218 lines
8.9 KiB
C++
218 lines
8.9 KiB
C++
/**************************************************************************/
|
|
/* openxr_composition_layer_cylinder.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "openxr_composition_layer_cylinder.h"
|
|
|
|
#include "../extensions/openxr_composition_layer_extension.h"
|
|
#include "../openxr_api.h"
|
|
#include "../openxr_interface.h"
|
|
|
|
#include "scene/3d/mesh_instance_3d.h"
|
|
#include "scene/main/viewport.h"
|
|
#include "scene/resources/mesh.h"
|
|
|
|
OpenXRCompositionLayerCylinder::OpenXRCompositionLayerCylinder() :
|
|
OpenXRCompositionLayer((XrCompositionLayerBaseHeader *)&composition_layer) {
|
|
XRServer::get_singleton()->connect("reference_frame_changed", callable_mp(this, &OpenXRCompositionLayerCylinder::update_transform));
|
|
}
|
|
|
|
OpenXRCompositionLayerCylinder::~OpenXRCompositionLayerCylinder() {
|
|
}
|
|
|
|
void OpenXRCompositionLayerCylinder::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &OpenXRCompositionLayerCylinder::set_radius);
|
|
ClassDB::bind_method(D_METHOD("get_radius"), &OpenXRCompositionLayerCylinder::get_radius);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_aspect_ratio", "aspect_ratio"), &OpenXRCompositionLayerCylinder::set_aspect_ratio);
|
|
ClassDB::bind_method(D_METHOD("get_aspect_ratio"), &OpenXRCompositionLayerCylinder::get_aspect_ratio);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_central_angle", "angle"), &OpenXRCompositionLayerCylinder::set_central_angle);
|
|
ClassDB::bind_method(D_METHOD("get_central_angle"), &OpenXRCompositionLayerCylinder::get_central_angle);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_fallback_segments", "segments"), &OpenXRCompositionLayerCylinder::set_fallback_segments);
|
|
ClassDB::bind_method(D_METHOD("get_fallback_segments"), &OpenXRCompositionLayerCylinder::get_fallback_segments);
|
|
|
|
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_NONE, ""), "set_radius", "get_radius");
|
|
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "aspect_ratio", PROPERTY_HINT_RANGE, "0,100"), "set_aspect_ratio", "get_aspect_ratio");
|
|
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "central_angle", PROPERTY_HINT_RANGE, "0,360,0.1,or_less,or_greater,radians_as_degrees"), "set_central_angle", "get_central_angle");
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "fallback_segments", PROPERTY_HINT_NONE, ""), "set_fallback_segments", "get_fallback_segments");
|
|
}
|
|
|
|
Ref<Mesh> OpenXRCompositionLayerCylinder::_create_fallback_mesh() {
|
|
Ref<ArrayMesh> mesh;
|
|
mesh.instantiate();
|
|
|
|
float arc_length = radius * central_angle;
|
|
float half_height = ((1.0 / aspect_ratio) * arc_length) / 2.0;
|
|
|
|
Array arrays;
|
|
arrays.resize(ArrayMesh::ARRAY_MAX);
|
|
|
|
Vector<Vector3> vertices;
|
|
Vector<Vector3> normals;
|
|
Vector<Vector2> uvs;
|
|
Vector<int> indices;
|
|
|
|
float delta_angle = central_angle / fallback_segments;
|
|
float start_angle = (-Math_PI / 2.0) - (central_angle / 2.0);
|
|
|
|
for (uint32_t i = 0; i < fallback_segments + 1; i++) {
|
|
float current_angle = start_angle + (delta_angle * i);
|
|
float x = radius * Math::cos(current_angle);
|
|
float z = radius * Math::sin(current_angle);
|
|
Vector3 normal(Math::cos(current_angle), 0, Math::sin(current_angle));
|
|
|
|
vertices.push_back(Vector3(x, -half_height, z));
|
|
normals.push_back(normal);
|
|
uvs.push_back(Vector2((float)i / fallback_segments, 1));
|
|
|
|
vertices.push_back(Vector3(x, half_height, z));
|
|
normals.push_back(normal);
|
|
uvs.push_back(Vector2((float)i / fallback_segments, 0));
|
|
}
|
|
|
|
for (uint32_t i = 0; i < fallback_segments; i++) {
|
|
uint32_t index = i * 2;
|
|
indices.push_back(index);
|
|
indices.push_back(index + 1);
|
|
indices.push_back(index + 3);
|
|
indices.push_back(index);
|
|
indices.push_back(index + 3);
|
|
indices.push_back(index + 2);
|
|
}
|
|
|
|
arrays[ArrayMesh::ARRAY_VERTEX] = vertices;
|
|
arrays[ArrayMesh::ARRAY_NORMAL] = normals;
|
|
arrays[ArrayMesh::ARRAY_TEX_UV] = uvs;
|
|
arrays[ArrayMesh::ARRAY_INDEX] = indices;
|
|
|
|
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arrays);
|
|
return mesh;
|
|
}
|
|
|
|
void OpenXRCompositionLayerCylinder::_notification(int p_what) {
|
|
switch (p_what) {
|
|
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
|
|
update_transform();
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void OpenXRCompositionLayerCylinder::update_transform() {
|
|
composition_layer.pose = get_openxr_pose();
|
|
}
|
|
|
|
void OpenXRCompositionLayerCylinder::set_radius(float p_radius) {
|
|
ERR_FAIL_COND(p_radius <= 0);
|
|
radius = p_radius;
|
|
composition_layer.radius = radius;
|
|
update_fallback_mesh();
|
|
}
|
|
|
|
float OpenXRCompositionLayerCylinder::get_radius() const {
|
|
return radius;
|
|
}
|
|
|
|
void OpenXRCompositionLayerCylinder::set_aspect_ratio(float p_aspect_ratio) {
|
|
ERR_FAIL_COND(p_aspect_ratio <= 0);
|
|
aspect_ratio = p_aspect_ratio;
|
|
composition_layer.aspectRatio = aspect_ratio;
|
|
update_fallback_mesh();
|
|
}
|
|
|
|
float OpenXRCompositionLayerCylinder::get_aspect_ratio() const {
|
|
return aspect_ratio;
|
|
}
|
|
|
|
void OpenXRCompositionLayerCylinder::set_central_angle(float p_central_angle) {
|
|
ERR_FAIL_COND(p_central_angle <= 0);
|
|
central_angle = p_central_angle;
|
|
composition_layer.centralAngle = central_angle;
|
|
update_fallback_mesh();
|
|
}
|
|
|
|
float OpenXRCompositionLayerCylinder::get_central_angle() const {
|
|
return central_angle;
|
|
}
|
|
|
|
void OpenXRCompositionLayerCylinder::set_fallback_segments(uint32_t p_fallback_segments) {
|
|
ERR_FAIL_COND(p_fallback_segments == 0);
|
|
fallback_segments = p_fallback_segments;
|
|
update_fallback_mesh();
|
|
}
|
|
|
|
uint32_t OpenXRCompositionLayerCylinder::get_fallback_segments() const {
|
|
return fallback_segments;
|
|
}
|
|
|
|
Vector2 OpenXRCompositionLayerCylinder::intersects_ray(const Vector3 &p_origin, const Vector3 &p_direction) const {
|
|
Transform3D cylinder_transform = get_global_transform();
|
|
Vector3 cylinder_axis = cylinder_transform.basis.get_column(1);
|
|
|
|
Vector3 offset = p_origin - cylinder_transform.origin;
|
|
float a = p_direction.dot(p_direction - cylinder_axis * p_direction.dot(cylinder_axis));
|
|
float b = 2.0 * (p_direction.dot(offset - cylinder_axis * offset.dot(cylinder_axis)));
|
|
float c = offset.dot(offset - cylinder_axis * offset.dot(cylinder_axis)) - (radius * radius);
|
|
|
|
float discriminant = b * b - 4.0 * a * c;
|
|
if (discriminant < 0.0) {
|
|
return Vector2(-1.0, -1.0);
|
|
}
|
|
|
|
float t0 = (-b - Math::sqrt(discriminant)) / (2.0 * a);
|
|
float t1 = (-b + Math::sqrt(discriminant)) / (2.0 * a);
|
|
float t = MAX(t0, t1);
|
|
|
|
if (t < 0.0) {
|
|
return Vector2(-1.0, -1.0);
|
|
}
|
|
Vector3 intersection = p_origin + p_direction * t;
|
|
|
|
Basis correction = cylinder_transform.basis.inverse();
|
|
correction.rotate(Vector3(0.0, 1.0, 0.0), -Math_PI / 2.0);
|
|
Vector3 relative_point = correction.xform(intersection - cylinder_transform.origin);
|
|
|
|
Vector2 projected_point = Vector2(relative_point.x, relative_point.z);
|
|
float intersection_angle = Math::atan2(projected_point.y, projected_point.x);
|
|
if (Math::abs(intersection_angle) > central_angle / 2.0) {
|
|
return Vector2(-1.0, -1.0);
|
|
}
|
|
|
|
float arc_length = radius * central_angle;
|
|
float height = aspect_ratio * arc_length;
|
|
if (Math::abs(relative_point.y) > height / 2.0) {
|
|
return Vector2(-1.0, -1.0);
|
|
}
|
|
|
|
float u = 0.5 + (intersection_angle / central_angle);
|
|
float v = 1.0 - (0.5 + (relative_point.y / height));
|
|
|
|
return Vector2(u, v);
|
|
}
|