633 lines
23 KiB
C
633 lines
23 KiB
C
// Copyright 2012 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Image transforms and color space conversion methods for lossless decoder.
|
|
//
|
|
// Authors: Vikas Arora (vikaas.arora@gmail.com)
|
|
// Jyrki Alakuijala (jyrki@google.com)
|
|
// Urvang Joshi (urvang@google.com)
|
|
|
|
#include "./dsp.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "../dec/vp8li.h"
|
|
#include "../utils/endian_inl.h"
|
|
#include "./lossless.h"
|
|
|
|
#define MAX_DIFF_COST (1e30f)
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Image transforms.
|
|
|
|
// In-place sum of each component with mod 256.
|
|
static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
|
|
*a = VP8LAddPixels(*a, b);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
|
|
return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
|
|
return Average2(Average2(a0, a2), a1);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
|
|
uint32_t a2, uint32_t a3) {
|
|
return Average2(Average2(a0, a1), Average2(a2, a3));
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t Clip255(uint32_t a) {
|
|
if (a < 256) {
|
|
return a;
|
|
}
|
|
// return 0, when a is a negative integer.
|
|
// return 255, when a is positive.
|
|
return ~a >> 24;
|
|
}
|
|
|
|
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
|
|
return Clip255(a + b - c);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
|
|
uint32_t c2) {
|
|
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
|
|
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
|
|
(c1 >> 16) & 0xff,
|
|
(c2 >> 16) & 0xff);
|
|
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
|
|
(c1 >> 8) & 0xff,
|
|
(c2 >> 8) & 0xff);
|
|
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
|
|
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
|
|
}
|
|
|
|
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
|
|
return Clip255(a + (a - b) / 2);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
|
|
uint32_t c2) {
|
|
const uint32_t ave = Average2(c0, c1);
|
|
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
|
|
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
|
|
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
|
|
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
|
|
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
|
|
}
|
|
|
|
// gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined.
|
|
#if defined(__arm__) && LOCAL_GCC_VERSION == 0x409
|
|
# define LOCAL_INLINE __attribute__ ((noinline))
|
|
#else
|
|
# define LOCAL_INLINE WEBP_INLINE
|
|
#endif
|
|
|
|
static LOCAL_INLINE int Sub3(int a, int b, int c) {
|
|
const int pb = b - c;
|
|
const int pa = a - c;
|
|
return abs(pb) - abs(pa);
|
|
}
|
|
|
|
#undef LOCAL_INLINE
|
|
|
|
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
|
|
const int pa_minus_pb =
|
|
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
|
|
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
|
|
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
|
|
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
|
|
return (pa_minus_pb <= 0) ? a : b;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Predictors
|
|
|
|
static uint32_t Predictor0(uint32_t left, const uint32_t* const top) {
|
|
(void)top;
|
|
(void)left;
|
|
return ARGB_BLACK;
|
|
}
|
|
static uint32_t Predictor1(uint32_t left, const uint32_t* const top) {
|
|
(void)top;
|
|
return left;
|
|
}
|
|
static uint32_t Predictor2(uint32_t left, const uint32_t* const top) {
|
|
(void)left;
|
|
return top[0];
|
|
}
|
|
static uint32_t Predictor3(uint32_t left, const uint32_t* const top) {
|
|
(void)left;
|
|
return top[1];
|
|
}
|
|
static uint32_t Predictor4(uint32_t left, const uint32_t* const top) {
|
|
(void)left;
|
|
return top[-1];
|
|
}
|
|
static uint32_t Predictor5(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average3(left, top[0], top[1]);
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor6(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(left, top[-1]);
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor7(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(left, top[0]);
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor8(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(top[-1], top[0]);
|
|
(void)left;
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor9(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(top[0], top[1]);
|
|
(void)left;
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor10(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor11(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Select(top[0], left, top[-1]);
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor12(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
|
|
return pred;
|
|
}
|
|
static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
|
|
return pred;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Inverse prediction.
|
|
static void PredictorInverseTransform(const VP8LTransform* const transform,
|
|
int y_start, int y_end, uint32_t* data) {
|
|
const int width = transform->xsize_;
|
|
if (y_start == 0) { // First Row follows the L (mode=1) mode.
|
|
int x;
|
|
const uint32_t pred0 = Predictor0(data[-1], NULL);
|
|
AddPixelsEq(data, pred0);
|
|
for (x = 1; x < width; ++x) {
|
|
const uint32_t pred1 = Predictor1(data[x - 1], NULL);
|
|
AddPixelsEq(data + x, pred1);
|
|
}
|
|
data += width;
|
|
++y_start;
|
|
}
|
|
|
|
{
|
|
int y = y_start;
|
|
const int tile_width = 1 << transform->bits_;
|
|
const int mask = tile_width - 1;
|
|
const int safe_width = width & ~mask;
|
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
|
|
const uint32_t* pred_mode_base =
|
|
transform->data_ + (y >> transform->bits_) * tiles_per_row;
|
|
|
|
while (y < y_end) {
|
|
const uint32_t pred2 = Predictor2(data[-1], data - width);
|
|
const uint32_t* pred_mode_src = pred_mode_base;
|
|
VP8LPredictorFunc pred_func;
|
|
int x = 1;
|
|
int t = 1;
|
|
// First pixel follows the T (mode=2) mode.
|
|
AddPixelsEq(data, pred2);
|
|
// .. the rest:
|
|
while (x < safe_width) {
|
|
pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf];
|
|
for (; t < tile_width; ++t, ++x) {
|
|
const uint32_t pred = pred_func(data[x - 1], data + x - width);
|
|
AddPixelsEq(data + x, pred);
|
|
}
|
|
t = 0;
|
|
}
|
|
if (x < width) {
|
|
pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf];
|
|
for (; x < width; ++x) {
|
|
const uint32_t pred = pred_func(data[x - 1], data + x - width);
|
|
AddPixelsEq(data + x, pred);
|
|
}
|
|
}
|
|
data += width;
|
|
++y;
|
|
if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
|
|
pred_mode_base += tiles_per_row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add green to blue and red channels (i.e. perform the inverse transform of
|
|
// 'subtract green').
|
|
void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels) {
|
|
int i;
|
|
for (i = 0; i < num_pixels; ++i) {
|
|
const uint32_t argb = data[i];
|
|
const uint32_t green = ((argb >> 8) & 0xff);
|
|
uint32_t red_blue = (argb & 0x00ff00ffu);
|
|
red_blue += (green << 16) | green;
|
|
red_blue &= 0x00ff00ffu;
|
|
data[i] = (argb & 0xff00ff00u) | red_blue;
|
|
}
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
|
|
int8_t color) {
|
|
return (uint32_t)((int)(color_pred) * color) >> 5;
|
|
}
|
|
|
|
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
|
|
VP8LMultipliers* const m) {
|
|
m->green_to_red_ = (color_code >> 0) & 0xff;
|
|
m->green_to_blue_ = (color_code >> 8) & 0xff;
|
|
m->red_to_blue_ = (color_code >> 16) & 0xff;
|
|
}
|
|
|
|
void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, uint32_t* data,
|
|
int num_pixels) {
|
|
int i;
|
|
for (i = 0; i < num_pixels; ++i) {
|
|
const uint32_t argb = data[i];
|
|
const uint32_t green = argb >> 8;
|
|
const uint32_t red = argb >> 16;
|
|
uint32_t new_red = red;
|
|
uint32_t new_blue = argb;
|
|
new_red += ColorTransformDelta(m->green_to_red_, green);
|
|
new_red &= 0xff;
|
|
new_blue += ColorTransformDelta(m->green_to_blue_, green);
|
|
new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
|
|
new_blue &= 0xff;
|
|
data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
|
|
}
|
|
}
|
|
|
|
// Color space inverse transform.
|
|
static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
|
|
int y_start, int y_end, uint32_t* data) {
|
|
const int width = transform->xsize_;
|
|
const int tile_width = 1 << transform->bits_;
|
|
const int mask = tile_width - 1;
|
|
const int safe_width = width & ~mask;
|
|
const int remaining_width = width - safe_width;
|
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
|
|
int y = y_start;
|
|
const uint32_t* pred_row =
|
|
transform->data_ + (y >> transform->bits_) * tiles_per_row;
|
|
|
|
while (y < y_end) {
|
|
const uint32_t* pred = pred_row;
|
|
VP8LMultipliers m = { 0, 0, 0 };
|
|
const uint32_t* const data_safe_end = data + safe_width;
|
|
const uint32_t* const data_end = data + width;
|
|
while (data < data_safe_end) {
|
|
ColorCodeToMultipliers(*pred++, &m);
|
|
VP8LTransformColorInverse(&m, data, tile_width);
|
|
data += tile_width;
|
|
}
|
|
if (data < data_end) { // Left-overs using C-version.
|
|
ColorCodeToMultipliers(*pred++, &m);
|
|
VP8LTransformColorInverse(&m, data, remaining_width);
|
|
data += remaining_width;
|
|
}
|
|
++y;
|
|
if ((y & mask) == 0) pred_row += tiles_per_row;
|
|
}
|
|
}
|
|
|
|
// Separate out pixels packed together using pixel-bundling.
|
|
// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
|
|
#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \
|
|
GET_INDEX, GET_VALUE) \
|
|
static void F_NAME(const TYPE* src, const uint32_t* const color_map, \
|
|
TYPE* dst, int y_start, int y_end, int width) { \
|
|
int y; \
|
|
for (y = y_start; y < y_end; ++y) { \
|
|
int x; \
|
|
for (x = 0; x < width; ++x) { \
|
|
*dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
|
|
} \
|
|
} \
|
|
} \
|
|
STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \
|
|
int y_start, int y_end, const TYPE* src, \
|
|
TYPE* dst) { \
|
|
int y; \
|
|
const int bits_per_pixel = 8 >> transform->bits_; \
|
|
const int width = transform->xsize_; \
|
|
const uint32_t* const color_map = transform->data_; \
|
|
if (bits_per_pixel < 8) { \
|
|
const int pixels_per_byte = 1 << transform->bits_; \
|
|
const int count_mask = pixels_per_byte - 1; \
|
|
const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
|
|
for (y = y_start; y < y_end; ++y) { \
|
|
uint32_t packed_pixels = 0; \
|
|
int x; \
|
|
for (x = 0; x < width; ++x) { \
|
|
/* We need to load fresh 'packed_pixels' once every */ \
|
|
/* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
|
|
/* is a power of 2, so can just use a mask for that, instead of */ \
|
|
/* decrementing a counter. */ \
|
|
if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
|
|
*dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
|
|
packed_pixels >>= bits_per_pixel; \
|
|
} \
|
|
} \
|
|
} else { \
|
|
VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \
|
|
} \
|
|
}
|
|
|
|
COLOR_INDEX_INVERSE(ColorIndexInverseTransform, MapARGB, static, uint32_t, 32b,
|
|
VP8GetARGBIndex, VP8GetARGBValue)
|
|
COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha, , uint8_t,
|
|
8b, VP8GetAlphaIndex, VP8GetAlphaValue)
|
|
|
|
#undef COLOR_INDEX_INVERSE
|
|
|
|
void VP8LInverseTransform(const VP8LTransform* const transform,
|
|
int row_start, int row_end,
|
|
const uint32_t* const in, uint32_t* const out) {
|
|
const int width = transform->xsize_;
|
|
assert(row_start < row_end);
|
|
assert(row_end <= transform->ysize_);
|
|
switch (transform->type_) {
|
|
case SUBTRACT_GREEN:
|
|
VP8LAddGreenToBlueAndRed(out, (row_end - row_start) * width);
|
|
break;
|
|
case PREDICTOR_TRANSFORM:
|
|
PredictorInverseTransform(transform, row_start, row_end, out);
|
|
if (row_end != transform->ysize_) {
|
|
// The last predicted row in this iteration will be the top-pred row
|
|
// for the first row in next iteration.
|
|
memcpy(out - width, out + (row_end - row_start - 1) * width,
|
|
width * sizeof(*out));
|
|
}
|
|
break;
|
|
case CROSS_COLOR_TRANSFORM:
|
|
ColorSpaceInverseTransform(transform, row_start, row_end, out);
|
|
break;
|
|
case COLOR_INDEXING_TRANSFORM:
|
|
if (in == out && transform->bits_ > 0) {
|
|
// Move packed pixels to the end of unpacked region, so that unpacking
|
|
// can occur seamlessly.
|
|
// Also, note that this is the only transform that applies on
|
|
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other
|
|
// transforms work on effective width of xsize_.
|
|
const int out_stride = (row_end - row_start) * width;
|
|
const int in_stride = (row_end - row_start) *
|
|
VP8LSubSampleSize(transform->xsize_, transform->bits_);
|
|
uint32_t* const src = out + out_stride - in_stride;
|
|
memmove(src, out, in_stride * sizeof(*src));
|
|
ColorIndexInverseTransform(transform, row_start, row_end, src, out);
|
|
} else {
|
|
ColorIndexInverseTransform(transform, row_start, row_end, in, out);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Color space conversion.
|
|
|
|
static int is_big_endian(void) {
|
|
static const union {
|
|
uint16_t w;
|
|
uint8_t b[2];
|
|
} tmp = { 1 };
|
|
return (tmp.b[0] != 1);
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGB_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
*dst++ = (argb >> 16) & 0xff;
|
|
*dst++ = (argb >> 8) & 0xff;
|
|
*dst++ = (argb >> 0) & 0xff;
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
*dst++ = (argb >> 16) & 0xff;
|
|
*dst++ = (argb >> 8) & 0xff;
|
|
*dst++ = (argb >> 0) & 0xff;
|
|
*dst++ = (argb >> 24) & 0xff;
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
|
|
const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
|
|
#ifdef WEBP_SWAP_16BIT_CSP
|
|
*dst++ = ba;
|
|
*dst++ = rg;
|
|
#else
|
|
*dst++ = rg;
|
|
*dst++ = ba;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
|
|
const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
|
|
#ifdef WEBP_SWAP_16BIT_CSP
|
|
*dst++ = gb;
|
|
*dst++ = rg;
|
|
#else
|
|
*dst++ = rg;
|
|
*dst++ = gb;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToBGR_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
*dst++ = (argb >> 0) & 0xff;
|
|
*dst++ = (argb >> 8) & 0xff;
|
|
*dst++ = (argb >> 16) & 0xff;
|
|
}
|
|
}
|
|
|
|
static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
|
|
int swap_on_big_endian) {
|
|
if (is_big_endian() == swap_on_big_endian) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
|
|
#if !defined(WORDS_BIGENDIAN)
|
|
#if !defined(WEBP_REFERENCE_IMPLEMENTATION)
|
|
WebPUint32ToMem(dst, BSwap32(argb));
|
|
#else // WEBP_REFERENCE_IMPLEMENTATION
|
|
dst[0] = (argb >> 24) & 0xff;
|
|
dst[1] = (argb >> 16) & 0xff;
|
|
dst[2] = (argb >> 8) & 0xff;
|
|
dst[3] = (argb >> 0) & 0xff;
|
|
#endif
|
|
#else // WORDS_BIGENDIAN
|
|
dst[0] = (argb >> 0) & 0xff;
|
|
dst[1] = (argb >> 8) & 0xff;
|
|
dst[2] = (argb >> 16) & 0xff;
|
|
dst[3] = (argb >> 24) & 0xff;
|
|
#endif
|
|
dst += sizeof(argb);
|
|
}
|
|
} else {
|
|
memcpy(dst, src, num_pixels * sizeof(*src));
|
|
}
|
|
}
|
|
|
|
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
|
|
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
|
|
switch (out_colorspace) {
|
|
case MODE_RGB:
|
|
VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_RGBA:
|
|
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_rgbA:
|
|
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
|
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_BGR:
|
|
VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_BGRA:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 1);
|
|
break;
|
|
case MODE_bgrA:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 1);
|
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_ARGB:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 0);
|
|
break;
|
|
case MODE_Argb:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 0);
|
|
WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_RGBA_4444:
|
|
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_rgbA_4444:
|
|
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
|
|
WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_RGB_565:
|
|
VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
|
|
break;
|
|
default:
|
|
assert(0); // Code flow should not reach here.
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed;
|
|
VP8LPredictorFunc VP8LPredictors[16];
|
|
|
|
VP8LTransformColorFunc VP8LTransformColorInverse;
|
|
|
|
VP8LConvertFunc VP8LConvertBGRAToRGB;
|
|
VP8LConvertFunc VP8LConvertBGRAToRGBA;
|
|
VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
|
|
VP8LConvertFunc VP8LConvertBGRAToRGB565;
|
|
VP8LConvertFunc VP8LConvertBGRAToBGR;
|
|
|
|
VP8LMapARGBFunc VP8LMapColor32b;
|
|
VP8LMapAlphaFunc VP8LMapColor8b;
|
|
|
|
extern void VP8LDspInitSSE2(void);
|
|
extern void VP8LDspInitNEON(void);
|
|
extern void VP8LDspInitMIPSdspR2(void);
|
|
|
|
static volatile VP8CPUInfo lossless_last_cpuinfo_used =
|
|
(VP8CPUInfo)&lossless_last_cpuinfo_used;
|
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) {
|
|
if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return;
|
|
|
|
VP8LPredictors[0] = Predictor0;
|
|
VP8LPredictors[1] = Predictor1;
|
|
VP8LPredictors[2] = Predictor2;
|
|
VP8LPredictors[3] = Predictor3;
|
|
VP8LPredictors[4] = Predictor4;
|
|
VP8LPredictors[5] = Predictor5;
|
|
VP8LPredictors[6] = Predictor6;
|
|
VP8LPredictors[7] = Predictor7;
|
|
VP8LPredictors[8] = Predictor8;
|
|
VP8LPredictors[9] = Predictor9;
|
|
VP8LPredictors[10] = Predictor10;
|
|
VP8LPredictors[11] = Predictor11;
|
|
VP8LPredictors[12] = Predictor12;
|
|
VP8LPredictors[13] = Predictor13;
|
|
VP8LPredictors[14] = Predictor0; // <- padding security sentinels
|
|
VP8LPredictors[15] = Predictor0;
|
|
|
|
VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
|
|
|
|
VP8LTransformColorInverse = VP8LTransformColorInverse_C;
|
|
|
|
VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
|
|
VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
|
|
VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
|
|
VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
|
|
VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
|
|
|
|
VP8LMapColor32b = MapARGB;
|
|
VP8LMapColor8b = MapAlpha;
|
|
|
|
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
|
|
if (VP8GetCPUInfo != NULL) {
|
|
#if defined(WEBP_USE_SSE2)
|
|
if (VP8GetCPUInfo(kSSE2)) {
|
|
VP8LDspInitSSE2();
|
|
}
|
|
#endif
|
|
#if defined(WEBP_USE_NEON)
|
|
if (VP8GetCPUInfo(kNEON)) {
|
|
VP8LDspInitNEON();
|
|
}
|
|
#endif
|
|
#if defined(WEBP_USE_MIPS_DSP_R2)
|
|
if (VP8GetCPUInfo(kMIPSdspR2)) {
|
|
VP8LDspInitMIPSdspR2();
|
|
}
|
|
#endif
|
|
}
|
|
lossless_last_cpuinfo_used = VP8GetCPUInfo;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|