPSILON;
return _build_convex_hull(p_points, r_mesh, s);
}
bool RoomManager::_add_plane_if_unique(const Room *p_room, LocalVector<Plane, int32_t> &r_planes, const Plane &p) {
DEV_ASSERT(p_room);
if (p_room->_use_default_simplify) {
return _room_simplify_info.add_plane_if_unique(r_planes, p);
}
return p_room->_simplify_info.add_plane_if_unique(r_planes, p);
}
void RoomManager::_convert_portal(Room *p_room, Spatial *p_node, LocalVector<Portal *> &portals) {
Portal *portal = Object::cast_to<Portal>(p_node);
bool importing = false;
// if not a gportal already, convert the node type
if (!portal) {
importing = true;
portal = _change_node_type<Portal>(p_node, "G", false);
portal->create_from_mesh_instance(Object::cast_to<MeshInstance>(p_node));
p_node->queue_delete();
} else {
// only allow converting once
if (portal->_conversion_tick == _conversion_tick) {
return;
}
}
// make sure to start with fresh internal data each time (for linked rooms etc)
portal->clear();
// mark the portal if we are importing, because we will need to use the naming
// prefix system to look for linked rooms in that case
portal->_importing_portal = importing;
// mark so as only to convert once
portal->_conversion_tick = _conversion_tick;
// link rooms
portal->portal_update();
// keep a list of portals for second pass
portals.push_back(portal);
// the portal is linking from this first room it is added to
portal->_linkedroom_ID[0] = p_room->_room_ID;
}
bool RoomManager::_bound_findpoints_geom_instance(GeometryInstance *p_gi, Vector<Vector3> &r_room_pts, AABB &r_aabb) {
// max opposite extents .. note AABB storing size is rubbish in this aspect
// it can fail once mesh min is larger than FLT_MAX / 2.
r_aabb.position = Vector3(FLT_MAX / 2, FLT_MAX / 2, FLT_MAX / 2);
r_aabb.size = Vector3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
#ifdef MODULE_CSG_ENABLED
CSGShape *shape = Object::cast_to<CSGShape>(p_gi);
if (shape) {
// Shapes will not be up to date on the first frame due to a quirk
// of CSG - it defers updates to the next frame. So we need to explicitly
// force an update to make sure the CSG is correct on level load.
shape->force_update_shape();
Array arr = shape->get_meshes();
if (!arr.size()) {
return false;
}
Ref<ArrayMesh> arr_mesh = arr[1];
if (!arr_mesh.is_valid()) {
return false;
}
if (arr_mesh->get_surface_count() == 0) {
return false;
}
// for converting meshes to world space
Transform trans = p_gi->get_global_transform();
for (int surf = 0; surf < arr_mesh->get_surface_count(); surf++) {
Array arrays = arr_mesh->surface_get_arrays(surf);
if (!arrays.size()) {
continue;
}
PoolVector<Vector3> vertices = arrays[VS::ARRAY_VERTEX];
// convert to world space
for (int n = 0; n < vertices.size(); n++) {
Vector3 pt_world = trans.xform(vertices[n]);
r_room_pts.push_back(pt_world);
// keep the bound up to date
r_aabb.expand_to(pt_world);
}
} // for through the surfaces
return true;
} // if csg shape
#endif
// multimesh
MultiMeshInstance *mmi = Object::cast_to<MultiMeshInstance>(p_gi);
if (mmi) {
Ref<MultiMesh> rmm = mmi->get_multimesh();
if (!rmm.is_valid()) {
return false;
}
// first get the mesh verts in local space
LocalVector<Vector3, int32_t> local_verts;
Ref<Mesh> rmesh = rmm->get_mesh();
if (rmesh->get_surface_count() == 0) {
String string;
string = "MultiMeshInstance '" + mmi->get_name() + "' has no surfaces, ignoring";
WARN_PRINT(string);
return false;
}
for (int surf = 0; surf < rmesh->get_surface_count(); surf++) {
Array arrays = rmesh->surface_get_arrays(surf);
if (!arrays.size()) {
WARN_PRINT_ONCE("MultiMesh mesh surface with no mesh, ignoring");
continue;
}
const PoolVector<Vector3> &vertices = arrays[VS::ARRAY_VERTEX];
int count = local_verts.size();
local_verts.resize(local_verts.size() + vertices.size());
for (int n = 0; n < vertices.size(); n++) {
local_verts[count++] = vertices[n];
}
}
if (!local_verts.size()) {
return false;
}
// now we have the local space verts, add a bunch for each instance, and find the AABB
for (int i = 0; i < rmm->get_instance_count(); i++) {
Transform trans = rmm->get_instance_transform(i);
trans = mmi->get_global_transform() * trans;
for (int n = 0; n < local_verts.size(); n++) {
Vector3 pt_world = trans.xform(local_verts[n]);
r_room_pts.push_back(pt_world);
// keep the bound up to date
r_aabb.expand_to(pt_world);
}
}
return true;
}
// Sprite3D
SpriteBase3D *sprite = Object::cast_to<SpriteBase3D>(p_gi);
if (sprite) {
Ref<TriangleMesh> tmesh = sprite->generate_triangle_mesh();
PoolVector<Vector3> vertices = tmesh->get_vertices();
// for converting meshes to world space
Transform trans = p_gi->get_global_transform();
// convert to world space
for (int n = 0; n < vertices.size(); n++) {
Vector3 pt_world = trans.xform(vertices[n]);
r_room_pts.push_back(pt_world);
// keep the bound up to date
r_aabb.expand_to(pt_world);
}
return true;
}
// Particles have a "visibility aabb" we can use for this
Particles *particles = Object::cast_to<Particles>(p_gi);
if (particles) {
r_aabb = particles->get_global_transform().xform(particles->get_visibility_aabb());
return true;
}
// Fallback path for geometry that is not recognised
// (including CPUParticles, which will need to rely on an expansion margin)
r_aabb = p_gi->get_transformed_aabb();
return true;
}
bool RoomManager::_bound_findpoints_mesh_instance(MeshInstance *p_mi, Vector<Vector3> &r_room_pts, AABB &r_aabb) {
// max opposite extents .. note AABB storing size is rubbish in this aspect
// it can fail once mesh min is larger than FLT_MAX / 2.
r_aabb.position = Vector3(FLT_MAX / 2, FLT_MAX / 2, FLT_MAX / 2);
r_aabb.size = Vector3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
// some godot jiggery pokery to get the mesh verts in local space
Ref<Mesh> rmesh = p_mi->get_mesh();
ERR_FAIL_COND_V(!rmesh.is_valid(), false);
if (rmesh->get_surface_count() == 0) {
String string;
string = "MeshInstance '" + p_mi->get_name() + "' has no surfaces, ignoring";
WARN_PRINT(string);
return false;
}
bool success = false;
// for converting meshes to world space
Transform trans = p_mi->get_global_transform();
for (int surf = 0; surf < rmesh->get_surface_count(); surf++) {
Array arrays = rmesh->surface_get_arrays(surf);
// possible to have a meshinstance with no geometry .. don't want to crash
if (!arrays.size()) {
WARN_PRINT_ONCE("MeshInstance surface with no mesh, ignoring");
continue;
}
success = true;
PoolVector<Vector3> vertices = arrays[VS::ARRAY_VERTEX];
// convert to world space
for (int n = 0; n < vertices.size(); n++) {
Vector3 ptWorld = trans.xform(vertices[n]);
r_room_pts.push_back(ptWorld);
// keep the bound up to date
r_aabb.expand_to(ptWorld);
}
} // for through the surfaces
return success;
}
void RoomManager::_cleanup_after_conversion() {
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
room->_portals.reset();
room->_preliminary_planes.reset();
// outside the editor, there's no need to keep the data for the convex hull
// drawing, as it is only used for gizmos.
if (!Engine::get_singleton()->is_editor_hint()) {
room->_bound_mesh_data = Geometry::MeshData();
}
}
}
bool RoomManager::resolve_preview_camera_path() {
Camera *camera = _resolve_path<Camera>(_settings_path_preview_camera);
if (camera) {
_godot_preview_camera_ID = camera->get_instance_id();
return true;
}
_godot_preview_camera_ID = -1;
return false;
}
template <class NODE_TYPE>
NODE_TYPE *RoomManager::_resolve_path(NodePath p_path) const {
if (has_node(p_path)) {
NODE_TYPE *node = Object::cast_to<NODE_TYPE>(get_node(p_path));
if (node) {
return node;
} else {
WARN_PRINT("node is incorrect type");
}
}
return nullptr;
}
template <class NODE_TYPE>
bool RoomManager::_node_is_type(Node *p_node) const {
NODE_TYPE *node = Object::cast_to<NODE_TYPE>(p_node);
return node != nullptr;
}
template <class T>
T *RoomManager::_change_node_type(Spatial *p_node, String p_prefix, bool p_delete) {
String string_full_name = p_node->get_name();
Node *parent = p_node->get_parent();
if (!parent) {
return nullptr;
}
// owner should normally be root
Node *owner = p_node->get_owner();
// change the name of the node to be deleted
p_node->set_name(p_prefix + string_full_name);
// create the new class T object
T *pNew = memnew(T);
pNew->set_name(string_full_name);
// add the child at the same position as the old node
// (this is more convenient for users)
parent->add_child_below_node(p_node, pNew);
// new lroom should have same transform
pNew->set_transform(p_node->get_transform());
// move each child
while (p_node->get_child_count()) {
Node *child = p_node->get_child(0);
p_node->remove_child(child);
// needs to set owner to appear in IDE
pNew->add_child(child);
}
// needs to set owner to appear in IDE
_set_owner_recursive(pNew, owner);
// delete old node
if (p_delete) {
p_node->queue_delete();
}
return pNew;
}
void RoomManager::_update_gizmos_recursive(Node *p_node) {
Portal *portal = Object::cast_to<Portal>(p_node);
if (portal) {
portal->update_gizmo();
}
for (int n = 0; n < p_node->get_child_count(); n++) {
_update_gizmos_recursive(p_node->get_child(n));
}
}
Error RoomManager::_build_convex_hull(const Vector<Vector3> &p_points, Geometry::MeshData &r_mesh, real_t p_epsilon) {
#ifdef GODOT_PORTALS_USE_BULLET_CONVEX_HULL
return ConvexHullComputer::convex_hull(p_points, r_mesh);
#if 0
// test comparison of methods
QuickHull::build(p_points, r_mesh, p_epsilon);
int qh_faces = r_mesh.faces.size();
int qh_verts = r_mesh.vertices.size();
r_mesh.vertices.clear();
r_mesh.faces.clear();
r_mesh.edges.clear();
Error err = ConvexHullComputer::convex_hull(p_points, r_mesh);
int bh_faces = r_mesh.faces.size();
int bh_verts = r_mesh.vertices.size();
if (qh_faces != bh_faces) {
print_line("qh_faces : " + itos(qh_faces) + ", bh_faces : " + itos(bh_faces));
}
if (qh_verts != bh_verts) {
print_line("qh_verts : " + itos(qh_verts) + ", bh_verts : " + itos(bh_verts));
}
return err;
#endif
#else
QuickHull::_flag_warnings = false;
Error err = QuickHull::build(p_points, r_mesh, p_epsilon);
QuickHull::_flag_warnings = true;
return err;
#endif
}
void RoomManager::_flip_portals_recursive(Spatial *p_node) {
Portal *portal = Object::cast_to<Portal>(p_node);
if (portal) {
portal->flip();
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_flip_portals_recursive(child);
}
}
}
void RoomManager::_set_owner_recursive(Node *p_node, Node *p_owner) {
if (!p_node->get_owner() && (p_node != p_owner)) {
p_node->set_owner(p_owner);
}
for (int n = 0; n < p_node->get_child_count(); n++) {
_set_owner_recursive(p_node->get_child(n), p_owner);
}
}
bool RoomManager::_name_ends_with(const Node *p_node, String p_postfix) const {
ERR_FAIL_NULL_V(p_node, false);
String name = p_node->get_name();
int pf_l = p_postfix.length();
int l = name.length();
if (pf_l > l) {
return false;
}
// allow capitalization errors
if (name.substr(l - pf_l, pf_l).to_lower() == p_postfix) {
return true;
}
return false;
}
String RoomManager::_find_name_before(Node *p_node, String p_postfix, bool p_allow_no_postfix) {
ERR_FAIL_NULL_V(p_node, String());
String name = p_node->get_name();
int pf_l = p_postfix.length();
int l = name.length();
if (pf_l > l) {
if (!p_allow_no_postfix) {
return String();
}
} else {
if (name.substr(l - pf_l, pf_l) == p_postfix) {
name = name.substr(0, l - pf_l);
} else {
if (!p_allow_no_postfix) {
return String();
}
}
}
// because godot doesn't support multiple nodes with the same name, we will strip e.g. a number
// after an * on the end of the name...
// e.g. kitchen*2-portal
for (int c = 0; c < name.length(); c++) {
if (name[c] == GODOT_PORTAL_WILDCARD) {
// remove everything after and including this character
name = name.substr(0, c);
break;
}
}
return name;
}
void RoomManager::_merge_meshes_in_room(Room *p_room) {
// only do in running game so as not to lose data
if (Engine::get_singleton()->is_editor_hint()) {
return;
}
_merge_log("merging room " + p_room->get_name());
// list of meshes suitable
LocalVector<MeshInstance *, int32_t> source_meshes;
_list_mergeable_mesh_instances(p_room, source_meshes);
// none suitable
if (!source_meshes.size()) {
return;
}
_merge_log("\t" + itos(source_meshes.size()) + " source meshes");
BitFieldDynamic bf;
bf.create(source_meshes.size(), true);
for (int n = 0; n < source_meshes.size(); n++) {
LocalVector<MeshInstance *, int32_t> merge_list;
// find similar meshes
MeshInstance *a = source_meshes[n];
merge_list.push_back(a);
// may not be necessary
bf.set_bit(n, true);
for (int c = n + 1; c < source_meshes.size(); c++) {
// if not merged already
if (!bf.get_bit(c)) {
MeshInstance *b = source_meshes[c];
if (a->is_mergeable_with(b)) {
merge_list.push_back(b);
bf.set_bit(c, true);
}
} // if not merged already
} // for c through secondary mesh
// only merge if more than 1
if (merge_list.size() > 1) {
// we can merge!
// create a new holder mesh
MeshInstance *merged = memnew(MeshInstance);
merged->set_name("MergedMesh");
_merge_log("\t\t" + merged->get_name());
// merge function takes a vector of variants
Vector<Variant> variant_merge_list;
variant_merge_list.resize(merge_list.size());
for (int i = 0; i < merge_list.size(); i++) {
variant_merge_list.set(i, merge_list[i]);
}
if (merged->merge_meshes(variant_merge_list, true, false)) {
// set all the source meshes to portal mode ignore so not shown
for (int i = 0; i < merge_list.size(); i++) {
merge_list[i]->set_portal_mode(CullInstance::PORTAL_MODE_IGNORE);
}
// and set the new merged mesh to static
merged->set_portal_mode(CullInstance::PORTAL_MODE_STATIC);
// attach to scene tree
p_room->add_child(merged);
merged->set_owner(p_room->get_owner());
// compensate for room transform, as the verts are now in world space
Transform tr = p_room->get_global_transform();
tr.affine_invert();
merged->set_transform(tr);
// delete originals?
// note this isn't perfect, it may still end up with dangling spatials, but they can be
// deleted later.
for (int i = 0; i < merge_list.size(); i++) {
MeshInstance *mi = merge_list[i];
if (!mi->get_child_count()) {
mi->queue_delete();
} else {
Node *parent = mi->get_parent();
if (parent) {
// if there are children, we don't want to delete it, but we do want to
// remove the mesh drawing, e.g. by replacing it with a spatial
String name = mi->get_name();
mi->set_name("DeleteMe"); // can be anything, just to avoid name conflict with replacement node
Spatial *replacement = memnew(Spatial);
replacement->set_name(name);
parent->add_child(replacement);
// make the transform and owner match
replacement->set_owner(mi->get_owner());
replacement->set_transform(mi->get_transform());
// move all children from the mesh instance to the replacement
while (mi->get_child_count()) {
Node *child = mi->get_child(0);
mi->remove_child(child);
replacement->add_child(child);
}
} // if the mesh instance has a parent (should hopefully be always the case?)
}
}
} else {
// no success
memdelete(merged);
}
}
} // for n through primary mesh
if (_settings_remove_danglers) {
_remove_redundant_dangling_nodes(p_room);
}
}
bool RoomManager::_remove_redundant_dangling_nodes(Spatial *p_node) {
int non_queue_delete_children = 0;
// do the children first
for (int n = 0; n < p_node->get_child_count(); n++) {
Node *node_child = p_node->get_child(n);
Spatial *child = Object::cast_to<Spatial>(node_child);
if (child) {
_remove_redundant_dangling_nodes(child);
}
if (node_child && !node_child->is_queued_for_deletion()) {
non_queue_delete_children++;
}
}
if (!non_queue_delete_children) {
// only remove true spatials, not derived classes
if (p_node->get_class_name() == "Spatial") {
p_node->queue_delete();
return true;
}
}
return false;
}
void RoomManager::_list_mergeable_mesh_instances(Spatial *p_node, LocalVector<MeshInstance *, int32_t> &r_list) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if (mi) {
// only interested in static portal mode meshes
VisualInstance *vi = Object::cast_to<VisualInstance>(mi);
// we are only interested in VIs with static or dynamic mode
if (vi && vi->get_portal_mode() == CullInstance::PORTAL_MODE_STATIC) {
// disallow for portals or bounds
// mesh instance portals should be queued for deletion by this point, we don't want to merge portals!
if (!_node_is_type<Portal>(mi) && !_name_ends_with(mi, "-bound") && !mi->is_queued_for_deletion()) {
// only merge if visible
if (mi->is_inside_tree() && mi->is_visible()) {
r_list.push_back(mi);
}
}
}
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_list_mergeable_mesh_instances(child, r_list);
}
}
}