virtualx-engine/servers/rendering/rasterizer_rd/shaders/giprobe_sdf.glsl
Rémi Verschelde 07bc4e2f96 Style: Enforce separation line between function definitions
I couldn't find a tool that enforces it, so I went the manual route:
```
find -name "thirdparty" -prune \
  -o -name "*.cpp" -o -name "*.h" -o -name "*.m" -o -name "*.mm" \
  -o -name "*.glsl" > files
perl -0777 -pi -e 's/\n}\n([^#])/\n}\n\n\1/g' $(cat files)
misc/scripts/fix_style.sh -c
```

This adds a newline after all `}` on the first column, unless they
are followed by `#` (typically `#endif`). This leads to having lots
of places with two lines between function/class definitions, but
clang-format then fixes it as we enforce max one line of separation.

This doesn't fix potential occurrences of function definitions which
are indented (e.g. for a helper class defined in a .cpp), but it's
better than nothing. Also can't be made to run easily on CI/hooks so
we'll have to be careful with new code.

Part of #33027.
2020-05-14 16:54:55 +02:00

190 lines
4.7 KiB
GLSL

/* clang-format off */
[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
/* clang-format on */
#define MAX_DISTANCE 100000
#define NO_CHILDREN 0xFFFFFFFF
#define GREY_VEC vec3(0.33333, 0.33333, 0.33333)
struct CellChildren {
uint children[8];
};
layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
CellChildren data[];
}
cell_children;
struct CellData {
uint position; // xyz 10 bits
uint albedo; //rgb albedo
uint emission; //rgb normalized with e as multiplier
uint normal; //RGB normal encoded
};
layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
CellData data[];
}
cell_data;
layout(r8ui, set = 0, binding = 3) uniform restrict writeonly uimage3D sdf_tex;
layout(push_constant, binding = 0, std430) uniform Params {
uint offset;
uint end;
uint pad0;
uint pad1;
}
params;
void main() {
vec3 pos = vec3(gl_GlobalInvocationID);
float closest_dist = 100000.0;
for (uint i = params.offset; i < params.end; i++) {
vec3 posu = vec3(uvec3(cell_data.data[i].position & 0x7FF, (cell_data.data[i].position >> 11) & 0x3FF, cell_data.data[i].position >> 21));
float dist = length(pos - posu);
if (dist < closest_dist) {
closest_dist = dist;
}
}
uint dist_8;
if (closest_dist < 0.0001) { // same cell
dist_8 = 0; //equals to -1
} else {
dist_8 = clamp(uint(closest_dist), 0, 254) + 1; //conservative, 0 is 1, so <1 is considered solid
}
imageStore(sdf_tex, ivec3(gl_GlobalInvocationID), uvec4(dist_8));
//imageStore(sdf_tex,pos,uvec4(pos*2,0));
}
#if 0
layout(push_constant, binding = 0, std430) uniform Params {
ivec3 limits;
uint stack_size;
} params;
float distance_to_aabb(ivec3 pos, ivec3 aabb_pos, ivec3 aabb_size) {
vec3 delta = vec3(max(ivec3(0), max(aabb_pos - pos, pos - (aabb_pos + aabb_size - ivec3(1)))));
return length(delta);
}
void main() {
ivec3 pos = ivec3(gl_GlobalInvocationID);
uint stack[10] = uint[](0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
uint stack_indices[10] = uint[](0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
ivec3 stack_positions[10] = ivec3[](ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0));
const uint cell_orders[8] = uint[](
0x11f58d1,
0xe2e70a,
0xd47463,
0xbb829c,
0x8d11f5,
0x70ae2e,
0x463d47,
0x29cbb8);
bool cell_found = false;
bool cell_found_exact = false;
ivec3 closest_cell_pos;
float closest_distance = MAX_DISTANCE;
int stack_pos = 0;
while (true) {
uint index = stack_indices[stack_pos] >> 24;
if (index == 8) {
//go up
if (stack_pos == 0) {
break; //done going through octree
}
stack_pos--;
continue;
}
stack_indices[stack_pos] = (stack_indices[stack_pos] & ((1 << 24) - 1)) | ((index + 1) << 24);
uint cell_index = (stack_indices[stack_pos] >> (index * 3)) & 0x7;
uint child_cell = cell_children.data[stack[stack_pos]].children[cell_index];
if (child_cell == NO_CHILDREN) {
continue;
}
ivec3 child_cell_size = params.limits >> (stack_pos + 1);
ivec3 child_cell_pos = stack_positions[stack_pos];
child_cell_pos += mix(ivec3(0), child_cell_size, bvec3(uvec3(index & 1, index & 2, index & 4) != uvec3(0)));
bool is_leaf = stack_pos == (params.stack_size - 2);
if (child_cell_pos == pos && is_leaf) {
//we may actually end up in the exact cell.
//if this happens, just abort
cell_found_exact = true;
break;
}
if (cell_found) {
//discard by distance
float distance = distance_to_aabb(pos, child_cell_pos, child_cell_size);
if (distance >= closest_distance) {
continue; //pointless, just test next child
} else if (is_leaf) {
//closer than what we have AND end of stack, save and continue
closest_cell_pos = child_cell_pos;
closest_distance = distance;
continue;
}
} else if (is_leaf) {
//first solid cell we find, save and continue
closest_distance = distance_to_aabb(pos, child_cell_pos, child_cell_size);
closest_cell_pos = child_cell_pos;
cell_found = true;
continue;
}
bvec3 direction = greaterThan((pos - (child_cell_pos + (child_cell_size >> 1))), ivec3(0));
uint cell_order = 0;
cell_order |= mix(0, 1, direction.x);
cell_order |= mix(0, 2, direction.y);
cell_order |= mix(0, 4, direction.z);
stack[stack_pos + 1] = child_cell;
stack_indices[stack_pos + 1] = cell_orders[cell_order]; //start counting
stack_positions[stack_pos + 1] = child_cell_pos;
stack_pos++; //go up stack
}
uint dist_8;
if (cell_found_exact) {
dist_8 = 0; //equals to -1
} else {
float closest_distance = length(vec3(pos - closest_cell_pos));
dist_8 = clamp(uint(closest_distance), 0, 254) + 1; //conservative, 0 is 1, so <1 is considered solid
}
imageStore(sdf_tex, pos, uvec4(dist_8));
}
#endif