virtualx-engine/thirdparty/mbedtls/library/bignum.c
Fabio Alessandrelli e375cbd094 Bump mbedTLS version to 2.28.0 (new LTS).
Keep applying the windows entropy patch (UWP support).
Remove no longer needed padlock patch.
Update thirdparty README to reflect changes, and new source inclusion
criteria.
2021-12-21 13:26:02 +01:00

3093 lines
82 KiB
C

/*
* Multi-precision integer library
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The following sources were referenced in the design of this Multi-precision
* Integer library:
*
* [1] Handbook of Applied Cryptography - 1997
* Menezes, van Oorschot and Vanstone
*
* [2] Multi-Precision Math
* Tom St Denis
* https://github.com/libtom/libtommath/blob/develop/tommath.pdf
*
* [3] GNU Multi-Precision Arithmetic Library
* https://gmplib.org/manual/index.html
*
*/
#include "common.h"
#if defined(MBEDTLS_BIGNUM_C)
#include "mbedtls/bignum.h"
#include "mbedtls/bn_mul.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/error.h"
#include "constant_time_internal.h"
#include <limits.h>
#include <string.h>
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#include <stdlib.h>
#define mbedtls_printf printf
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif
#define MPI_VALIDATE_RET( cond ) \
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
#define MPI_VALIDATE( cond ) \
MBEDTLS_INTERNAL_VALIDATE( cond )
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
#define biL (ciL << 3) /* bits in limb */
#define biH (ciL << 2) /* half limb size */
#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
/*
* Convert between bits/chars and number of limbs
* Divide first in order to avoid potential overflows
*/
#define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
/* Implementation that should never be optimized out by the compiler */
static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
{
mbedtls_platform_zeroize( v, ciL * n );
}
/*
* Initialize one MPI
*/
void mbedtls_mpi_init( mbedtls_mpi *X )
{
MPI_VALIDATE( X != NULL );
X->s = 1;
X->n = 0;
X->p = NULL;
}
/*
* Unallocate one MPI
*/
void mbedtls_mpi_free( mbedtls_mpi *X )
{
if( X == NULL )
return;
if( X->p != NULL )
{
mbedtls_mpi_zeroize( X->p, X->n );
mbedtls_free( X->p );
}
X->s = 1;
X->n = 0;
X->p = NULL;
}
/*
* Enlarge to the specified number of limbs
*/
int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
{
mbedtls_mpi_uint *p;
MPI_VALIDATE_RET( X != NULL );
if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
if( X->n < nblimbs )
{
if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
if( X->p != NULL )
{
memcpy( p, X->p, X->n * ciL );
mbedtls_mpi_zeroize( X->p, X->n );
mbedtls_free( X->p );
}
X->n = nblimbs;
X->p = p;
}
return( 0 );
}
/*
* Resize down as much as possible,
* while keeping at least the specified number of limbs
*/
int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
{
mbedtls_mpi_uint *p;
size_t i;
MPI_VALIDATE_RET( X != NULL );
if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
/* Actually resize up if there are currently fewer than nblimbs limbs. */
if( X->n <= nblimbs )
return( mbedtls_mpi_grow( X, nblimbs ) );
/* After this point, then X->n > nblimbs and in particular X->n > 0. */
for( i = X->n - 1; i > 0; i-- )
if( X->p[i] != 0 )
break;
i++;
if( i < nblimbs )
i = nblimbs;
if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
if( X->p != NULL )
{
memcpy( p, X->p, i * ciL );
mbedtls_mpi_zeroize( X->p, X->n );
mbedtls_free( X->p );
}
X->n = i;
X->p = p;
return( 0 );
}
/* Resize X to have exactly n limbs and set it to 0. */
static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
{
if( limbs == 0 )
{
mbedtls_mpi_free( X );
return( 0 );
}
else if( X->n == limbs )
{
memset( X->p, 0, limbs * ciL );
X->s = 1;
return( 0 );
}
else
{
mbedtls_mpi_free( X );
return( mbedtls_mpi_grow( X, limbs ) );
}
}
/*
* Copy the contents of Y into X.
*
* This function is not constant-time. Leading zeros in Y may be removed.
*
* Ensure that X does not shrink. This is not guaranteed by the public API,
* but some code in the bignum module relies on this property, for example
* in mbedtls_mpi_exp_mod().
*/
int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
{
int ret = 0;
size_t i;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( Y != NULL );
if( X == Y )
return( 0 );
if( Y->n == 0 )
{
if( X->n != 0 )
{
X->s = 1;
memset( X->p, 0, X->n * ciL );
}
return( 0 );
}
for( i = Y->n - 1; i > 0; i-- )
if( Y->p[i] != 0 )
break;
i++;
X->s = Y->s;
if( X->n < i )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
}
else
{
memset( X->p + i, 0, ( X->n - i ) * ciL );
}
memcpy( X->p, Y->p, i * ciL );
cleanup:
return( ret );
}
/*
* Swap the contents of X and Y
*/
void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
{
mbedtls_mpi T;
MPI_VALIDATE( X != NULL );
MPI_VALIDATE( Y != NULL );
memcpy( &T, X, sizeof( mbedtls_mpi ) );
memcpy( X, Y, sizeof( mbedtls_mpi ) );
memcpy( Y, &T, sizeof( mbedtls_mpi ) );
}
/*
* Set value from integer
*/
int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
MPI_VALIDATE_RET( X != NULL );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
memset( X->p, 0, X->n * ciL );
X->p[0] = ( z < 0 ) ? -z : z;
X->s = ( z < 0 ) ? -1 : 1;
cleanup:
return( ret );
}
/*
* Get a specific bit
*/
int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
{
MPI_VALIDATE_RET( X != NULL );
if( X->n * biL <= pos )
return( 0 );
return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
}
/* Get a specific byte, without range checks. */
#define GET_BYTE( X, i ) \
( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
/*
* Set a bit to a specific value of 0 or 1
*/
int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
{
int ret = 0;
size_t off = pos / biL;
size_t idx = pos % biL;
MPI_VALIDATE_RET( X != NULL );
if( val != 0 && val != 1 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
if( X->n * biL <= pos )
{
if( val == 0 )
return( 0 );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
}
X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
X->p[off] |= (mbedtls_mpi_uint) val << idx;
cleanup:
return( ret );
}
/*
* Return the number of less significant zero-bits
*/
size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
{
size_t i, j, count = 0;
MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
for( i = 0; i < X->n; i++ )
for( j = 0; j < biL; j++, count++ )
if( ( ( X->p[i] >> j ) & 1 ) != 0 )
return( count );
return( 0 );
}
/*
* Count leading zero bits in a given integer
*/
static size_t mbedtls_clz( const mbedtls_mpi_uint x )
{
size_t j;
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
for( j = 0; j < biL; j++ )
{
if( x & mask ) break;
mask >>= 1;
}
return j;
}
/*
* Return the number of bits
*/
size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
{
size_t i, j;
if( X->n == 0 )
return( 0 );
for( i = X->n - 1; i > 0; i-- )
if( X->p[i] != 0 )
break;
j = biL - mbedtls_clz( X->p[i] );
return( ( i * biL ) + j );
}
/*
* Return the total size in bytes
*/
size_t mbedtls_mpi_size( const mbedtls_mpi *X )
{
return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
}
/*
* Convert an ASCII character to digit value
*/
static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
{
*d = 255;
if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
if( *d >= (mbedtls_mpi_uint) radix )
return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
return( 0 );
}
/*
* Import from an ASCII string
*/
int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, j, slen, n;
int sign = 1;
mbedtls_mpi_uint d;
mbedtls_mpi T;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( s != NULL );
if( radix < 2 || radix > 16 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
mbedtls_mpi_init( &T );
if( s[0] == 0 )
{
mbedtls_mpi_free( X );
return( 0 );
}
if( s[0] == '-' )
{
++s;
sign = -1;
}
slen = strlen( s );
if( radix == 16 )
{
if( slen > MPI_SIZE_T_MAX >> 2 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
n = BITS_TO_LIMBS( slen << 2 );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
for( i = slen, j = 0; i > 0; i--, j++ )
{
MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
}
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
for( i = 0; i < slen; i++ )
{
MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
}
}
if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
X->s = -1;
cleanup:
mbedtls_mpi_free( &T );
return( ret );
}
/*
* Helper to write the digits high-order first.
*/
static int mpi_write_hlp( mbedtls_mpi *X, int radix,
char **p, const size_t buflen )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_mpi_uint r;
size_t length = 0;
char *p_end = *p + buflen;
do
{
if( length >= buflen )
{
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
/*
* Write the residue in the current position, as an ASCII character.
*/
if( r < 0xA )
*(--p_end) = (char)( '0' + r );
else
*(--p_end) = (char)( 'A' + ( r - 0xA ) );
length++;
} while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
memmove( *p, p_end, length );
*p += length;
cleanup:
return( ret );
}
/*
* Export into an ASCII string
*/
int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
char *buf, size_t buflen, size_t *olen )
{
int ret = 0;
size_t n;
char *p;
mbedtls_mpi T;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( olen != NULL );
MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
if( radix < 2 || radix > 16 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
* `n`. If radix > 4, this might be a strict
* overapproximation of the number of
* radix-adic digits needed to present `n`. */
if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
* present `n`. */
n += 1; /* Terminating null byte */
n += 1; /* Compensate for the divisions above, which round down `n`
* in case it's not even. */
n += 1; /* Potential '-'-sign. */
n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
* which always uses an even number of hex-digits. */
if( buflen < n )
{
*olen = n;
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
p = buf;
mbedtls_mpi_init( &T );
if( X->s == -1 )
{
*p++ = '-';
buflen--;
}
if( radix == 16 )
{
int c;
size_t i, j, k;
for( i = X->n, k = 0; i > 0; i-- )
{
for( j = ciL; j > 0; j-- )
{
c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
if( c == 0 && k == 0 && ( i + j ) != 2 )
continue;
*(p++) = "0123456789ABCDEF" [c / 16];
*(p++) = "0123456789ABCDEF" [c % 16];
k = 1;
}
}
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
if( T.s == -1 )
T.s = 1;
MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
}
*p++ = '\0';
*olen = p - buf;
cleanup:
mbedtls_mpi_free( &T );
return( ret );
}
#if defined(MBEDTLS_FS_IO)
/*
* Read X from an opened file
*/
int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
{
mbedtls_mpi_uint d;
size_t slen;
char *p;
/*
* Buffer should have space for (short) label and decimal formatted MPI,
* newline characters and '\0'
*/
char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( fin != NULL );
if( radix < 2 || radix > 16 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
memset( s, 0, sizeof( s ) );
if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
slen = strlen( s );
if( slen == sizeof( s ) - 2 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
p = s + slen;
while( p-- > s )
if( mpi_get_digit( &d, radix, *p ) != 0 )
break;
return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
}
/*
* Write X into an opened file (or stdout if fout == NULL)
*/
int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t n, slen, plen;
/*
* Buffer should have space for (short) label and decimal formatted MPI,
* newline characters and '\0'
*/
char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
MPI_VALIDATE_RET( X != NULL );
if( radix < 2 || radix > 16 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
memset( s, 0, sizeof( s ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
if( p == NULL ) p = "";
plen = strlen( p );
slen = strlen( s );
s[slen++] = '\r';
s[slen++] = '\n';
if( fout != NULL )
{
if( fwrite( p, 1, plen, fout ) != plen ||
fwrite( s, 1, slen, fout ) != slen )
return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
}
else
mbedtls_printf( "%s%s", p, s );
cleanup:
return( ret );
}
#endif /* MBEDTLS_FS_IO */
/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
* into the storage form used by mbedtls_mpi. */
static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
{
uint8_t i;
unsigned char *x_ptr;
mbedtls_mpi_uint tmp = 0;
for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
{
tmp <<= CHAR_BIT;
tmp |= (mbedtls_mpi_uint) *x_ptr;
}
return( tmp );
}
static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
{
#if defined(__BYTE_ORDER__)
/* Nothing to do on bigendian systems. */
#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
return( x );
#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
/* For GCC and Clang, have builtins for byte swapping. */
#if defined(__GNUC__) && defined(__GNUC_PREREQ)
#if __GNUC_PREREQ(4,3)
#define have_bswap
#endif
#endif
#if defined(__clang__) && defined(__has_builtin)
#if __has_builtin(__builtin_bswap32) && \
__has_builtin(__builtin_bswap64)
#define have_bswap
#endif
#endif
#if defined(have_bswap)
/* The compiler is hopefully able to statically evaluate this! */
switch( sizeof(mbedtls_mpi_uint) )
{
case 4:
return( __builtin_bswap32(x) );
case 8:
return( __builtin_bswap64(x) );
}
#endif
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
#endif /* __BYTE_ORDER__ */
/* Fall back to C-based reordering if we don't know the byte order
* or we couldn't use a compiler-specific builtin. */
return( mpi_uint_bigendian_to_host_c( x ) );
}
static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
{
mbedtls_mpi_uint *cur_limb_left;
mbedtls_mpi_uint *cur_limb_right;
if( limbs == 0 )
return;
/*
* Traverse limbs and
* - adapt byte-order in each limb
* - swap the limbs themselves.
* For that, simultaneously traverse the limbs from left to right
* and from right to left, as long as the left index is not bigger
* than the right index (it's not a problem if limbs is odd and the
* indices coincide in the last iteration).
*/
for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
cur_limb_left <= cur_limb_right;
cur_limb_left++, cur_limb_right-- )
{
mbedtls_mpi_uint tmp;
/* Note that if cur_limb_left == cur_limb_right,
* this code effectively swaps the bytes only once. */
tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
*cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
*cur_limb_right = tmp;
}
}
/*
* Import X from unsigned binary data, little endian
*/
int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
const unsigned char *buf, size_t buflen )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i;
size_t const limbs = CHARS_TO_LIMBS( buflen );
/* Ensure that target MPI has exactly the necessary number of limbs */
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
for( i = 0; i < buflen; i++ )
X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
cleanup:
/*
* This function is also used to import keys. However, wiping the buffers
* upon failure is not necessary because failure only can happen before any
* input is copied.
*/
return( ret );
}
/*
* Import X from unsigned binary data, big endian
*/
int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t const limbs = CHARS_TO_LIMBS( buflen );
size_t const overhead = ( limbs * ciL ) - buflen;
unsigned char *Xp;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
/* Ensure that target MPI has exactly the necessary number of limbs */
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
/* Avoid calling `memcpy` with NULL source or destination argument,
* even if buflen is 0. */
if( buflen != 0 )
{
Xp = (unsigned char*) X->p;
memcpy( Xp + overhead, buf, buflen );
mpi_bigendian_to_host( X->p, limbs );
}
cleanup:
/*
* This function is also used to import keys. However, wiping the buffers
* upon failure is not necessary because failure only can happen before any
* input is copied.
*/
return( ret );
}
/*
* Export X into unsigned binary data, little endian
*/
int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
unsigned char *buf, size_t buflen )
{
size_t stored_bytes = X->n * ciL;
size_t bytes_to_copy;
size_t i;
if( stored_bytes < buflen )
{
bytes_to_copy = stored_bytes;
}
else
{
bytes_to_copy = buflen;
/* The output buffer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
for( i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( X, i ) != 0 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
}
for( i = 0; i < bytes_to_copy; i++ )
buf[i] = GET_BYTE( X, i );
if( stored_bytes < buflen )
{
/* Write trailing 0 bytes */
memset( buf + stored_bytes, 0, buflen - stored_bytes );
}
return( 0 );
}
/*
* Export X into unsigned binary data, big endian
*/
int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
unsigned char *buf, size_t buflen )
{
size_t stored_bytes;
size_t bytes_to_copy;
unsigned char *p;
size_t i;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
stored_bytes = X->n * ciL;
if( stored_bytes < buflen )
{
/* There is enough space in the output buffer. Write initial
* null bytes and record the position at which to start
* writing the significant bytes. In this case, the execution
* trace of this function does not depend on the value of the
* number. */
bytes_to_copy = stored_bytes;
p = buf + buflen - stored_bytes;
memset( buf, 0, buflen - stored_bytes );
}
else
{
/* The output buffer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
bytes_to_copy = buflen;
p = buf;
for( i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( X, i ) != 0 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
}
for( i = 0; i < bytes_to_copy; i++ )
p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
return( 0 );
}
/*
* Left-shift: X <<= count
*/
int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, v0, t1;
mbedtls_mpi_uint r0 = 0, r1;
MPI_VALIDATE_RET( X != NULL );
v0 = count / (biL );
t1 = count & (biL - 1);
i = mbedtls_mpi_bitlen( X ) + count;
if( X->n * biL < i )
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
ret = 0;
/*
* shift by count / limb_size
*/
if( v0 > 0 )
{
for( i = X->n; i > v0; i-- )
X->p[i - 1] = X->p[i - v0 - 1];
for( ; i > 0; i-- )
X->p[i - 1] = 0;
}
/*
* shift by count % limb_size
*/
if( t1 > 0 )
{
for( i = v0; i < X->n; i++ )
{
r1 = X->p[i] >> (biL - t1);
X->p[i] <<= t1;
X->p[i] |= r0;
r0 = r1;
}
}
cleanup:
return( ret );
}
/*
* Right-shift: X >>= count
*/
int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
{
size_t i, v0, v1;
mbedtls_mpi_uint r0 = 0, r1;
MPI_VALIDATE_RET( X != NULL );
v0 = count / biL;
v1 = count & (biL - 1);
if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
return mbedtls_mpi_lset( X, 0 );
/*
* shift by count / limb_size
*/
if( v0 > 0 )
{
for( i = 0; i < X->n - v0; i++ )
X->p[i] = X->p[i + v0];
for( ; i < X->n; i++ )
X->p[i] = 0;
}
/*
* shift by count % limb_size
*/
if( v1 > 0 )
{
for( i = X->n; i > 0; i-- )
{
r1 = X->p[i - 1] << (biL - v1);
X->p[i - 1] >>= v1;
X->p[i - 1] |= r0;
r0 = r1;
}
}
return( 0 );
}
/*
* Compare unsigned values
*/
int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
{
size_t i, j;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( Y != NULL );
for( i = X->n; i > 0; i-- )
if( X->p[i - 1] != 0 )
break;
for( j = Y->n; j > 0; j-- )
if( Y->p[j - 1] != 0 )
break;
if( i == 0 && j == 0 )
return( 0 );
if( i > j ) return( 1 );
if( j > i ) return( -1 );
for( ; i > 0; i-- )
{
if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
}
return( 0 );
}
/*
* Compare signed values
*/
int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
{
size_t i, j;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( Y != NULL );
for( i = X->n; i > 0; i-- )
if( X->p[i - 1] != 0 )
break;
for( j = Y->n; j > 0; j-- )
if( Y->p[j - 1] != 0 )
break;
if( i == 0 && j == 0 )
return( 0 );
if( i > j ) return( X->s );
if( j > i ) return( -Y->s );
if( X->s > 0 && Y->s < 0 ) return( 1 );
if( Y->s > 0 && X->s < 0 ) return( -1 );
for( ; i > 0; i-- )
{
if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
}
return( 0 );
}
/*
* Compare signed values
*/
int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
{
mbedtls_mpi Y;
mbedtls_mpi_uint p[1];
MPI_VALIDATE_RET( X != NULL );
*p = ( z < 0 ) ? -z : z;
Y.s = ( z < 0 ) ? -1 : 1;
Y.n = 1;
Y.p = p;
return( mbedtls_mpi_cmp_mpi( X, &Y ) );
}
/*
* Unsigned addition: X = |A| + |B| (HAC 14.7)
*/
int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, j;
mbedtls_mpi_uint *o, *p, c, tmp;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
if( X == B )
{
const mbedtls_mpi *T = A; A = X; B = T;
}
if( X != A )
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
/*
* X should always be positive as a result of unsigned additions.
*/
X->s = 1;
for( j = B->n; j > 0; j-- )
if( B->p[j - 1] != 0 )
break;
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
o = B->p; p = X->p; c = 0;
/*
* tmp is used because it might happen that p == o
*/
for( i = 0; i < j; i++, o++, p++ )
{
tmp= *o;
*p += c; c = ( *p < c );
*p += tmp; c += ( *p < tmp );
}
while( c != 0 )
{
if( i >= X->n )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
p = X->p + i;
}
*p += c; c = ( *p < c ); i++; p++;
}
cleanup:
return( ret );
}
/**
* Helper for mbedtls_mpi subtraction.
*
* Calculate l - r where l and r have the same size.
* This function operates modulo (2^ciL)^n and returns the carry
* (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
*
* d may be aliased to l or r.
*
* \param n Number of limbs of \p d, \p l and \p r.
* \param[out] d The result of the subtraction.
* \param[in] l The left operand.
* \param[in] r The right operand.
*
* \return 1 if `l < r`.
* 0 if `l >= r`.
*/
static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *l,
const mbedtls_mpi_uint *r )
{
size_t i;
mbedtls_mpi_uint c = 0, t, z;
for( i = 0; i < n; i++ )
{
z = ( l[i] < c ); t = l[i] - c;
c = ( t < r[i] ) + z; d[i] = t - r[i];
}
return( c );
}
/*
* Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
*/
int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t n;
mbedtls_mpi_uint carry;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
for( n = B->n; n > 0; n-- )
if( B->p[n - 1] != 0 )
break;
if( n > A->n )
{
/* B >= (2^ciL)^n > A */
ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
goto cleanup;
}
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
/* Set the high limbs of X to match A. Don't touch the lower limbs
* because X might be aliased to B, and we must not overwrite the
* significant digits of B. */
if( A->n > n )
memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
if( X->n > A->n )
memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
carry = mpi_sub_hlp( n, X->p, A->p, B->p );
if( carry != 0 )
{
/* Propagate the carry to the first nonzero limb of X. */
for( ; n < X->n && X->p[n] == 0; n++ )
--X->p[n];
/* If we ran out of space for the carry, it means that the result
* is negative. */
if( n == X->n )
{
ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
goto cleanup;
}
--X->p[n];
}
/* X should always be positive as a result of unsigned subtractions. */
X->s = 1;
cleanup:
return( ret );
}
/*
* Signed addition: X = A + B
*/
int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret, s;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
s = A->s;
if( A->s * B->s < 0 )
{
if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
X->s = s;
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
X->s = -s;
}
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
X->s = s;
}
cleanup:
return( ret );
}
/*
* Signed subtraction: X = A - B
*/
int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret, s;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
s = A->s;
if( A->s * B->s > 0 )
{
if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
X->s = s;
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
X->s = -s;
}
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
X->s = s;
}
cleanup:
return( ret );
}
/*
* Signed addition: X = A + b
*/
int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
{
mbedtls_mpi B;
mbedtls_mpi_uint p[1];
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
p[0] = ( b < 0 ) ? -b : b;
B.s = ( b < 0 ) ? -1 : 1;
B.n = 1;
B.p = p;
return( mbedtls_mpi_add_mpi( X, A, &B ) );
}
/*
* Signed subtraction: X = A - b
*/
int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
{
mbedtls_mpi B;
mbedtls_mpi_uint p[1];
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
p[0] = ( b < 0 ) ? -b : b;
B.s = ( b < 0 ) ? -1 : 1;
B.n = 1;
B.p = p;
return( mbedtls_mpi_sub_mpi( X, A, &B ) );
}
/** Helper for mbedtls_mpi multiplication.
*
* Add \p b * \p s to \p d.
*
* \param i The number of limbs of \p s.
* \param[in] s A bignum to multiply, of size \p i.
* It may overlap with \p d, but only if
* \p d <= \p s.
* Its leading limb must not be \c 0.
* \param[in,out] d The bignum to add to.
* It must be sufficiently large to store the
* result of the multiplication. This means
* \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
* is not known a priori.
* \param b A scalar to multiply.
*/
static
#if defined(__APPLE__) && defined(__arm__)
/*
* Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
* appears to need this to prevent bad ARM code generation at -O3.
*/
__attribute__ ((noinline))
#endif
void mpi_mul_hlp( size_t i,
const mbedtls_mpi_uint *s,
mbedtls_mpi_uint *d,
mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0, t = 0;
#if defined(MULADDC_HUIT)
for( ; i >= 8; i -= 8 )
{
MULADDC_INIT
MULADDC_HUIT
MULADDC_STOP
}
for( ; i > 0; i-- )
{
MULADDC_INIT
MULADDC_CORE
MULADDC_STOP
}
#else /* MULADDC_HUIT */
for( ; i >= 16; i -= 16 )
{
MULADDC_INIT
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_STOP
}
for( ; i >= 8; i -= 8 )
{
MULADDC_INIT
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_STOP
}
for( ; i > 0; i-- )
{
MULADDC_INIT
MULADDC_CORE
MULADDC_STOP
}
#endif /* MULADDC_HUIT */
t++;
while( c != 0 )
{
*d += c; c = ( *d < c ); d++;
}
}
/*
* Baseline multiplication: X = A * B (HAC 14.12)
*/
int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, j;
mbedtls_mpi TA, TB;
int result_is_zero = 0;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
for( i = A->n; i > 0; i-- )
if( A->p[i - 1] != 0 )
break;
if( i == 0 )
result_is_zero = 1;
for( j = B->n; j > 0; j-- )
if( B->p[j - 1] != 0 )
break;
if( j == 0 )
result_is_zero = 1;
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
for( ; j > 0; j-- )
mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
/* If the result is 0, we don't shortcut the operation, which reduces
* but does not eliminate side channels leaking the zero-ness. We do
* need to take care to set the sign bit properly since the library does
* not fully support an MPI object with a value of 0 and s == -1. */
if( result_is_zero )
X->s = 1;
else
X->s = A->s * B->s;
cleanup:
mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
return( ret );
}
/*
* Baseline multiplication: X = A * b
*/
int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
{
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
/* mpi_mul_hlp can't deal with a leading 0. */
size_t n = A->n;
while( n > 0 && A->p[n - 1] == 0 )
--n;
/* The general method below doesn't work if n==0 or b==0. By chance
* calculating the result is trivial in those cases. */
if( b == 0 || n == 0 )
{
return( mbedtls_mpi_lset( X, 0 ) );
}
/* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/* In general, A * b requires 1 limb more than b. If
* A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
* number of limbs as A and the call to grow() is not required since
* copy() will take care of the growth if needed. However, experimentally,
* making the call to grow() unconditional causes slightly fewer
* calls to calloc() in ECP code, presumably because it reuses the
* same mpi for a while and this way the mpi is more likely to directly
* grow to its final size. */
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
mpi_mul_hlp( n, A->p, X->p, b - 1 );
cleanup:
return( ret );
}
/*
* Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
* mbedtls_mpi_uint divisor, d
*/
static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
{
#if defined(MBEDTLS_HAVE_UDBL)
mbedtls_t_udbl dividend, quotient;
#else
const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
mbedtls_mpi_uint u0_msw, u0_lsw;
size_t s;
#endif
/*
* Check for overflow
*/
if( 0 == d || u1 >= d )
{
if (r != NULL) *r = ~0;
return ( ~0 );
}
#if defined(MBEDTLS_HAVE_UDBL)
dividend = (mbedtls_t_udbl) u1 << biL;
dividend |= (mbedtls_t_udbl) u0;
quotient = dividend / d;
if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
if( r != NULL )
*r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
return (mbedtls_mpi_uint) quotient;
#else
/*
* Algorithm D, Section 4.3.1 - The Art of Computer Programming
* Vol. 2 - Seminumerical Algorithms, Knuth
*/
/*
* Normalize the divisor, d, and dividend, u0, u1
*/
s = mbedtls_clz( d );
d = d << s;
u1 = u1 << s;
u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
u0 = u0 << s;
d1 = d >> biH;
d0 = d & uint_halfword_mask;
u0_msw = u0 >> biH;
u0_lsw = u0 & uint_halfword_mask;
/*
* Find the first quotient and remainder
*/
q1 = u1 / d1;
r0 = u1 - d1 * q1;
while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
{
q1 -= 1;
r0 += d1;
if ( r0 >= radix ) break;
}
rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
q0 = rAX / d1;
r0 = rAX - q0 * d1;
while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
{
q0 -= 1;
r0 += d1;
if ( r0 >= radix ) break;
}
if (r != NULL)
*r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
quotient = q1 * radix + q0;
return quotient;
#endif
}
/*
* Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
*/
int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
const mbedtls_mpi *B )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, n, t, k;
mbedtls_mpi X, Y, Z, T1, T2;
mbedtls_mpi_uint TP2[3];
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
mbedtls_mpi_init( &T1 );
/*
* Avoid dynamic memory allocations for constant-size T2.
*
* T2 is used for comparison only and the 3 limbs are assigned explicitly,
* so nobody increase the size of the MPI and we're safe to use an on-stack
* buffer.
*/
T2.s = 1;
T2.n = sizeof( TP2 ) / sizeof( *TP2 );
T2.p = TP2;
if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
{
if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
return( 0 );
}
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
X.s = Y.s = 1;
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
k = mbedtls_mpi_bitlen( &Y ) % biL;
if( k < biL - 1 )
{
k = biL - 1 - k;
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
}
else k = 0;
n = X.n - 1;
t = Y.n - 1;
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
{
Z.p[n - t]++;
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
}
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
for( i = n; i > t ; i-- )
{
if( X.p[i] >= Y.p[t] )
Z.p[i - t - 1] = ~0;
else
{
Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
Y.p[t], NULL);
}
T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
T2.p[2] = X.p[i];
Z.p[i - t - 1]++;
do
{
Z.p[i - t - 1]--;
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
T1.p[1] = Y.p[t];
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
}
while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Z.p[i - t - 1]--;
}
}
if( Q != NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Q->s = A->s * B->s;
}
if( R != NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
X.s = A->s;
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
R->s = 1;
}
cleanup:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
mbedtls_mpi_free( &T1 );
mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
return( ret );
}
/*
* Division by int: A = Q * b + R
*/
int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
const mbedtls_mpi *A,
mbedtls_mpi_sint b )
{
mbedtls_mpi B;
mbedtls_mpi_uint p[1];
MPI_VALIDATE_RET( A != NULL );
p[0] = ( b < 0 ) ? -b : b;
B.s = ( b < 0 ) ? -1 : 1;
B.n = 1;
B.p = p;
return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
}
/*
* Modulo: R = A mod B
*/
int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
MPI_VALIDATE_RET( R != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
cleanup:
return( ret );
}
/*
* Modulo: r = A mod b
*/
int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
{
size_t i;
mbedtls_mpi_uint x, y, z;
MPI_VALIDATE_RET( r != NULL );
MPI_VALIDATE_RET( A != NULL );
if( b == 0 )
return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
if( b < 0 )
return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
/*
* handle trivial cases
*/
if( b == 1 )
{
*r = 0;
return( 0 );
}
if( b == 2 )
{
*r = A->p[0] & 1;
return( 0 );
}
/*
* general case
*/
for( i = A->n, y = 0; i > 0; i-- )
{
x = A->p[i - 1];
y = ( y << biH ) | ( x >> biH );
z = y / b;
y -= z * b;
x <<= biH;
y = ( y << biH ) | ( x >> biH );
z = y / b;
y -= z * b;
}
/*
* If A is negative, then the current y represents a negative value.
* Flipping it to the positive side.
*/
if( A->s < 0 && y != 0 )
y = b - y;
*r = y;
return( 0 );
}
/*
* Fast Montgomery initialization (thanks to Tom St Denis)
*/
static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
{
mbedtls_mpi_uint x, m0 = N->p[0];
unsigned int i;
x = m0;
x += ( ( m0 + 2 ) & 4 ) << 1;
for( i = biL; i >= 8; i /= 2 )
x *= ( 2 - ( m0 * x ) );
*mm = ~x + 1;
}
/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
*
* \param[in,out] A One of the numbers to multiply.
* It must have at least as many limbs as N
* (A->n >= N->n), and any limbs beyond n are ignored.
* On successful completion, A contains the result of
* the multiplication A * B * R^-1 mod N where
* R = (2^ciL)^n.
* \param[in] B One of the numbers to multiply.
* It must be nonzero and must not have more limbs than N
* (B->n <= N->n).
* \param[in] N The modulo. N must be odd.
* \param mm The value calculated by `mpi_montg_init(&mm, N)`.
* This is -N^-1 mod 2^ciL.
* \param[in,out] T A bignum for temporary storage.
* It must be at least twice the limb size of N plus 2
* (T->n >= 2 * (N->n + 1)).
* Its initial content is unused and
* its final content is indeterminate.
* Note that unlike the usual convention in the library
* for `const mbedtls_mpi*`, the content of T can change.
*/
static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
const mbedtls_mpi *T )
{
size_t i, n, m;
mbedtls_mpi_uint u0, u1, *d;
memset( T->p, 0, T->n * ciL );
d = T->p;
n = N->n;
m = ( B->n < n ) ? B->n : n;
for( i = 0; i < n; i++ )
{
/*
* T = (T + u0*B + u1*N) / 2^biL
*/
u0 = A->p[i];
u1 = ( d[0] + u0 * B->p[0] ) * mm;
mpi_mul_hlp( m, B->p, d, u0 );
mpi_mul_hlp( n, N->p, d, u1 );
*d++ = u0; d[n + 1] = 0;
}
/* At this point, d is either the desired result or the desired result
* plus N. We now potentially subtract N, avoiding leaking whether the
* subtraction is performed through side channels. */
/* Copy the n least significant limbs of d to A, so that
* A = d if d < N (recall that N has n limbs). */
memcpy( A->p, d, n * ciL );
/* If d >= N then we want to set A to d - N. To prevent timing attacks,
* do the calculation without using conditional tests. */
/* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
d[n] += 1;
d[n] -= mpi_sub_hlp( n, d, d, N->p );
/* If d0 < N then d < (2^biL)^n
* so d[n] == 0 and we want to keep A as it is.
* If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
* so d[n] == 1 and we want to set A to the result of the subtraction
* which is d - (2^biL)^n, i.e. the n least significant limbs of d.
* This exactly corresponds to a conditional assignment. */
mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
}
/*
* Montgomery reduction: A = A * R^-1 mod N
*
* See mpi_montmul() regarding constraints and guarantees on the parameters.
*/
static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
mbedtls_mpi_uint mm, const mbedtls_mpi *T )
{
mbedtls_mpi_uint z = 1;
mbedtls_mpi U;
U.n = U.s = (int) z;
U.p = &z;
mpi_montmul( A, &U, N, mm, T );
}
/**
* Select an MPI from a table without leaking the index.
*
* This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
* reads the entire table in order to avoid leaking the value of idx to an
* attacker able to observe memory access patterns.
*
* \param[out] R Where to write the selected MPI.
* \param[in] T The table to read from.
* \param[in] T_size The number of elements in the table.
* \param[in] idx The index of the element to select;
* this must satisfy 0 <= idx < T_size.
*
* \return \c 0 on success, or a negative error code.
*/
static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
for( size_t i = 0; i < T_size; i++ )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
(unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
}
cleanup:
return( ret );
}
/*
* Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
*/
int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
const mbedtls_mpi *E, const mbedtls_mpi *N,
mbedtls_mpi *prec_RR )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t wbits, wsize, one = 1;
size_t i, j, nblimbs;
size_t bufsize, nbits;
mbedtls_mpi_uint ei, mm, state;
mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
int neg;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( E != NULL );
MPI_VALIDATE_RET( N != NULL );
if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
/*
* Init temps and window size
*/
mpi_montg_init( &mm, N );
mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
mbedtls_mpi_init( &Apos );
mbedtls_mpi_init( &WW );
memset( W, 0, sizeof( W ) );
i = mbedtls_mpi_bitlen( E );
wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
wsize = MBEDTLS_MPI_WINDOW_SIZE;
#endif
j = N->n + 1;
/* All W[i] and X must have at least N->n limbs for the mpi_montmul()
* and mpi_montred() calls later. Here we ensure that W[1] and X are
* large enough, and later we'll grow other W[i] to the same length.
* They must not be shrunk midway through this function!
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
/*
* Compensate for negative A (and correct at the end)
*/
neg = ( A->s == -1 );
if( neg )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Apos.s = 1;
A = &Apos;
}
/*
* If 1st call, pre-compute R^2 mod N
*/
if( prec_RR == NULL || prec_RR->p == NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
if( prec_RR != NULL )
memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
}
else
memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
/*
* W[1] = A * R^2 * R^-1 mod N = A * R mod N
*/
if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
/* This should be a no-op because W[1] is already that large before
* mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
* in mpi_montmul() below, so let's make sure. */
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
}
else
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
/* Note that this is safe because W[1] always has at least N->n limbs
* (it grew above and was preserved by mbedtls_mpi_copy()). */
mpi_montmul( &W[1], &RR, N, mm, &T );
/*
* X = R^2 * R^-1 mod N = R mod N
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
mpi_montred( X, N, mm, &T );
if( wsize > 1 )
{
/*
* W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
*/
j = one << ( wsize - 1 );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
for( i = 0; i < wsize - 1; i++ )
mpi_montmul( &W[j], &W[j], N, mm, &T );
/*
* W[i] = W[i - 1] * W[1]
*/
for( i = j + 1; i < ( one << wsize ); i++ )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
mpi_montmul( &W[i], &W[1], N, mm, &T );
}
}
nblimbs = E->n;
bufsize = 0;
nbits = 0;
wbits = 0;
state = 0;
while( 1 )
{
if( bufsize == 0 )
{
if( nblimbs == 0 )
break;
nblimbs--;
bufsize = sizeof( mbedtls_mpi_uint ) << 3;
}
bufsize--;
ei = (E->p[nblimbs] >> bufsize) & 1;
/*
* skip leading 0s
*/
if( ei == 0 && state == 0 )
continue;
if( ei == 0 && state == 1 )
{
/*
* out of window, square X
*/
mpi_montmul( X, X, N, mm, &T );
continue;
}
/*
* add ei to current window
*/
state = 2;
nbits++;
wbits |= ( ei << ( wsize - nbits ) );
if( nbits == wsize )
{
/*
* X = X^wsize R^-1 mod N
*/
for( i = 0; i < wsize; i++ )
mpi_montmul( X, X, N, mm, &T );
/*
* X = X * W[wbits] R^-1 mod N
*/
MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
mpi_montmul( X, &WW, N, mm, &T );
state--;
nbits = 0;
wbits = 0;
}
}
/*
* process the remaining bits
*/
for( i = 0; i < nbits; i++ )
{
mpi_montmul( X, X, N, mm, &T );
wbits <<= 1;
if( ( wbits & ( one << wsize ) ) != 0 )
mpi_montmul( X, &W[1], N, mm, &T );
}
/*
* X = A^E * R * R^-1 mod N = A^E mod N
*/
mpi_montred( X, N, mm, &T );
if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
{
X->s = -1;
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
}
cleanup:
for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
mbedtls_mpi_free( &W[i] );
mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
mbedtls_mpi_free( &WW );
if( prec_RR == NULL || prec_RR->p == NULL )
mbedtls_mpi_free( &RR );
return( ret );
}
/*
* Greatest common divisor: G = gcd(A, B) (HAC 14.54)
*/
int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t lz, lzt;
mbedtls_mpi TA, TB;
MPI_VALIDATE_RET( G != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( B != NULL );
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
lz = mbedtls_mpi_lsb( &TA );
lzt = mbedtls_mpi_lsb( &TB );
/* The loop below gives the correct result when A==0 but not when B==0.
* So have a special case for B==0. Leverage the fact that we just
* calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
* slightly more efficient than cmp_int(). */
if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
{
ret = mbedtls_mpi_copy( G, A );
goto cleanup;
}
if( lzt < lz )
lz = lzt;
TA.s = TB.s = 1;
/* We mostly follow the procedure described in HAC 14.54, but with some
* minor differences:
* - Sequences of multiplications or divisions by 2 are grouped into a
* single shift operation.
* - The procedure in HAC assumes that 0 < TB <= TA.
* - The condition TB <= TA is not actually necessary for correctness.
* TA and TB have symmetric roles except for the loop termination
* condition, and the shifts at the beginning of the loop body
* remove any significance from the ordering of TA vs TB before
* the shifts.
* - If TA = 0, the loop goes through 0 iterations and the result is
* correctly TB.
* - The case TB = 0 was short-circuited above.
*
* For the correctness proof below, decompose the original values of
* A and B as
* A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
* B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
* Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
* and gcd(A',B') is odd or 0.
*
* At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
* The code maintains the following invariant:
* gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
*/
/* Proof that the loop terminates:
* At each iteration, either the right-shift by 1 is made on a nonzero
* value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
* by at least 1, or the right-shift by 1 is made on zero and then
* TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
* since in that case TB is calculated from TB-TA with the condition TB>TA).
*/
while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
{
/* Divisions by 2 preserve the invariant (I). */
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
/* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
* TA-TB is even so the division by 2 has an integer result.
* Invariant (I) is preserved since any odd divisor of both TA and TB
* also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
* also divides TB, and any odd divisior of both TB and |TA-TB|/2 also
* divides TA.
*/
if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
}
/* Note that one of TA or TB is still odd. */
}
/* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
* At the loop exit, TA = 0, so gcd(TA,TB) = TB.
* - If there was at least one loop iteration, then one of TA or TB is odd,
* and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
* lz = min(a,b) so gcd(A,B) = 2^lz * TB.
* - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
* In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
cleanup:
mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
return( ret );
}
/* Fill X with n_bytes random bytes.
* X must already have room for those bytes.
* The ordering of the bytes returned from the RNG is suitable for
* deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
* The size and sign of X are unchanged.
* n_bytes must not be 0.
*/
static int mpi_fill_random_internal(
mbedtls_mpi *X, size_t n_bytes,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
const size_t limbs = CHARS_TO_LIMBS( n_bytes );
const size_t overhead = ( limbs * ciL ) - n_bytes;
if( X->n < limbs )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
memset( X->p, 0, overhead );
memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
mpi_bigendian_to_host( X->p, limbs );
cleanup:
return( ret );
}
/*
* Fill X with size bytes of random.
*
* Use a temporary bytes representation to make sure the result is the same
* regardless of the platform endianness (useful when f_rng is actually
* deterministic, eg for tests).
*/
int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t const limbs = CHARS_TO_LIMBS( size );
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( f_rng != NULL );
/* Ensure that target MPI has exactly the necessary number of limbs */
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
if( size == 0 )
return( 0 );
ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
cleanup:
return( ret );
}
int mbedtls_mpi_random( mbedtls_mpi *X,
mbedtls_mpi_sint min,
const mbedtls_mpi *N,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
int count;
unsigned lt_lower = 1, lt_upper = 0;
size_t n_bits = mbedtls_mpi_bitlen( N );
size_t n_bytes = ( n_bits + 7 ) / 8;
mbedtls_mpi lower_bound;
if( min < 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
/*
* When min == 0, each try has at worst a probability 1/2 of failing
* (the msb has a probability 1/2 of being 0, and then the result will
* be < N), so after 30 tries failure probability is a most 2**(-30).
*
* When N is just below a power of 2, as is the case when generating
* a random scalar on most elliptic curves, 1 try is enough with
* overwhelming probability. When N is just above a power of 2,
* as when generating a random scalar on secp224k1, each try has
* a probability of failing that is almost 1/2.
*
* The probabilities are almost the same if min is nonzero but negligible
* compared to N. This is always the case when N is crypto-sized, but
* it's convenient to support small N for testing purposes. When N
* is small, use a higher repeat count, otherwise the probability of
* failure is macroscopic.
*/
count = ( n_bytes > 4 ? 30 : 250 );
mbedtls_mpi_init( &lower_bound );
/* Ensure that target MPI has exactly the same number of limbs
* as the upper bound, even if the upper bound has leading zeros.
* This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
/*
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
* - use the same byte ordering;
* - keep the leftmost n_bits bits of the generated octet string;
* - try until result is in the desired range.
* This also avoids any bias, which is especially important for ECDSA.
*/
do
{
MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
if( --count == 0 )
{
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
goto cleanup;
}
MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
}
while( lt_lower != 0 || lt_upper == 0 );
cleanup:
mbedtls_mpi_free( &lower_bound );
return( ret );
}
/*
* Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
*/
int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( A != NULL );
MPI_VALIDATE_RET( N != NULL );
if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
{
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
goto cleanup;
}
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
do
{
while( ( TU.p[0] & 1 ) == 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
}
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
}
while( ( TV.p[0] & 1 ) == 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
}
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
}
if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
}
}
while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
cleanup:
mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
return( ret );
}
#if defined(MBEDTLS_GENPRIME)
static const int small_prime[] =
{
3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269,
271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367,
373, 379, 383, 389, 397, 401, 409, 419,
421, 431, 433, 439, 443, 449, 457, 461,
463, 467, 479, 487, 491, 499, 503, 509,
521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617,
619, 631, 641, 643, 647, 653, 659, 661,
673, 677, 683, 691, 701, 709, 719, 727,
733, 739, 743, 751, 757, 761, 769, 773,
787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883,
887, 907, 911, 919, 929, 937, 941, 947,
953, 967, 971, 977, 983, 991, 997, -103
};
/*
* Small divisors test (X must be positive)
*
* Return values:
* 0: no small factor (possible prime, more tests needed)
* 1: certain prime
* MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
* other negative: error
*/
static int mpi_check_small_factors( const mbedtls_mpi *X )
{
int ret = 0;
size_t i;
mbedtls_mpi_uint r;
if( ( X->p[0] & 1 ) == 0 )
return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
for( i = 0; small_prime[i] > 0; i++ )
{
if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
return( 1 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
if( r == 0 )
return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
}
cleanup:
return( ret );
}
/*
* Miller-Rabin pseudo-primality test (HAC 4.24)
*/
static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret, count;
size_t i, j, k, s;
mbedtls_mpi W, R, T, A, RR;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( f_rng != NULL );
mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
mbedtls_mpi_init( &RR );
/*
* W = |X| - 1
* R = W >> lsb( W )
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
s = mbedtls_mpi_lsb( &W );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
for( i = 0; i < rounds; i++ )
{
/*
* pick a random A, 1 < A < |X| - 1
*/
count = 0;
do {
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
j = mbedtls_mpi_bitlen( &A );
k = mbedtls_mpi_bitlen( &W );
if (j > k) {
A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
}
if (count++ > 30) {
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
goto cleanup;
}
} while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
/*
* A = A^R mod |X|
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
continue;
j = 1;
while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
{
/*
* A = A * A mod |X|
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
break;
j++;
}
/*
* not prime if A != |X| - 1 or A == 1
*/
if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
{
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
break;
}
}
cleanup:
mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
mbedtls_mpi_free( &RR );
return( ret );
}
/*
* Pseudo-primality test: small factors, then Miller-Rabin
*/
int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_mpi XX;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( f_rng != NULL );
XX.s = 1;
XX.n = X->n;
XX.p = X->p;
if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
return( 0 );
if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
{
if( ret == 1 )
return( 0 );
return( ret );
}
return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
}
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
/*
* Pseudo-primality test, error probability 2^-80
*/
int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( f_rng != NULL );
/*
* In the past our key generation aimed for an error rate of at most
* 2^-80. Since this function is deprecated, aim for the same certainty
* here as well.
*/
return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
}
#endif
/*
* Prime number generation
*
* To generate an RSA key in a way recommended by FIPS 186-4, both primes must
* be either 1024 bits or 1536 bits long, and flags must contain
* MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
*/
int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
#ifdef MBEDTLS_HAVE_INT64
// ceil(2^63.5)
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
#else
// ceil(2^31.5)
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
#endif
int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
size_t k, n;
int rounds;
mbedtls_mpi_uint r;
mbedtls_mpi Y;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( f_rng != NULL );
if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
mbedtls_mpi_init( &Y );
n = BITS_TO_LIMBS( nbits );
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
{
/*
* 2^-80 error probability, number of rounds chosen per HAC, table 4.4
*/
rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
}
else
{
/*
* 2^-100 error probability, number of rounds computed based on HAC,
* fact 4.48
*/
rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
}
while( 1 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
/* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
k = n * biL;
if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
X->p[0] |= 1;
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
{
ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
goto cleanup;
}
else
{
/*
* An necessary condition for Y and X = 2Y + 1 to be prime
* is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
* Make sure it is satisfied, while keeping X = 3 mod 4
*/
X->p[0] |= 2;
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
if( r == 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
else if( r == 1 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
/* Set Y = (X-1) / 2, which is X / 2 because X is odd */
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
while( 1 )
{
/*
* First, check small factors for X and Y
* before doing Miller-Rabin on any of them
*/
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
== 0 &&
( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
== 0 )
goto cleanup;
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
goto cleanup;
/*
* Next candidates. We want to preserve Y = (X-1) / 2 and
* Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
* so up Y by 6 and X by 12.
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
}
}
}
cleanup:
mbedtls_mpi_free( &Y );
return( ret );
}
#endif /* MBEDTLS_GENPRIME */
#if defined(MBEDTLS_SELF_TEST)
#define GCD_PAIR_COUNT 3
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
{
{ 693, 609, 21 },
{ 1764, 868, 28 },
{ 768454923, 542167814, 1 }
};
/*
* Checkup routine
*/
int mbedtls_mpi_self_test( int verbose )
{
int ret, i;
mbedtls_mpi A, E, N, X, Y, U, V;
mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
"EFE021C2645FD1DC586E69184AF4A31E" \
"D5F53E93B5F123FA41680867BA110131" \
"944FE7952E2517337780CB0DB80E61AA" \
"E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
"B2E7EFD37075B9F03FF989C7C5051C20" \
"34D2A323810251127E7BF8625A4F49A5" \
"F3E27F4DA8BD59C47D6DAABA4C8127BD" \
"5B5C25763222FEFCCFC38B832366C29E" ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
"0066A198186C18C10B2F5ED9B522752A" \
"9830B69916E535C8F047518A889A43A5" \
"94B6BED27A168D31D4A52F88925AA8F5" ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
"602AB7ECA597A3D6B56FF9829A5E8B85" \
"9E857EA95A03512E2BAE7391688D264A" \
"A5663B0341DB9CCFD2C4C5F421FEC814" \
"8001B72E848A38CAE1C65F78E56ABDEF" \
"E12D3C039B8A02D6BE593F0BBBDA56F1" \
"ECF677152EF804370C1A305CAF3B5BF1" \
"30879B56C61DE584A0F53A2447A51E" ) );
if( verbose != 0 )
mbedtls_printf( " MPI test #1 (mul_mpi): " );
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
ret = 1;
goto cleanup;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
"256567336059E52CAE22925474705F39A94" ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
"6613F26162223DF488E9CD48CC132C7A" \
"0AC93C701B001B092E4E5B9F73BCD27B" \
"9EE50D0657C77F374E903CDFA4C642" ) );
if( verbose != 0 )
mbedtls_printf( " MPI test #2 (div_mpi): " );
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
ret = 1;
goto cleanup;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
"36E139AEA55215609D2816998ED020BB" \
"BD96C37890F65171D948E9BC7CBAA4D9" \
"325D24D6A3C12710F10A09FA08AB87" ) );
if( verbose != 0 )
mbedtls_printf( " MPI test #3 (exp_mod): " );
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
ret = 1;
goto cleanup;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
"003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
"C3DBA76456363A10869622EAC2DD84EC" \
"C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
if( verbose != 0 )
mbedtls_printf( " MPI test #4 (inv_mod): " );
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
ret = 1;
goto cleanup;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
if( verbose != 0 )
mbedtls_printf( " MPI test #5 (simple gcd): " );
for( i = 0; i < GCD_PAIR_COUNT; i++ )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed at %d\n", i );
ret = 1;
goto cleanup;
}
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
cleanup:
if( ret != 0 && verbose != 0 )
mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
if( verbose != 0 )
mbedtls_printf( "\n" );
return( ret );
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_BIGNUM_C */