virtualx-engine/servers/rendering/renderer_scene_cull.cpp
2021-04-21 23:42:29 +10:00

3564 lines
135 KiB
C++

/*************************************************************************/
/* renderer_scene_cull.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "renderer_scene_cull.h"
#include "core/config/project_settings.h"
#include "core/os/os.h"
#include "rendering_server_default.h"
#include "rendering_server_globals.h"
#include <new>
/* CAMERA API */
RID RendererSceneCull::camera_allocate() {
return camera_owner.allocate_rid();
}
void RendererSceneCull::camera_initialize(RID p_rid) {
camera_owner.initialize_rid(p_rid, memnew(Camera));
}
void RendererSceneCull::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::PERSPECTIVE;
camera->fov = p_fovy_degrees;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void RendererSceneCull::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::ORTHOGONAL;
camera->size = p_size;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void RendererSceneCull::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::FRUSTUM;
camera->size = p_size;
camera->offset = p_offset;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void RendererSceneCull::camera_set_transform(RID p_camera, const Transform &p_transform) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->transform = p_transform.orthonormalized();
}
void RendererSceneCull::camera_set_cull_mask(RID p_camera, uint32_t p_layers) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->visible_layers = p_layers;
}
void RendererSceneCull::camera_set_environment(RID p_camera, RID p_env) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->env = p_env;
}
void RendererSceneCull::camera_set_camera_effects(RID p_camera, RID p_fx) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->effects = p_fx;
}
void RendererSceneCull::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->vaspect = p_enable;
}
bool RendererSceneCull::is_camera(RID p_camera) const {
return camera_owner.owns(p_camera);
}
/* SCENARIO API */
void RendererSceneCull::_instance_pair(Instance *p_A, Instance *p_B) {
RendererSceneCull *self = (RendererSceneCull *)singleton;
Instance *A = p_A;
Instance *B = p_B;
//instance indices are designed so greater always contains lesser
if (A->base_type > B->base_type) {
SWAP(A, B); //lesser always first
}
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->lights.insert(B);
light->geometries.insert(A);
if (geom->can_cast_shadows) {
light->shadow_dirty = true;
}
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_LIGHTING_DIRTY;
}
} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->reflection_probes.insert(B);
reflection_probe->geometries.insert(A);
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_REFLECTION_DIRTY;
}
} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->decals.insert(B);
decal->geometries.insert(A);
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_DECAL_DIRTY;
}
} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
if (A->dynamic_gi) {
geom->lightmap_captures.insert(A);
lightmap_data->geometries.insert(B);
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_LIGHTMAP_CAPTURE;
}
((RendererSceneCull *)self)->_instance_queue_update(A, false, false); //need to update capture
}
} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_GI_PROBE) && B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->gi_probes.insert(B);
if (A->dynamic_gi) {
gi_probe->dynamic_geometries.insert(A);
} else {
gi_probe->geometries.insert(A);
}
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_GI_PROBE_DIRTY;
}
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
gi_probe->lights.insert(A);
} else if (B->base_type == RS::INSTANCE_PARTICLES_COLLISION && A->base_type == RS::INSTANCE_PARTICLES) {
InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(B->base_data);
RSG::storage->particles_add_collision(A->base, collision->instance);
}
}
void RendererSceneCull::_instance_unpair(Instance *p_A, Instance *p_B) {
RendererSceneCull *self = (RendererSceneCull *)singleton;
Instance *A = p_A;
Instance *B = p_B;
//instance indices are designed so greater always contains lesser
if (A->base_type > B->base_type) {
SWAP(A, B); //lesser always first
}
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->lights.erase(B);
light->geometries.erase(A);
if (geom->can_cast_shadows) {
light->shadow_dirty = true;
}
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_LIGHTING_DIRTY;
}
} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->reflection_probes.erase(B);
reflection_probe->geometries.erase(A);
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_REFLECTION_DIRTY;
}
} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->decals.erase(B);
decal->geometries.erase(A);
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_DECAL_DIRTY;
}
} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
if (A->dynamic_gi) {
geom->lightmap_captures.erase(B);
if (geom->lightmap_captures.is_empty() && A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags &= ~uint32_t(InstanceData::FLAG_LIGHTMAP_CAPTURE);
}
lightmap_data->geometries.erase(A);
((RendererSceneCull *)self)->_instance_queue_update(A, false, false); //need to update capture
}
} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_GI_PROBE) && B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
geom->gi_probes.erase(B);
if (A->dynamic_gi) {
gi_probe->dynamic_geometries.erase(A);
} else {
gi_probe->geometries.erase(A);
}
if (A->scenario && A->array_index >= 0) {
InstanceData &idata = A->scenario->instance_data[A->array_index];
idata.flags |= InstanceData::FLAG_GEOM_GI_PROBE_DIRTY;
}
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
gi_probe->lights.erase(A);
} else if (B->base_type == RS::INSTANCE_PARTICLES_COLLISION && A->base_type == RS::INSTANCE_PARTICLES) {
InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(B->base_data);
RSG::storage->particles_remove_collision(A->base, collision->instance);
}
}
RID RendererSceneCull::scenario_allocate() {
return scenario_owner.allocate_rid();
}
void RendererSceneCull::scenario_initialize(RID p_rid) {
Scenario *scenario = memnew(Scenario);
scenario->self = p_rid;
scenario->reflection_probe_shadow_atlas = scene_render->shadow_atlas_create();
scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest
scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4);
scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4);
scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4);
scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8);
scenario->reflection_atlas = scene_render->reflection_atlas_create();
scenario->instance_aabbs.set_page_pool(&instance_aabb_page_pool);
scenario->instance_data.set_page_pool(&instance_data_page_pool);
scenario_owner.initialize_rid(p_rid, scenario);
}
void RendererSceneCull::scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->debug = p_debug_mode;
}
void RendererSceneCull::scenario_set_environment(RID p_scenario, RID p_environment) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->environment = p_environment;
}
void RendererSceneCull::scenario_set_camera_effects(RID p_scenario, RID p_camera_effects) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->camera_effects = p_camera_effects;
}
void RendererSceneCull::scenario_set_fallback_environment(RID p_scenario, RID p_environment) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->fallback_environment = p_environment;
}
void RendererSceneCull::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count);
}
bool RendererSceneCull::is_scenario(RID p_scenario) const {
return scenario_owner.owns(p_scenario);
}
RID RendererSceneCull::scenario_get_environment(RID p_scenario) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, RID());
return scenario->environment;
}
/* INSTANCING API */
void RendererSceneCull::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) {
if (p_update_aabb) {
p_instance->update_aabb = true;
}
if (p_update_dependencies) {
p_instance->update_dependencies = true;
}
if (p_instance->update_item.in_list()) {
return;
}
_instance_update_list.add(&p_instance->update_item);
}
RID RendererSceneCull::instance_allocate() {
return instance_owner.allocate_rid();
}
void RendererSceneCull::instance_initialize(RID p_rid) {
Instance *instance = memnew(Instance);
instance->self = p_rid;
instance_owner.initialize_rid(p_rid, instance);
}
void RendererSceneCull::_instance_update_mesh_instance(Instance *p_instance) {
bool needs_instance = RSG::storage->mesh_needs_instance(p_instance->base, p_instance->skeleton.is_valid());
if (needs_instance != p_instance->mesh_instance.is_valid()) {
if (needs_instance) {
p_instance->mesh_instance = RSG::storage->mesh_instance_create(p_instance->base);
} else {
RSG::storage->free(p_instance->mesh_instance);
p_instance->mesh_instance = RID();
}
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
scene_render->geometry_instance_set_mesh_instance(geom->geometry_instance, p_instance->mesh_instance);
if (p_instance->scenario && p_instance->array_index >= 0) {
InstanceData &idata = p_instance->scenario->instance_data[p_instance->array_index];
if (p_instance->mesh_instance.is_valid()) {
idata.flags |= InstanceData::FLAG_USES_MESH_INSTANCE;
} else {
idata.flags &= ~uint32_t(InstanceData::FLAG_USES_MESH_INSTANCE);
}
}
}
if (p_instance->mesh_instance.is_valid()) {
RSG::storage->mesh_instance_set_skeleton(p_instance->mesh_instance, p_instance->skeleton);
}
}
void RendererSceneCull::instance_set_base(RID p_instance, RID p_base) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
Scenario *scenario = instance->scenario;
if (instance->base_type != RS::INSTANCE_NONE) {
//free anything related to that base
if (scenario && instance->indexer_id.is_valid()) {
_unpair_instance(instance);
}
if (instance->mesh_instance.is_valid()) {
RSG::storage->free(instance->mesh_instance);
instance->mesh_instance = RID();
// no need to set instance data flag here, as it was freed above
}
switch (instance->base_type) {
case RS::INSTANCE_MESH:
case RS::INSTANCE_MULTIMESH:
case RS::INSTANCE_IMMEDIATE:
case RS::INSTANCE_PARTICLES: {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_free(geom->geometry_instance);
} break;
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
if (scenario && instance->visible && RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
scenario->dynamic_lights.erase(light->instance);
}
#ifdef DEBUG_ENABLED
if (light->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
}
#endif
if (scenario && light->D) {
scenario->directional_lights.erase(light->D);
light->D = nullptr;
}
scene_render->free(light->instance);
} break;
case RS::INSTANCE_PARTICLES_COLLISION: {
InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(instance->base_data);
RSG::storage->free(collision->instance);
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
scene_render->free(reflection_probe->instance);
if (reflection_probe->update_list.in_list()) {
reflection_probe_render_list.remove(&reflection_probe->update_list);
}
} break;
case RS::INSTANCE_DECAL: {
InstanceDecalData *decal = static_cast<InstanceDecalData *>(instance->base_data);
scene_render->free(decal->instance);
} break;
case RS::INSTANCE_LIGHTMAP: {
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(instance->base_data);
//erase dependencies, since no longer a lightmap
while (lightmap_data->users.front()) {
instance_geometry_set_lightmap(lightmap_data->users.front()->get()->self, RID(), Rect2(), 0);
}
scene_render->free(lightmap_data->instance);
} break;
case RS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
#ifdef DEBUG_ENABLED
if (gi_probe->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
}
#endif
#ifdef DEBUG_ENABLED
if (gi_probe->lights.size()) {
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
}
#endif
if (gi_probe->update_element.in_list()) {
gi_probe_update_list.remove(&gi_probe->update_element);
}
scene_render->free(gi_probe->probe_instance);
} break;
default: {
}
}
if (instance->base_data) {
memdelete(instance->base_data);
instance->base_data = nullptr;
}
instance->materials.clear();
}
instance->base_type = RS::INSTANCE_NONE;
instance->base = RID();
if (p_base.is_valid()) {
instance->base_type = RSG::storage->get_base_type(p_base);
ERR_FAIL_COND(instance->base_type == RS::INSTANCE_NONE);
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = memnew(InstanceLightData);
if (scenario && RSG::storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) {
light->D = scenario->directional_lights.push_back(instance);
}
light->instance = scene_render->light_instance_create(p_base);
instance->base_data = light;
} break;
case RS::INSTANCE_MESH:
case RS::INSTANCE_MULTIMESH:
case RS::INSTANCE_IMMEDIATE:
case RS::INSTANCE_PARTICLES: {
InstanceGeometryData *geom = memnew(InstanceGeometryData);
instance->base_data = geom;
geom->geometry_instance = scene_render->geometry_instance_create(p_base);
scene_render->geometry_instance_set_skeleton(geom->geometry_instance, instance->skeleton);
scene_render->geometry_instance_set_material_override(geom->geometry_instance, instance->material_override);
scene_render->geometry_instance_set_surface_materials(geom->geometry_instance, instance->materials);
scene_render->geometry_instance_set_transform(geom->geometry_instance, instance->transform, instance->aabb, instance->transformed_aabb);
scene_render->geometry_instance_set_layer_mask(geom->geometry_instance, instance->layer_mask);
scene_render->geometry_instance_set_lod_bias(geom->geometry_instance, instance->lod_bias);
scene_render->geometry_instance_set_use_baked_light(geom->geometry_instance, instance->baked_light);
scene_render->geometry_instance_set_use_dynamic_gi(geom->geometry_instance, instance->dynamic_gi);
scene_render->geometry_instance_set_cast_double_sided_shadows(geom->geometry_instance, instance->cast_shadows == RS::SHADOW_CASTING_SETTING_DOUBLE_SIDED);
scene_render->geometry_instance_set_use_lightmap(geom->geometry_instance, RID(), instance->lightmap_uv_scale, instance->lightmap_slice_index);
if (instance->lightmap_sh.size() == 9) {
scene_render->geometry_instance_set_lightmap_capture(geom->geometry_instance, instance->lightmap_sh.ptr());
}
} break;
case RS::INSTANCE_PARTICLES_COLLISION: {
InstanceParticlesCollisionData *collision = memnew(InstanceParticlesCollisionData);
collision->instance = RSG::storage->particles_collision_instance_create(p_base);
RSG::storage->particles_collision_instance_set_active(collision->instance, instance->visible);
instance->base_data = collision;
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData);
reflection_probe->owner = instance;
instance->base_data = reflection_probe;
reflection_probe->instance = scene_render->reflection_probe_instance_create(p_base);
} break;
case RS::INSTANCE_DECAL: {
InstanceDecalData *decal = memnew(InstanceDecalData);
decal->owner = instance;
instance->base_data = decal;
decal->instance = scene_render->decal_instance_create(p_base);
} break;
case RS::INSTANCE_LIGHTMAP: {
InstanceLightmapData *lightmap_data = memnew(InstanceLightmapData);
instance->base_data = lightmap_data;
lightmap_data->instance = scene_render->lightmap_instance_create(p_base);
} break;
case RS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData);
instance->base_data = gi_probe;
gi_probe->owner = instance;
if (scenario && !gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
gi_probe->probe_instance = scene_render->gi_probe_instance_create(p_base);
} break;
default: {
}
}
instance->base = p_base;
if (instance->base_type == RS::INSTANCE_MESH) {
_instance_update_mesh_instance(instance);
}
//forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it
RSG::storage->base_update_dependency(p_base, &instance->dependency_tracker);
}
_instance_queue_update(instance, true, true);
}
void RendererSceneCull::instance_set_scenario(RID p_instance, RID p_scenario) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->scenario) {
instance->scenario->instances.remove(&instance->scenario_item);
if (instance->indexer_id.is_valid()) {
_unpair_instance(instance);
}
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
#ifdef DEBUG_ENABLED
if (light->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
}
#endif
if (light->D) {
instance->scenario->directional_lights.erase(light->D);
light->D = nullptr;
}
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
scene_render->reflection_probe_release_atlas_index(reflection_probe->instance);
} break;
case RS::INSTANCE_PARTICLES_COLLISION: {
heightfield_particle_colliders_update_list.erase(instance);
} break;
case RS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
#ifdef DEBUG_ENABLED
if (gi_probe->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
}
#endif
#ifdef DEBUG_ENABLED
if (gi_probe->lights.size()) {
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
}
#endif
if (gi_probe->update_element.in_list()) {
gi_probe_update_list.remove(&gi_probe->update_element);
}
} break;
default: {
}
}
instance->scenario = nullptr;
}
if (p_scenario.is_valid()) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
instance->scenario = scenario;
scenario->instances.add(&instance->scenario_item);
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
if (RSG::storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) {
light->D = scenario->directional_lights.push_back(instance);
}
} break;
case RS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
if (!gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
} break;
default: {
}
}
_instance_queue_update(instance, true, true);
}
}
void RendererSceneCull::instance_set_layer_mask(RID p_instance, uint32_t p_mask) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->layer_mask = p_mask;
if (instance->scenario && instance->array_index >= 0) {
instance->scenario->instance_data[instance->array_index].layer_mask = p_mask;
}
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_layer_mask(geom->geometry_instance, p_mask);
}
}
void RendererSceneCull::instance_set_transform(RID p_instance, const Transform &p_transform) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->transform == p_transform) {
return; //must be checked to avoid worst evil
}
#ifdef DEBUG_ENABLED
for (int i = 0; i < 4; i++) {
const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin;
ERR_FAIL_COND(Math::is_inf(v.x));
ERR_FAIL_COND(Math::is_nan(v.x));
ERR_FAIL_COND(Math::is_inf(v.y));
ERR_FAIL_COND(Math::is_nan(v.y));
ERR_FAIL_COND(Math::is_inf(v.z));
ERR_FAIL_COND(Math::is_nan(v.z));
}
#endif
instance->transform = p_transform;
_instance_queue_update(instance, true);
}
void RendererSceneCull::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->object_id = p_id;
}
void RendererSceneCull::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->update_item.in_list()) {
_update_dirty_instance(instance);
}
if (instance->mesh_instance.is_valid()) {
RSG::storage->mesh_instance_set_blend_shape_weight(instance->mesh_instance, p_shape, p_weight);
}
}
void RendererSceneCull::instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->base_type == RS::INSTANCE_MESH) {
//may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case
instance->materials.resize(MAX(p_surface + 1, RSG::storage->mesh_get_surface_count(instance->base)));
}
ERR_FAIL_INDEX(p_surface, instance->materials.size());
instance->materials.write[p_surface] = p_material;
_instance_queue_update(instance, false, true);
}
void RendererSceneCull::instance_set_visible(RID p_instance, bool p_visible) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->visible == p_visible) {
return;
}
instance->visible = p_visible;
if (p_visible) {
if (instance->scenario != nullptr) {
_instance_queue_update(instance, true, false);
}
} else if (instance->indexer_id.is_valid()) {
_unpair_instance(instance);
}
if (instance->base_type == RS::INSTANCE_LIGHT) {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
if (instance->scenario && RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
if (p_visible) {
instance->scenario->dynamic_lights.push_back(light->instance);
} else {
instance->scenario->dynamic_lights.erase(light->instance);
}
}
}
if (instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) {
InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(instance->base_data);
RSG::storage->particles_collision_instance_set_active(collision->instance, p_visible);
}
}
inline bool is_geometry_instance(RenderingServer::InstanceType p_type) {
return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES || p_type == RS::INSTANCE_IMMEDIATE;
}
void RendererSceneCull::instance_set_custom_aabb(RID p_instance, AABB p_aabb) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
ERR_FAIL_COND(!is_geometry_instance(instance->base_type));
if (p_aabb != AABB()) {
// Set custom AABB
if (instance->custom_aabb == nullptr) {
instance->custom_aabb = memnew(AABB);
}
*instance->custom_aabb = p_aabb;
} else {
// Clear custom AABB
if (instance->custom_aabb != nullptr) {
memdelete(instance->custom_aabb);
instance->custom_aabb = nullptr;
}
}
if (instance->scenario) {
_instance_queue_update(instance, true, false);
}
}
void RendererSceneCull::instance_attach_skeleton(RID p_instance, RID p_skeleton) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->skeleton == p_skeleton) {
return;
}
instance->skeleton = p_skeleton;
if (p_skeleton.is_valid()) {
//update the dependency now, so if cleared, we remove it
RSG::storage->skeleton_update_dependency(p_skeleton, &instance->dependency_tracker);
}
_instance_queue_update(instance, true, true);
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
_instance_update_mesh_instance(instance);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_skeleton(geom->geometry_instance, p_skeleton);
}
}
void RendererSceneCull::instance_set_exterior(RID p_instance, bool p_enabled) {
}
void RendererSceneCull::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->extra_margin = p_margin;
_instance_queue_update(instance, true, false);
}
Vector<ObjectID> RendererSceneCull::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const {
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling
struct CullAABB {
Vector<ObjectID> instances;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
if (!p_instance->object_id.is_null()) {
instances.push_back(p_instance->object_id);
}
return false;
}
};
CullAABB cull_aabb;
scenario->indexers[Scenario::INDEXER_GEOMETRY].aabb_query(p_aabb, cull_aabb);
scenario->indexers[Scenario::INDEXER_VOLUMES].aabb_query(p_aabb, cull_aabb);
return cull_aabb.instances;
}
Vector<ObjectID> RendererSceneCull::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const {
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling
struct CullRay {
Vector<ObjectID> instances;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
if (!p_instance->object_id.is_null()) {
instances.push_back(p_instance->object_id);
}
return false;
}
};
CullRay cull_ray;
scenario->indexers[Scenario::INDEXER_GEOMETRY].ray_query(p_from, p_to, cull_ray);
scenario->indexers[Scenario::INDEXER_VOLUMES].ray_query(p_from, p_to, cull_ray);
return cull_ray.instances;
}
Vector<ObjectID> RendererSceneCull::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const {
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling
Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&p_convex[0], p_convex.size());
struct CullConvex {
Vector<ObjectID> instances;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
if (!p_instance->object_id.is_null()) {
instances.push_back(p_instance->object_id);
}
return false;
}
};
CullConvex cull_convex;
scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(p_convex.ptr(), p_convex.size(), points.ptr(), points.size(), cull_convex);
scenario->indexers[Scenario::INDEXER_VOLUMES].convex_query(p_convex.ptr(), p_convex.size(), points.ptr(), points.size(), cull_convex);
return cull_convex.instances;
}
void RendererSceneCull::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
//ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK));
switch (p_flags) {
case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: {
instance->baked_light = p_enabled;
if (instance->scenario && instance->array_index >= 0) {
InstanceData &idata = instance->scenario->instance_data[instance->array_index];
if (instance->baked_light) {
idata.flags |= InstanceData::FLAG_USES_BAKED_LIGHT;
} else {
idata.flags &= ~uint32_t(InstanceData::FLAG_USES_BAKED_LIGHT);
}
}
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_use_baked_light(geom->geometry_instance, p_enabled);
}
} break;
case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: {
if (p_enabled == instance->dynamic_gi) {
//bye, redundant
return;
}
if (instance->indexer_id.is_valid()) {
_unpair_instance(instance);
_instance_queue_update(instance, true, true);
}
//once out of octree, can be changed
instance->dynamic_gi = p_enabled;
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_use_dynamic_gi(geom->geometry_instance, p_enabled);
}
} break;
case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: {
instance->redraw_if_visible = p_enabled;
if (instance->scenario && instance->array_index >= 0) {
InstanceData &idata = instance->scenario->instance_data[instance->array_index];
if (instance->redraw_if_visible) {
idata.flags |= InstanceData::FLAG_REDRAW_IF_VISIBLE;
} else {
idata.flags &= ~uint32_t(InstanceData::FLAG_REDRAW_IF_VISIBLE);
}
}
} break;
default: {
}
}
}
void RendererSceneCull::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->cast_shadows = p_shadow_casting_setting;
if (instance->scenario && instance->array_index >= 0) {
InstanceData &idata = instance->scenario->instance_data[instance->array_index];
if (instance->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
idata.flags |= InstanceData::FLAG_CAST_SHADOWS;
} else {
idata.flags &= ~uint32_t(InstanceData::FLAG_CAST_SHADOWS);
}
if (instance->cast_shadows == RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
idata.flags |= InstanceData::FLAG_CAST_SHADOWS_ONLY;
} else {
idata.flags &= ~uint32_t(InstanceData::FLAG_CAST_SHADOWS_ONLY);
}
}
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_cast_double_sided_shadows(geom->geometry_instance, instance->cast_shadows == RS::SHADOW_CASTING_SETTING_DOUBLE_SIDED);
}
_instance_queue_update(instance, false, true);
}
void RendererSceneCull::instance_geometry_set_material_override(RID p_instance, RID p_material) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->material_override = p_material;
_instance_queue_update(instance, false, true);
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_material_override(geom->geometry_instance, p_material);
}
}
void RendererSceneCull::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) {
}
void RendererSceneCull::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) {
}
void RendererSceneCull::instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->lightmap) {
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(((Instance *)instance->lightmap)->base_data);
lightmap_data->users.erase(instance);
instance->lightmap = nullptr;
}
Instance *lightmap_instance = instance_owner.getornull(p_lightmap);
instance->lightmap = lightmap_instance;
instance->lightmap_uv_scale = p_lightmap_uv_scale;
instance->lightmap_slice_index = p_slice_index;
RID lightmap_instance_rid;
if (lightmap_instance) {
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(lightmap_instance->base_data);
lightmap_data->users.insert(instance);
lightmap_instance_rid = lightmap_data->instance;
}
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_use_lightmap(geom->geometry_instance, lightmap_instance_rid, p_lightmap_uv_scale, p_slice_index);
}
}
void RendererSceneCull::instance_geometry_set_lod_bias(RID p_instance, float p_lod_bias) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->lod_bias = p_lod_bias;
if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
scene_render->geometry_instance_set_lod_bias(geom->geometry_instance, p_lod_bias);
}
}
void RendererSceneCull::instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
Map<StringName, Instance::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.find(p_parameter);
if (!E) {
Instance::InstanceShaderParameter isp;
isp.index = -1;
isp.info = PropertyInfo();
isp.value = p_value;
instance->instance_shader_parameters[p_parameter] = isp;
} else {
E->get().value = p_value;
if (E->get().index >= 0 && instance->instance_allocated_shader_parameters) {
//update directly
RSG::storage->global_variables_instance_update(p_instance, E->get().index, p_value);
}
}
}
Variant RendererSceneCull::instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const {
const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!instance, Variant());
if (instance->instance_shader_parameters.has(p_parameter)) {
return instance->instance_shader_parameters[p_parameter].value;
}
return Variant();
}
Variant RendererSceneCull::instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const {
const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!instance, Variant());
if (instance->instance_shader_parameters.has(p_parameter)) {
return instance->instance_shader_parameters[p_parameter].default_value;
}
return Variant();
}
void RendererSceneCull::instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const {
const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
const_cast<RendererSceneCull *>(this)->update_dirty_instances();
Vector<StringName> names;
for (Map<StringName, Instance::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.front(); E; E = E->next()) {
names.push_back(E->key());
}
names.sort_custom<StringName::AlphCompare>();
for (int i = 0; i < names.size(); i++) {
PropertyInfo pinfo = instance->instance_shader_parameters[names[i]].info;
p_parameters->push_back(pinfo);
}
}
void RendererSceneCull::_update_instance(Instance *p_instance) {
p_instance->version++;
if (p_instance->base_type == RS::INSTANCE_LIGHT) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
scene_render->light_instance_set_transform(light->instance, p_instance->transform);
scene_render->light_instance_set_aabb(light->instance, p_instance->transform.xform(p_instance->aabb));
light->shadow_dirty = true;
RS::LightBakeMode bake_mode = RSG::storage->light_get_bake_mode(p_instance->base);
if (RSG::storage->light_get_type(p_instance->base) != RS::LIGHT_DIRECTIONAL && bake_mode != light->bake_mode) {
if (p_instance->visible && p_instance->scenario && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
p_instance->scenario->dynamic_lights.erase(light->instance);
}
light->bake_mode = bake_mode;
if (p_instance->visible && p_instance->scenario && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
p_instance->scenario->dynamic_lights.push_back(light->instance);
}
}
uint32_t max_sdfgi_cascade = RSG::storage->light_get_max_sdfgi_cascade(p_instance->base);
if (light->max_sdfgi_cascade != max_sdfgi_cascade) {
light->max_sdfgi_cascade = max_sdfgi_cascade; //should most likely make sdfgi dirty in scenario
}
} else if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform);
if (p_instance->scenario && p_instance->array_index >= 0) {
InstanceData &idata = p_instance->scenario->instance_data[p_instance->array_index];
idata.flags |= InstanceData::FLAG_REFLECTION_PROBE_DIRTY;
}
} else if (p_instance->base_type == RS::INSTANCE_DECAL) {
InstanceDecalData *decal = static_cast<InstanceDecalData *>(p_instance->base_data);
scene_render->decal_instance_set_transform(decal->instance, p_instance->transform);
} else if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
InstanceLightmapData *lightmap = static_cast<InstanceLightmapData *>(p_instance->base_data);
scene_render->lightmap_instance_set_transform(lightmap->instance, p_instance->transform);
} else if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(p_instance->base_data);
scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform);
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
RSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform);
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) {
InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(p_instance->base_data);
//remove materials no longer used and un-own them
if (RSG::storage->particles_collision_is_heightfield(p_instance->base)) {
heightfield_particle_colliders_update_list.insert(p_instance);
}
RSG::storage->particles_collision_instance_set_transform(collision->instance, p_instance->transform);
}
if (p_instance->aabb.has_no_surface()) {
return;
}
if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
//if this moved, update the captured objects
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(p_instance->base_data);
//erase dependencies, since no longer a lightmap
for (Set<Instance *>::Element *E = lightmap_data->geometries.front(); E; E = E->next()) {
Instance *geom = E->get();
_instance_queue_update(geom, true, false);
}
}
AABB new_aabb;
new_aabb = p_instance->transform.xform(p_instance->aabb);
p_instance->transformed_aabb = new_aabb;
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
//make sure lights are updated if it casts shadow
if (geom->can_cast_shadows) {
for (Set<Instance *>::Element *E = geom->lights.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
light->shadow_dirty = true;
}
}
if (!p_instance->lightmap && geom->lightmap_captures.size()) {
//affected by lightmap captures, must update capture info!
_update_instance_lightmap_captures(p_instance);
} else {
if (!p_instance->lightmap_sh.is_empty()) {
p_instance->lightmap_sh.clear(); //don't need SH
p_instance->lightmap_target_sh.clear(); //don't need SH
scene_render->geometry_instance_set_lightmap_capture(geom->geometry_instance, nullptr);
}
}
scene_render->geometry_instance_set_transform(geom->geometry_instance, p_instance->transform, p_instance->aabb, p_instance->transformed_aabb);
}
// note: we had to remove is equal approx check here, it meant that det == 0.000004 won't work, which is the case for some of our scenes.
if (p_instance->scenario == nullptr || !p_instance->visible || p_instance->transform.basis.determinant() == 0) {
p_instance->prev_transformed_aabb = p_instance->transformed_aabb;
return;
}
//quantize to improve moving object performance
AABB bvh_aabb = p_instance->transformed_aabb;
if (p_instance->indexer_id.is_valid() && bvh_aabb != p_instance->prev_transformed_aabb) {
//assume motion, see if bounds need to be quantized
AABB motion_aabb = bvh_aabb.merge(p_instance->prev_transformed_aabb);
float motion_longest_axis = motion_aabb.get_longest_axis_size();
float longest_axis = p_instance->transformed_aabb.get_longest_axis_size();
if (motion_longest_axis < longest_axis * 2) {
//moved but not a lot, use motion aabb quantizing
float quantize_size = Math::pow(2.0, Math::ceil(Math::log(motion_longest_axis) / Math::log(2.0))) * 0.5; //one fifth
bvh_aabb.quantize(quantize_size);
}
}
if (!p_instance->indexer_id.is_valid()) {
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
p_instance->indexer_id = p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY].insert(bvh_aabb, p_instance);
} else {
p_instance->indexer_id = p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES].insert(bvh_aabb, p_instance);
}
p_instance->array_index = p_instance->scenario->instance_data.size();
InstanceData idata;
idata.instance = p_instance;
idata.layer_mask = p_instance->layer_mask;
idata.flags = p_instance->base_type; //changing it means de-indexing, so this never needs to be changed later
idata.base_rid = p_instance->base;
switch (p_instance->base_type) {
case RS::INSTANCE_MESH:
case RS::INSTANCE_MULTIMESH:
case RS::INSTANCE_IMMEDIATE:
case RS::INSTANCE_PARTICLES: {
idata.instance_geometry = static_cast<InstanceGeometryData *>(p_instance->base_data)->geometry_instance;
} break;
case RS::INSTANCE_LIGHT: {
idata.instance_data_rid = static_cast<InstanceLightData *>(p_instance->base_data)->instance.get_id();
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
idata.instance_data_rid = static_cast<InstanceReflectionProbeData *>(p_instance->base_data)->instance.get_id();
} break;
case RS::INSTANCE_DECAL: {
idata.instance_data_rid = static_cast<InstanceDecalData *>(p_instance->base_data)->instance.get_id();
} break;
case RS::INSTANCE_LIGHTMAP: {
idata.instance_data_rid = static_cast<InstanceLightmapData *>(p_instance->base_data)->instance.get_id();
} break;
case RS::INSTANCE_GI_PROBE: {
idata.instance_data_rid = static_cast<InstanceGIProbeData *>(p_instance->base_data)->probe_instance.get_id();
} break;
default: {
}
}
if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
//always dirty when added
idata.flags |= InstanceData::FLAG_REFLECTION_PROBE_DIRTY;
}
if (p_instance->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
idata.flags |= InstanceData::FLAG_CAST_SHADOWS;
}
if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
idata.flags |= InstanceData::FLAG_CAST_SHADOWS_ONLY;
}
if (p_instance->redraw_if_visible) {
idata.flags |= InstanceData::FLAG_REDRAW_IF_VISIBLE;
}
// dirty flags should not be set here, since no pairing has happened
if (p_instance->baked_light) {
idata.flags |= InstanceData::FLAG_USES_BAKED_LIGHT;
}
if (p_instance->mesh_instance.is_valid()) {
idata.flags |= InstanceData::FLAG_USES_MESH_INSTANCE;
}
p_instance->scenario->instance_data.push_back(idata);
p_instance->scenario->instance_aabbs.push_back(InstanceBounds(p_instance->transformed_aabb));
} else {
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY].update(p_instance->indexer_id, bvh_aabb);
} else {
p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES].update(p_instance->indexer_id, bvh_aabb);
}
p_instance->scenario->instance_aabbs[p_instance->array_index] = InstanceBounds(p_instance->transformed_aabb);
}
//move instance and repair
pair_pass++;
PairInstances pair;
pair.instance = p_instance;
pair.pair_allocator = &pair_allocator;
pair.pair_pass = pair_pass;
pair.pair_mask = 0;
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
pair.pair_mask |= 1 << RS::INSTANCE_LIGHT;
pair.pair_mask |= 1 << RS::INSTANCE_GI_PROBE;
pair.pair_mask |= 1 << RS::INSTANCE_LIGHTMAP;
pair.pair_mask |= geometry_instance_pair_mask;
pair.bvh2 = &p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES];
} else if (p_instance->base_type == RS::INSTANCE_LIGHT) {
pair.pair_mask |= RS::INSTANCE_GEOMETRY_MASK;
pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
if (RSG::storage->light_get_bake_mode(p_instance->base) == RS::LIGHT_BAKE_DYNAMIC) {
pair.pair_mask |= (1 << RS::INSTANCE_GI_PROBE);
pair.bvh2 = &p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES];
}
} else if (geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE)) {
pair.pair_mask = RS::INSTANCE_GEOMETRY_MASK;
pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
} else if (geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && (p_instance->base_type == RS::INSTANCE_DECAL)) {
pair.pair_mask = RS::INSTANCE_GEOMETRY_MASK;
pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) {
pair.pair_mask = (1 << RS::INSTANCE_PARTICLES);
pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
} else if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
//lights and geometries
pair.pair_mask = RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT);
pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
pair.bvh2 = &p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES];
}
pair.pair();
p_instance->prev_transformed_aabb = p_instance->transformed_aabb;
}
void RendererSceneCull::_unpair_instance(Instance *p_instance) {
if (!p_instance->indexer_id.is_valid()) {
return; //nothing to do
}
while (p_instance->pairs.first()) {
InstancePair *pair = p_instance->pairs.first()->self();
Instance *other_instance = p_instance == pair->a ? pair->b : pair->a;
_instance_unpair(p_instance, other_instance);
pair_allocator.free(pair);
}
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY].remove(p_instance->indexer_id);
} else {
p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES].remove(p_instance->indexer_id);
}
p_instance->indexer_id = DynamicBVH::ID();
//replace this by last
int32_t swap_with_index = p_instance->scenario->instance_data.size() - 1;
if (swap_with_index != p_instance->array_index) {
p_instance->scenario->instance_data[swap_with_index].instance->array_index = p_instance->array_index; //swap
p_instance->scenario->instance_data[p_instance->array_index] = p_instance->scenario->instance_data[swap_with_index];
p_instance->scenario->instance_aabbs[p_instance->array_index] = p_instance->scenario->instance_aabbs[swap_with_index];
}
// pop last
p_instance->scenario->instance_data.pop_back();
p_instance->scenario->instance_aabbs.pop_back();
//uninitialize
p_instance->array_index = -1;
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
// Clear these now because the InstanceData containing the dirty flags is gone
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
scene_render->geometry_instance_pair_light_instances(geom->geometry_instance, nullptr, 0);
scene_render->geometry_instance_pair_reflection_probe_instances(geom->geometry_instance, nullptr, 0);
scene_render->geometry_instance_pair_decal_instances(geom->geometry_instance, nullptr, 0);
scene_render->geometry_instance_pair_gi_probe_instances(geom->geometry_instance, nullptr, 0);
}
}
void RendererSceneCull::_update_instance_aabb(Instance *p_instance) {
AABB new_aabb;
ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid());
switch (p_instance->base_type) {
case RenderingServer::INSTANCE_NONE: {
// do nothing
} break;
case RenderingServer::INSTANCE_MESH: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = RSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton);
}
} break;
case RenderingServer::INSTANCE_MULTIMESH: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = RSG::storage->multimesh_get_aabb(p_instance->base);
}
} break;
case RenderingServer::INSTANCE_IMMEDIATE: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = RSG::storage->immediate_get_aabb(p_instance->base);
}
} break;
case RenderingServer::INSTANCE_PARTICLES: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = RSG::storage->particles_get_aabb(p_instance->base);
}
} break;
case RenderingServer::INSTANCE_PARTICLES_COLLISION: {
new_aabb = RSG::storage->particles_collision_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_LIGHT: {
new_aabb = RSG::storage->light_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_REFLECTION_PROBE: {
new_aabb = RSG::storage->reflection_probe_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_DECAL: {
new_aabb = RSG::storage->decal_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_GI_PROBE: {
new_aabb = RSG::storage->gi_probe_get_bounds(p_instance->base);
} break;
case RenderingServer::INSTANCE_LIGHTMAP: {
new_aabb = RSG::storage->lightmap_get_aabb(p_instance->base);
} break;
default: {
}
}
// <Zylann> This is why I didn't re-use Instance::aabb to implement custom AABBs
if (p_instance->extra_margin) {
new_aabb.grow_by(p_instance->extra_margin);
}
p_instance->aabb = new_aabb;
}
void RendererSceneCull::_update_instance_lightmap_captures(Instance *p_instance) {
bool first_set = p_instance->lightmap_sh.size() == 0;
p_instance->lightmap_sh.resize(9); //using SH
p_instance->lightmap_target_sh.resize(9); //using SH
Color *instance_sh = p_instance->lightmap_target_sh.ptrw();
bool inside = false;
Color accum_sh[9];
float accum_blend = 0.0;
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
for (Set<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) {
Instance *lightmap = E->get();
bool interior = RSG::storage->lightmap_is_interior(lightmap->base);
if (inside && !interior) {
continue; //we are inside, ignore exteriors
}
Transform to_bounds = lightmap->transform.affine_inverse();
Vector3 center = p_instance->transform.xform(p_instance->aabb.position + p_instance->aabb.size * 0.5); //use aabb center
Vector3 lm_pos = to_bounds.xform(center);
AABB bounds = RSG::storage->lightmap_get_aabb(lightmap->base);
if (!bounds.has_point(lm_pos)) {
continue; //not in this lightmap
}
Color sh[9];
RSG::storage->lightmap_tap_sh_light(lightmap->base, lm_pos, sh);
//rotate it
Basis rot = lightmap->transform.basis.orthonormalized();
for (int i = 0; i < 3; i++) {
float csh[9];
for (int j = 0; j < 9; j++) {
csh[j] = sh[j][i];
}
rot.rotate_sh(csh);
for (int j = 0; j < 9; j++) {
sh[j][i] = csh[j];
}
}
Vector3 inner_pos = ((lm_pos - bounds.position) / bounds.size) * 2.0 - Vector3(1.0, 1.0, 1.0);
float blend = MAX(inner_pos.x, MAX(inner_pos.y, inner_pos.z));
//make blend more rounded
blend = Math::lerp(inner_pos.length(), blend, blend);
blend *= blend;
blend = MAX(0.0, 1.0 - blend);
if (interior && !inside) {
//do not blend, just replace
for (int j = 0; j < 9; j++) {
accum_sh[j] = sh[j] * blend;
}
accum_blend = blend;
inside = true;
} else {
for (int j = 0; j < 9; j++) {
accum_sh[j] += sh[j] * blend;
}
accum_blend += blend;
}
}
if (accum_blend > 0.0) {
for (int j = 0; j < 9; j++) {
instance_sh[j] = accum_sh[j] / accum_blend;
if (first_set) {
p_instance->lightmap_sh.write[j] = instance_sh[j];
}
}
}
scene_render->geometry_instance_set_lightmap_capture(geom->geometry_instance, p_instance->lightmap_sh.ptr());
}
void RendererSceneCull::_light_instance_setup_directional_shadow(int p_shadow_index, Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
Transform light_transform = p_instance->transform;
light_transform.orthonormalize(); //scale does not count on lights
real_t max_distance = p_cam_projection.get_z_far();
real_t shadow_max = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera
max_distance = MIN(shadow_max, max_distance);
}
max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001);
real_t min_distance = MIN(p_cam_projection.get_z_near(), max_distance);
RS::LightDirectionalShadowDepthRangeMode depth_range_mode = RSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base);
real_t pancake_size = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE);
real_t range = max_distance - min_distance;
int splits = 0;
switch (RSG::storage->light_directional_get_shadow_mode(p_instance->base)) {
case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
splits = 1;
break;
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
splits = 2;
break;
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
splits = 4;
break;
}
real_t distances[5];
distances[0] = min_distance;
for (int i = 0; i < splits; i++) {
distances[i + 1] = min_distance + RSG::storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
};
distances[splits] = max_distance;
real_t texture_size = scene_render->get_directional_light_shadow_size(light->instance);
bool overlap = RSG::storage->light_directional_get_blend_splits(p_instance->base);
real_t first_radius = 0.0;
real_t min_distance_bias_scale = distances[1];
cull.shadow_count = p_shadow_index + 1;
cull.shadows[p_shadow_index].cascade_count = splits;
cull.shadows[p_shadow_index].light_instance = light->instance;
for (int i = 0; i < splits; i++) {
RENDER_TIMESTAMP("Culling Directional Light split" + itos(i));
// setup a camera matrix for that range!
CameraMatrix camera_matrix;
real_t aspect = p_cam_projection.get_aspect();
if (p_cam_orthogonal) {
Vector2 vp_he = p_cam_projection.get_viewport_half_extents();
camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
} else {
real_t fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it
camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
}
//obtain the frustum endpoints
Vector3 endpoints[8]; // frustum plane endpoints
bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints);
ERR_CONTINUE(!res);
// obtain the light frustum ranges (given endpoints)
Transform transform = light_transform; //discard scale and stabilize light
Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized();
Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized();
Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized();
//z_vec points against the camera, like in default opengl
real_t x_min = 0.f, x_max = 0.f;
real_t y_min = 0.f, y_max = 0.f;
real_t z_min = 0.f, z_max = 0.f;
// FIXME: z_max_cam is defined, computed, but not used below when setting up
// ortho_camera. Commented out for now to fix warnings but should be investigated.
real_t x_min_cam = 0.f, x_max_cam = 0.f;
real_t y_min_cam = 0.f, y_max_cam = 0.f;
real_t z_min_cam = 0.f;
//real_t z_max_cam = 0.f;
real_t bias_scale = 1.0;
real_t aspect_bias_scale = 1.0;
//used for culling
for (int j = 0; j < 8; j++) {
real_t d_x = x_vec.dot(endpoints[j]);
real_t d_y = y_vec.dot(endpoints[j]);
real_t d_z = z_vec.dot(endpoints[j]);
if (j == 0 || d_x < x_min) {
x_min = d_x;
}
if (j == 0 || d_x > x_max) {
x_max = d_x;
}
if (j == 0 || d_y < y_min) {
y_min = d_y;
}
if (j == 0 || d_y > y_max) {
y_max = d_y;
}
if (j == 0 || d_z < z_min) {
z_min = d_z;
}
if (j == 0 || d_z > z_max) {
z_max = d_z;
}
}
real_t radius = 0;
real_t soft_shadow_expand = 0;
Vector3 center;
{
//camera viewport stuff
for (int j = 0; j < 8; j++) {
center += endpoints[j];
}
center /= 8.0;
//center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5;
for (int j = 0; j < 8; j++) {
real_t d = center.distance_to(endpoints[j]);
if (d > radius) {
radius = d;
}
}
radius *= texture_size / (texture_size - 2.0); //add a texel by each side
if (i == 0) {
first_radius = radius;
} else {
bias_scale = radius / first_radius;
}
z_min_cam = z_vec.dot(center) - radius;
{
float soft_shadow_angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE);
if (soft_shadow_angle > 0.0) {
float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam;
soft_shadow_expand = Math::tan(Math::deg2rad(soft_shadow_angle)) * z_range;
x_max += soft_shadow_expand;
y_max += soft_shadow_expand;
x_min -= soft_shadow_expand;
y_min -= soft_shadow_expand;
}
}
x_max_cam = x_vec.dot(center) + radius + soft_shadow_expand;
x_min_cam = x_vec.dot(center) - radius - soft_shadow_expand;
y_max_cam = y_vec.dot(center) + radius + soft_shadow_expand;
y_min_cam = y_vec.dot(center) - radius - soft_shadow_expand;
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) {
//this trick here is what stabilizes the shadow (make potential jaggies to not move)
//at the cost of some wasted resolution. Still the quality increase is very well worth it
real_t unit = radius * 2.0 / texture_size;
x_max_cam = Math::snapped(x_max_cam, unit);
x_min_cam = Math::snapped(x_min_cam, unit);
y_max_cam = Math::snapped(y_max_cam, unit);
y_min_cam = Math::snapped(y_min_cam, unit);
}
}
//now that we know all ranges, we can proceed to make the light frustum planes, for culling octree
Vector<Plane> light_frustum_planes;
light_frustum_planes.resize(6);
//right/left
light_frustum_planes.write[0] = Plane(x_vec, x_max);
light_frustum_planes.write[1] = Plane(-x_vec, -x_min);
//top/bottom
light_frustum_planes.write[2] = Plane(y_vec, y_max);
light_frustum_planes.write[3] = Plane(-y_vec, -y_min);
//near/far
light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6);
light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed
// a pre pass will need to be needed to determine the actual z-near to be used
if (pancake_size > 0) {
z_max = z_vec.dot(center) + radius + pancake_size;
}
if (aspect != 1.0) {
// if the aspect is different, then the radius will become larger.
// if this happens, then bias needs to be adjusted too, as depth will increase
// to do this, compare the depth of one that would have resulted from a square frustum
CameraMatrix camera_matrix_square;
if (p_cam_orthogonal) {
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
if (p_cam_vaspect) {
camera_matrix_square.set_orthogonal(vp_he.x * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
} else {
camera_matrix_square.set_orthogonal(vp_he.y * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
}
} else {
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
if (p_cam_vaspect) {
camera_matrix_square.set_frustum(vp_he.x * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
} else {
camera_matrix_square.set_frustum(vp_he.y * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
}
}
Vector3 endpoints_square[8]; // frustum plane endpoints
res = camera_matrix_square.get_endpoints(p_cam_transform, endpoints_square);
ERR_CONTINUE(!res);
Vector3 center_square;
for (int j = 0; j < 8; j++) {
center_square += endpoints_square[j];
}
center_square /= 8.0;
real_t radius_square = 0;
for (int j = 0; j < 8; j++) {
real_t d = center_square.distance_to(endpoints_square[j]);
if (d > radius_square) {
radius_square = d;
}
}
radius_square *= texture_size / (texture_size - 2.0); //add a texel by each side
float z_max_square = z_vec.dot(center_square) + radius_square + pancake_size;
real_t z_min_cam_square = z_vec.dot(center_square) - radius_square;
aspect_bias_scale = (z_max - z_min_cam) / (z_max_square - z_min_cam_square);
// this is not entirely perfect, because the cull-adjusted z-max may be different
// but at least it's warranted that it results in a greater bias, so no acne should be present either way.
// pancaking also helps with this.
}
{
CameraMatrix ortho_camera;
real_t half_x = (x_max_cam - x_min_cam) * 0.5;
real_t half_y = (y_max_cam - y_min_cam) * 0.5;
ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));
Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam));
Transform ortho_transform;
ortho_transform.basis = transform.basis;
ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;
cull.shadows[p_shadow_index].cascades[i].frustum = Frustum(light_frustum_planes);
cull.shadows[p_shadow_index].cascades[i].projection = ortho_camera;
cull.shadows[p_shadow_index].cascades[i].transform = ortho_transform;
cull.shadows[p_shadow_index].cascades[i].zfar = z_max - z_min_cam;
cull.shadows[p_shadow_index].cascades[i].split = distances[i + 1];
cull.shadows[p_shadow_index].cascades[i].shadow_texel_size = radius * 2.0 / texture_size;
cull.shadows[p_shadow_index].cascades[i].bias_scale = bias_scale * aspect_bias_scale * min_distance_bias_scale;
cull.shadows[p_shadow_index].cascades[i].range_begin = z_max;
cull.shadows[p_shadow_index].cascades[i].uv_scale = uv_scale;
}
}
}
bool RendererSceneCull::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario, float p_screen_lod_threshold) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
Transform light_transform = p_instance->transform;
light_transform.orthonormalize(); //scale does not count on lights
bool animated_material_found = false;
switch (RSG::storage->light_get_type(p_instance->base)) {
case RS::LIGHT_DIRECTIONAL: {
} break;
case RS::LIGHT_OMNI: {
RS::LightOmniShadowMode shadow_mode = RSG::storage->light_omni_get_shadow_mode(p_instance->base);
if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !scene_render->light_instances_can_render_shadow_cube()) {
if (max_shadows_used + 2 > MAX_UPDATE_SHADOWS) {
return true;
}
for (int i = 0; i < 2; i++) {
//using this one ensures that raster deferred will have it
RENDER_TIMESTAMP("Culling Shadow Paraboloid" + itos(i));
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
real_t z = i == 0 ? -1 : 1;
Vector<Plane> planes;
planes.resize(6);
planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius));
planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius));
planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius));
planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius));
planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius));
planes.write[5] = light_transform.xform(Plane(Vector3(0, 0, -z), 0));
instance_shadow_cull_result.clear();
Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&planes[0], planes.size());
struct CullConvex {
PagedArray<Instance *> *result;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
result->push_back(p_instance);
return false;
}
};
CullConvex cull_convex;
cull_convex.result = &instance_shadow_cull_result;
p_scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(planes.ptr(), planes.size(), points.ptr(), points.size(), cull_convex);
Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z);
RendererSceneRender::RenderShadowData &shadow_data = render_shadow_data[max_shadows_used++];
for (int j = 0; j < (int)instance_shadow_cull_result.size(); j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
continue;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
if (instance->mesh_instance.is_valid()) {
RSG::storage->mesh_instance_check_for_update(instance->mesh_instance);
}
}
shadow_data.instances.push_back(static_cast<InstanceGeometryData *>(instance->base_data)->geometry_instance);
}
RSG::storage->update_mesh_instances();
scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i, 0);
shadow_data.light = light->instance;
shadow_data.pass = i;
}
} else { //shadow cube
if (max_shadows_used + 6 > MAX_UPDATE_SHADOWS) {
return true;
}
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
CameraMatrix cm;
cm.set_perspective(90, 1, 0.01, radius);
for (int i = 0; i < 6; i++) {
RENDER_TIMESTAMP("Culling Shadow Cube side" + itos(i));
//using this one ensures that raster deferred will have it
static const Vector3 view_normals[6] = {
Vector3(+1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, +1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1)
};
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, +1),
Vector3(0, -1, 0),
Vector3(0, -1, 0)
};
Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]);
Vector<Plane> planes = cm.get_projection_planes(xform);
instance_shadow_cull_result.clear();
Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&planes[0], planes.size());
struct CullConvex {
PagedArray<Instance *> *result;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
result->push_back(p_instance);
return false;
}
};
CullConvex cull_convex;
cull_convex.result = &instance_shadow_cull_result;
p_scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(planes.ptr(), planes.size(), points.ptr(), points.size(), cull_convex);
RendererSceneRender::RenderShadowData &shadow_data = render_shadow_data[max_shadows_used++];
for (int j = 0; j < (int)instance_shadow_cull_result.size(); j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
continue;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
if (instance->mesh_instance.is_valid()) {
RSG::storage->mesh_instance_check_for_update(instance->mesh_instance);
}
}
shadow_data.instances.push_back(static_cast<InstanceGeometryData *>(instance->base_data)->geometry_instance);
}
RSG::storage->update_mesh_instances();
scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i, 0);
shadow_data.light = light->instance;
shadow_data.pass = i;
}
//restore the regular DP matrix
//scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0, 0);
}
} break;
case RS::LIGHT_SPOT: {
RENDER_TIMESTAMP("Culling Spot Light");
if (max_shadows_used + 1 > MAX_UPDATE_SHADOWS) {
return true;
}
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
real_t angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
CameraMatrix cm;
cm.set_perspective(angle * 2.0, 1.0, 0.01, radius);
Vector<Plane> planes = cm.get_projection_planes(light_transform);
instance_shadow_cull_result.clear();
Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&planes[0], planes.size());
struct CullConvex {
PagedArray<Instance *> *result;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
result->push_back(p_instance);
return false;
}
};
CullConvex cull_convex;
cull_convex.result = &instance_shadow_cull_result;
p_scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(planes.ptr(), planes.size(), points.ptr(), points.size(), cull_convex);
RendererSceneRender::RenderShadowData &shadow_data = render_shadow_data[max_shadows_used++];
for (int j = 0; j < (int)instance_shadow_cull_result.size(); j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
continue;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
if (instance->mesh_instance.is_valid()) {
RSG::storage->mesh_instance_check_for_update(instance->mesh_instance);
}
}
shadow_data.instances.push_back(static_cast<InstanceGeometryData *>(instance->base_data)->geometry_instance);
}
RSG::storage->update_mesh_instances();
scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0, 0);
shadow_data.light = light->instance;
shadow_data.pass = 0;
} break;
}
return animated_material_found;
}
void RendererSceneCull::render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, float p_screen_lod_threshold, RID p_shadow_atlas) {
// render to mono camera
#ifndef _3D_DISABLED
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
/* STEP 1 - SETUP CAMERA */
CameraMatrix camera_matrix;
bool ortho = false;
switch (camera->type) {
case Camera::ORTHOGONAL: {
camera_matrix.set_orthogonal(
camera->size,
p_viewport_size.width / (float)p_viewport_size.height,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = true;
} break;
case Camera::PERSPECTIVE: {
camera_matrix.set_perspective(
camera->fov,
p_viewport_size.width / (float)p_viewport_size.height,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = false;
} break;
case Camera::FRUSTUM: {
camera_matrix.set_frustum(
camera->size,
p_viewport_size.width / (float)p_viewport_size.height,
camera->offset,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = false;
} break;
}
RID environment = _render_get_environment(p_camera, p_scenario);
_render_scene(camera->transform, camera_matrix, ortho, camera->vaspect, p_render_buffers, environment, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID(), -1, p_screen_lod_threshold);
#endif
}
void RendererSceneCull::render_camera(RID p_render_buffers, Ref<XRInterface> &p_interface, XRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, float p_screen_lod_threshold, RID p_shadow_atlas) {
// render for AR/VR interface
#if 0
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
/* SETUP CAMERA, we are ignoring type and FOV here */
float aspect = p_viewport_size.width / (float)p_viewport_size.height;
CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar);
// We also ignore our camera position, it will have been positioned with a slightly old tracking position.
// Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo!
Transform world_origin = XRServer::get_singleton()->get_world_origin();
Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin);
RID environment = _render_get_environment(p_camera, p_scenario);
// For stereo render we only prepare for our left eye and then reuse the outcome for our right eye
if (p_eye == XRInterface::EYE_LEFT) {
// Center our transform, we assume basis is equal.
Transform mono_transform = cam_transform;
Transform right_transform = p_interface->get_transform_for_eye(XRInterface::EYE_RIGHT, world_origin);
mono_transform.origin += right_transform.origin;
mono_transform.origin *= 0.5;
// We need to combine our projection frustums for culling.
// Ideally we should use our clipping planes for this and combine them,
// however our shadow map logic uses our projection matrix.
// Note: as our left and right frustums should be mirrored, we don't need our right projection matrix.
// - get some base values we need
float eye_dist = (mono_transform.origin - cam_transform.origin).length();
float z_near = camera_matrix.get_z_near(); // get our near plane
float z_far = camera_matrix.get_z_far(); // get our far plane
float width = (2.0 * z_near) / camera_matrix.matrix[0][0];
float x_shift = width * camera_matrix.matrix[2][0];
float height = (2.0 * z_near) / camera_matrix.matrix[1][1];
float y_shift = height * camera_matrix.matrix[2][1];
// printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift);
// - calculate our near plane size (horizontal only, right_near is mirrored)
float left_near = -eye_dist - ((width - x_shift) * 0.5);
// - calculate our far plane size (horizontal only, right_far is mirrored)
float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near);
float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near);
if (left_far > left_far_right_eye) {
// on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes.
left_far = left_far_right_eye;
}
// - figure out required z-shift
float slope = (left_far - left_near) / (z_far - z_near);
float z_shift = (left_near / slope) - z_near;
// - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift)
float top_near = (height - y_shift) * 0.5;
top_near += (top_near / z_near) * z_shift;
float bottom_near = -(height + y_shift) * 0.5;
bottom_near += (bottom_near / z_near) * z_shift;
// printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift);
// - generate our frustum
CameraMatrix combined_matrix;
combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift);
// and finally move our camera back
Transform apply_z_shift;
apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards
mono_transform *= apply_z_shift;
// now prepare our scene with our adjusted transform projection matrix
_prepare_scene(mono_transform, combined_matrix, false, false, p_render_buffers, environment, camera->visible_layers, p_scenario, p_shadow_atlas, RID(), p_screen_lod_threshold);
} else if (p_eye == XRInterface::EYE_MONO) {
// For mono render, prepare as per usual
_prepare_scene(cam_transform, camera_matrix, false, false, p_render_buffers, environment, camera->visible_layers, p_scenario, p_shadow_atlas, RID(), p_screen_lod_threshold);
}
// And render our scene...
_render_scene(p_render_buffers, cam_transform, camera_matrix, false, environment, camera->effects, p_scenario, p_shadow_atlas, RID(), -1, p_screen_lod_threshold);
#endif
};
void RendererSceneCull::_frustum_cull_threaded(uint32_t p_thread, FrustumCullData *cull_data) {
uint32_t cull_total = cull_data->scenario->instance_data.size();
uint32_t total_threads = RendererThreadPool::singleton->thread_work_pool.get_thread_count();
uint32_t cull_from = p_thread * cull_total / total_threads;
uint32_t cull_to = (p_thread + 1 == total_threads) ? cull_total : ((p_thread + 1) * cull_total / total_threads);
_frustum_cull(*cull_data, frustum_cull_result_threads[p_thread], cull_from, cull_to);
}
void RendererSceneCull::_frustum_cull(FrustumCullData &cull_data, FrustumCullResult &cull_result, uint64_t p_from, uint64_t p_to) {
uint64_t frame_number = RSG::rasterizer->get_frame_number();
float lightmap_probe_update_speed = RSG::storage->lightmap_get_probe_capture_update_speed() * RSG::rasterizer->get_frame_delta_time();
uint32_t sdfgi_last_light_index = 0xFFFFFFFF;
uint32_t sdfgi_last_light_cascade = 0xFFFFFFFF;
RID instance_pair_buffer[MAX_INSTANCE_PAIRS];
for (uint64_t i = p_from; i < p_to; i++) {
bool mesh_visible = false;
if (cull_data.scenario->instance_aabbs[i].in_frustum(cull_data.cull->frustum)) {
InstanceData &idata = cull_data.scenario->instance_data[i];
uint32_t base_type = idata.flags & InstanceData::FLAG_BASE_TYPE_MASK;
if ((cull_data.visible_layers & idata.layer_mask) == 0) {
//failure
} else if (base_type == RS::INSTANCE_LIGHT) {
cull_result.lights.push_back(idata.instance);
cull_result.light_instances.push_back(RID::from_uint64(idata.instance_data_rid));
if (cull_data.shadow_atlas.is_valid() && RSG::storage->light_has_shadow(idata.base_rid)) {
scene_render->light_instance_mark_visible(RID::from_uint64(idata.instance_data_rid)); //mark it visible for shadow allocation later
}
} else if (base_type == RS::INSTANCE_REFLECTION_PROBE) {
if (cull_data.render_reflection_probe != idata.instance) {
//avoid entering The Matrix
if ((idata.flags & InstanceData::FLAG_REFLECTION_PROBE_DIRTY) || scene_render->reflection_probe_instance_needs_redraw(RID::from_uint64(idata.instance_data_rid))) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(idata.instance->base_data);
cull_data.cull->lock.lock();
if (!reflection_probe->update_list.in_list()) {
reflection_probe->render_step = 0;
reflection_probe_render_list.add_last(&reflection_probe->update_list);
}
cull_data.cull->lock.unlock();
idata.flags &= ~uint32_t(InstanceData::FLAG_REFLECTION_PROBE_DIRTY);
}
if (scene_render->reflection_probe_instance_has_reflection(RID::from_uint64(idata.instance_data_rid))) {
cull_result.reflections.push_back(RID::from_uint64(idata.instance_data_rid));
}
}
} else if (base_type == RS::INSTANCE_DECAL) {
cull_result.decals.push_back(RID::from_uint64(idata.instance_data_rid));
} else if (base_type == RS::INSTANCE_GI_PROBE) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(idata.instance->base_data);
cull_data.cull->lock.lock();
if (!gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
cull_data.cull->lock.unlock();
cull_result.gi_probes.push_back(RID::from_uint64(idata.instance_data_rid));
} else if (base_type == RS::INSTANCE_LIGHTMAP) {
cull_result.gi_probes.push_back(RID::from_uint64(idata.instance_data_rid));
} else if (((1 << base_type) & RS::INSTANCE_GEOMETRY_MASK) && !(idata.flags & InstanceData::FLAG_CAST_SHADOWS_ONLY)) {
bool keep = true;
if (idata.flags & InstanceData::FLAG_REDRAW_IF_VISIBLE) {
RenderingServerDefault::redraw_request();
}
if (base_type == RS::INSTANCE_MESH) {
mesh_visible = true;
} else if (base_type == RS::INSTANCE_PARTICLES) {
//particles visible? process them
if (RSG::storage->particles_is_inactive(idata.base_rid)) {
//but if nothing is going on, don't do it.
keep = false;
} else {
cull_data.cull->lock.lock();
RSG::storage->particles_request_process(idata.base_rid);
cull_data.cull->lock.unlock();
RSG::storage->particles_set_view_axis(idata.base_rid, -cull_data.cam_transform.basis.get_axis(2).normalized());
//particles visible? request redraw
RenderingServerDefault::redraw_request();
}
}
if (geometry_instance_pair_mask & (1 << RS::INSTANCE_LIGHT) && (idata.flags & InstanceData::FLAG_GEOM_LIGHTING_DIRTY)) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
uint32_t idx = 0;
for (Set<Instance *>::Element *E = geom->lights.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
instance_pair_buffer[idx++] = light->instance;
if (idx == MAX_INSTANCE_PAIRS) {
break;
}
}
scene_render->geometry_instance_pair_light_instances(geom->geometry_instance, instance_pair_buffer, idx);
idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_LIGHTING_DIRTY);
}
if (geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && (idata.flags & InstanceData::FLAG_GEOM_REFLECTION_DIRTY)) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
uint32_t idx = 0;
for (Set<Instance *>::Element *E = geom->reflection_probes.front(); E; E = E->next()) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data);
instance_pair_buffer[idx++] = reflection_probe->instance;
if (idx == MAX_INSTANCE_PAIRS) {
break;
}
}
scene_render->geometry_instance_pair_reflection_probe_instances(geom->geometry_instance, instance_pair_buffer, idx);
idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_REFLECTION_DIRTY);
}
if (geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && (idata.flags & InstanceData::FLAG_GEOM_DECAL_DIRTY)) {
//InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
//todo for GLES3
idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_DECAL_DIRTY);
/*for (Set<Instance *>::Element *E = geom->dec.front(); E; E = E->next()) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data);
instance_pair_buffer[idx++] = reflection_probe->instance;
if (idx==MAX_INSTANCE_PAIRS) {
break;
}
}*/
//scene_render->geometry_instance_pair_decal_instances(geom->geometry_instance, light_instances, idx);
}
if (idata.flags & InstanceData::FLAG_GEOM_GI_PROBE_DIRTY) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
uint32_t idx = 0;
for (Set<Instance *>::Element *E = geom->gi_probes.front(); E; E = E->next()) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(E->get()->base_data);
instance_pair_buffer[idx++] = gi_probe->probe_instance;
if (idx == MAX_INSTANCE_PAIRS) {
break;
}
}
scene_render->geometry_instance_pair_gi_probe_instances(geom->geometry_instance, instance_pair_buffer, idx);
idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_GI_PROBE_DIRTY);
}
if ((idata.flags & InstanceData::FLAG_LIGHTMAP_CAPTURE) && idata.instance->last_frame_pass != frame_number && !idata.instance->lightmap_target_sh.is_empty() && !idata.instance->lightmap_sh.is_empty()) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
Color *sh = idata.instance->lightmap_sh.ptrw();
const Color *target_sh = idata.instance->lightmap_target_sh.ptr();
for (uint32_t j = 0; j < 9; j++) {
sh[j] = sh[j].lerp(target_sh[j], MIN(1.0, lightmap_probe_update_speed));
}
scene_render->geometry_instance_set_lightmap_capture(geom->geometry_instance, sh);
idata.instance->last_frame_pass = frame_number;
}
if (keep) {
cull_result.geometry_instances.push_back(idata.instance_geometry);
}
}
}
for (uint32_t j = 0; j < cull_data.cull->shadow_count; j++) {
for (uint32_t k = 0; k < cull_data.cull->shadows[j].cascade_count; k++) {
if (cull_data.scenario->instance_aabbs[i].in_frustum(cull_data.cull->shadows[j].cascades[k].frustum)) {
InstanceData &idata = cull_data.scenario->instance_data[i];
uint32_t base_type = idata.flags & InstanceData::FLAG_BASE_TYPE_MASK;
if (((1 << base_type) & RS::INSTANCE_GEOMETRY_MASK) && idata.flags & InstanceData::FLAG_CAST_SHADOWS) {
cull_result.directional_shadows[j].cascade_geometry_instances[k].push_back(idata.instance_geometry);
mesh_visible = true;
}
}
}
}
for (uint32_t j = 0; j < cull_data.cull->sdfgi.region_count; j++) {
if (cull_data.scenario->instance_aabbs[i].in_aabb(cull_data.cull->sdfgi.region_aabb[j])) {
InstanceData &idata = cull_data.scenario->instance_data[i];
uint32_t base_type = idata.flags & InstanceData::FLAG_BASE_TYPE_MASK;
if (base_type == RS::INSTANCE_LIGHT) {
InstanceLightData *instance_light = (InstanceLightData *)idata.instance->base_data;
if (instance_light->bake_mode == RS::LIGHT_BAKE_STATIC && cull_data.cull->sdfgi.region_cascade[j] <= instance_light->max_sdfgi_cascade) {
if (sdfgi_last_light_index != i || sdfgi_last_light_cascade != cull_data.cull->sdfgi.region_cascade[j]) {
sdfgi_last_light_index = i;
sdfgi_last_light_cascade = cull_data.cull->sdfgi.region_cascade[j];
cull_result.sdfgi_cascade_lights[sdfgi_last_light_cascade].push_back(instance_light->instance);
}
}
} else if ((1 << base_type) & RS::INSTANCE_GEOMETRY_MASK) {
if (idata.flags & InstanceData::FLAG_USES_BAKED_LIGHT) {
cull_result.sdfgi_region_geometry_instances[j].push_back(idata.instance_geometry);
mesh_visible = true;
}
}
}
}
if (mesh_visible && cull_data.scenario->instance_data[i].flags & InstanceData::FLAG_USES_MESH_INSTANCE) {
cull_result.mesh_instances.push_back(cull_data.scenario->instance_data[i].instance->mesh_instance);
}
}
}
void RendererSceneCull::_render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_render_buffers, RID p_environment, RID p_force_camera_effects, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, bool p_using_shadows) {
// Note, in stereo rendering:
// - p_cam_transform will be a transform in the middle of our two eyes
// - p_cam_projection is a wider frustrum that encompasses both eyes
Instance *render_reflection_probe = instance_owner.getornull(p_reflection_probe); //if null, not rendering to it
Scenario *scenario = scenario_owner.getornull(p_scenario);
render_pass++;
scene_render->set_scene_pass(render_pass);
if (p_render_buffers.is_valid()) {
//no rendering code here, this is only to set up what needs to be done, request regions, etc.
scene_render->sdfgi_update(p_render_buffers, p_environment, p_cam_transform.origin); //update conditions for SDFGI (whether its used or not)
}
RENDER_TIMESTAMP("Frustum Culling");
//rasterizer->set_camera(camera->transform, camera_matrix,ortho);
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized());
/* STEP 2 - CULL */
cull.frustum = Frustum(planes);
Vector<RID> directional_lights;
// directional lights
{
cull.shadow_count = 0;
Vector<Instance *> lights_with_shadow;
for (List<Instance *>::Element *E = scenario->directional_lights.front(); E; E = E->next()) {
if (!E->get()->visible) {
continue;
}
if (directional_lights.size() > RendererSceneRender::MAX_DIRECTIONAL_LIGHTS) {
break;
}
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
//check shadow..
if (light) {
if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(E->get()->base) && !(RSG::storage->light_get_type(E->get()->base) == RS::LIGHT_DIRECTIONAL && RSG::storage->light_directional_is_sky_only(E->get()->base))) {
lights_with_shadow.push_back(E->get());
}
//add to list
directional_lights.push_back(light->instance);
}
}
scene_render->set_directional_shadow_count(lights_with_shadow.size());
for (int i = 0; i < lights_with_shadow.size(); i++) {
_light_instance_setup_directional_shadow(i, lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect);
}
}
{ //sdfgi
cull.sdfgi.region_count = 0;
if (p_render_buffers.is_valid()) {
cull.sdfgi.cascade_light_count = 0;
uint32_t prev_cascade = 0xFFFFFFFF;
uint32_t pending_region_count = scene_render->sdfgi_get_pending_region_count(p_render_buffers);
for (uint32_t i = 0; i < pending_region_count; i++) {
cull.sdfgi.region_aabb[i] = scene_render->sdfgi_get_pending_region_bounds(p_render_buffers, i);
uint32_t region_cascade = scene_render->sdfgi_get_pending_region_cascade(p_render_buffers, i);
cull.sdfgi.region_cascade[i] = region_cascade;
if (region_cascade != prev_cascade) {
cull.sdfgi.cascade_light_index[cull.sdfgi.cascade_light_count] = region_cascade;
cull.sdfgi.cascade_light_count++;
prev_cascade = region_cascade;
}
}
cull.sdfgi.region_count = pending_region_count;
}
}
frustum_cull_result.clear();
{
uint64_t cull_from = 0;
uint64_t cull_to = scenario->instance_data.size();
FrustumCullData cull_data;
//prepare for eventual thread usage
cull_data.cull = &cull;
cull_data.scenario = scenario;
cull_data.shadow_atlas = p_shadow_atlas;
cull_data.cam_transform = p_cam_transform;
cull_data.visible_layers = p_visible_layers;
cull_data.render_reflection_probe = render_reflection_probe;
//#define DEBUG_CULL_TIME
#ifdef DEBUG_CULL_TIME
uint64_t time_from = OS::get_singleton()->get_ticks_usec();
#endif
if (cull_to > thread_cull_threshold) {
//multiple threads
for (uint32_t i = 0; i < frustum_cull_result_threads.size(); i++) {
frustum_cull_result_threads[i].clear();
}
RendererThreadPool::singleton->thread_work_pool.do_work(frustum_cull_result_threads.size(), this, &RendererSceneCull::_frustum_cull_threaded, &cull_data);
for (uint32_t i = 0; i < frustum_cull_result_threads.size(); i++) {
frustum_cull_result.append_from(frustum_cull_result_threads[i]);
}
} else {
//single threaded
_frustum_cull(cull_data, frustum_cull_result, cull_from, cull_to);
}
#ifdef DEBUG_CULL_TIME
static float time_avg = 0;
static uint32_t time_count = 0;
time_avg += double(OS::get_singleton()->get_ticks_usec() - time_from) / 1000.0;
time_count++;
print_line("time taken: " + rtos(time_avg / time_count));
#endif
if (frustum_cull_result.mesh_instances.size()) {
for (uint64_t i = 0; i < frustum_cull_result.mesh_instances.size(); i++) {
RSG::storage->mesh_instance_check_for_update(frustum_cull_result.mesh_instances[i]);
}
RSG::storage->update_mesh_instances();
}
}
//render shadows
max_shadows_used = 0;
if (p_using_shadows) { //setup shadow maps
// Directional Shadows
for (uint32_t i = 0; i < cull.shadow_count; i++) {
for (uint32_t j = 0; j < cull.shadows[i].cascade_count; j++) {
const Cull::Shadow::Cascade &c = cull.shadows[i].cascades[j];
// print_line("shadow " + itos(i) + " cascade " + itos(j) + " elements: " + itos(c.cull_result.size()));
scene_render->light_instance_set_shadow_transform(cull.shadows[i].light_instance, c.projection, c.transform, c.zfar, c.split, j, c.shadow_texel_size, c.bias_scale, c.range_begin, c.uv_scale);
if (max_shadows_used == MAX_UPDATE_SHADOWS) {
continue;
}
render_shadow_data[max_shadows_used].light = cull.shadows[i].light_instance;
render_shadow_data[max_shadows_used].pass = j;
render_shadow_data[max_shadows_used].instances.merge_unordered(frustum_cull_result.directional_shadows[i].cascade_geometry_instances[j]);
max_shadows_used++;
}
}
// Positional Shadowss
for (uint32_t i = 0; i < (uint32_t)frustum_cull_result.lights.size(); i++) {
Instance *ins = frustum_cull_result.lights[i];
if (!p_shadow_atlas.is_valid() || !RSG::storage->light_has_shadow(ins->base)) {
continue;
}
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
float coverage = 0.f;
{ //compute coverage
Transform cam_xf = p_cam_transform;
float zn = p_cam_projection.get_z_near();
Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane
// near plane half width and height
Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents();
switch (RSG::storage->light_get_type(ins->base)) {
case RS::LIGHT_OMNI: {
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
//get two points parallel to near plane
Vector3 points[2] = {
ins->transform.origin,
ins->transform.origin + cam_xf.basis.get_axis(0) * radius
};
if (!p_cam_orthogonal) {
//if using perspetive, map them to near plane
for (int j = 0; j < 2; j++) {
if (p.distance_to(points[j]) < 0) {
points[j].z = -zn; //small hack to keep size constant when hitting the screen
}
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
}
}
float screen_diameter = points[0].distance_to(points[1]) * 2;
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
} break;
case RS::LIGHT_SPOT: {
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
float angle = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE);
float w = radius * Math::sin(Math::deg2rad(angle));
float d = radius * Math::cos(Math::deg2rad(angle));
Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d;
Vector3 points[2] = {
base,
base + cam_xf.basis.get_axis(0) * w
};
if (!p_cam_orthogonal) {
//if using perspetive, map them to near plane
for (int j = 0; j < 2; j++) {
if (p.distance_to(points[j]) < 0) {
points[j].z = -zn; //small hack to keep size constant when hitting the screen
}
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
}
}
float screen_diameter = points[0].distance_to(points[1]) * 2;
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
} break;
default: {
ERR_PRINT("Invalid Light Type");
}
}
}
if (light->shadow_dirty) {
light->last_version++;
light->shadow_dirty = false;
}
bool redraw = scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version);
if (redraw && max_shadows_used < MAX_UPDATE_SHADOWS) {
//must redraw!
RENDER_TIMESTAMP(">Rendering Light " + itos(i));
light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario, p_screen_lod_threshold);
RENDER_TIMESTAMP("<Rendering Light " + itos(i));
} else {
light->shadow_dirty = redraw;
}
}
}
//render SDFGI
{
sdfgi_update_data.update_static = false;
if (cull.sdfgi.region_count > 0) {
//update regions
for (uint32_t i = 0; i < cull.sdfgi.region_count; i++) {
render_sdfgi_data[i].instances.merge_unordered(frustum_cull_result.sdfgi_region_geometry_instances[i]);
render_sdfgi_data[i].region = i;
}
//check if static lights were culled
bool static_lights_culled = false;
for (uint32_t i = 0; i < cull.sdfgi.cascade_light_count; i++) {
if (frustum_cull_result.sdfgi_cascade_lights[i].size()) {
static_lights_culled = true;
break;
}
}
if (static_lights_culled) {
sdfgi_update_data.static_cascade_count = cull.sdfgi.cascade_light_count;
sdfgi_update_data.static_cascade_indices = cull.sdfgi.cascade_light_index;
sdfgi_update_data.static_positional_lights = frustum_cull_result.sdfgi_cascade_lights;
sdfgi_update_data.update_static = true;
}
}
if (p_render_buffers.is_valid()) {
sdfgi_update_data.directional_lights = &directional_lights;
sdfgi_update_data.positional_light_instances = scenario->dynamic_lights.ptr();
sdfgi_update_data.positional_light_count = scenario->dynamic_lights.size();
}
}
//append the directional lights to the lights culled
for (int i = 0; i < directional_lights.size(); i++) {
frustum_cull_result.light_instances.push_back(directional_lights[i]);
}
RID camera_effects;
if (p_force_camera_effects.is_valid()) {
camera_effects = p_force_camera_effects;
} else {
camera_effects = scenario->camera_effects;
}
/* PROCESS GEOMETRY AND DRAW SCENE */
RENDER_TIMESTAMP("Render Scene ");
scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, frustum_cull_result.geometry_instances, frustum_cull_result.light_instances, frustum_cull_result.reflections, frustum_cull_result.gi_probes, frustum_cull_result.decals, frustum_cull_result.lightmaps, p_environment, camera_effects, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass, p_screen_lod_threshold, render_shadow_data, max_shadows_used, render_sdfgi_data, cull.sdfgi.region_count, &sdfgi_update_data);
for (uint32_t i = 0; i < max_shadows_used; i++) {
render_shadow_data[i].instances.clear();
}
max_shadows_used = 0;
for (uint32_t i = 0; i < cull.sdfgi.region_count; i++) {
render_sdfgi_data[i].instances.clear();
}
// virtual void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_gi_probes, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold,const RenderShadowData *p_render_shadows,int p_render_shadow_count,const RenderSDFGIData *p_render_sdfgi_regions,int p_render_sdfgi_region_count,const RenderSDFGIStaticLightData *p_render_sdfgi_static_lights=nullptr) = 0;
}
RID RendererSceneCull::_render_get_environment(RID p_camera, RID p_scenario) {
Camera *camera = camera_owner.getornull(p_camera);
if (camera && scene_render->is_environment(camera->env)) {
return camera->env;
}
Scenario *scenario = scenario_owner.getornull(p_scenario);
if (!scenario) {
return RID();
}
if (scene_render->is_environment(scenario->environment)) {
return scenario->environment;
}
if (scene_render->is_environment(scenario->fallback_environment)) {
return scenario->fallback_environment;
}
return RID();
}
void RendererSceneCull::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) {
#ifndef _3D_DISABLED
Scenario *scenario = scenario_owner.getornull(p_scenario);
RID environment;
if (scenario->environment.is_valid()) {
environment = scenario->environment;
} else {
environment = scenario->fallback_environment;
}
RENDER_TIMESTAMP("Render Empty Scene ");
scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, PagedArray<RendererSceneRender::GeometryInstance *>(), PagedArray<RID>(), PagedArray<RID>(), PagedArray<RID>(), PagedArray<RID>(), PagedArray<RID>(), RID(), RID(), p_shadow_atlas, scenario->reflection_atlas, RID(), 0, 0, nullptr, 0, nullptr, 0, nullptr);
#endif
}
bool RendererSceneCull::_render_reflection_probe_step(Instance *p_instance, int p_step) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
Scenario *scenario = p_instance->scenario;
ERR_FAIL_COND_V(!scenario, true);
RenderingServerDefault::redraw_request(); //update, so it updates in editor
if (p_step == 0) {
if (!scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) {
return true; //all full
}
}
if (p_step >= 0 && p_step < 6) {
static const Vector3 view_normals[6] = {
Vector3(+1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, +1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1)
};
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1),
Vector3(0, -1, 0),
Vector3(0, -1, 0)
};
Vector3 extents = RSG::storage->reflection_probe_get_extents(p_instance->base);
Vector3 origin_offset = RSG::storage->reflection_probe_get_origin_offset(p_instance->base);
float max_distance = RSG::storage->reflection_probe_get_origin_max_distance(p_instance->base);
float size = scene_render->reflection_atlas_get_size(scenario->reflection_atlas);
float lod_threshold = RSG::storage->reflection_probe_get_lod_threshold(p_instance->base) / size;
Vector3 edge = view_normals[p_step] * extents;
float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit
max_distance = MAX(max_distance, distance);
//render cubemap side
CameraMatrix cm;
cm.set_perspective(90, 1, 0.01, max_distance);
Transform local_view;
local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]);
Transform xform = p_instance->transform * local_view;
RID shadow_atlas;
bool use_shadows = RSG::storage->reflection_probe_renders_shadows(p_instance->base);
if (use_shadows) {
shadow_atlas = scenario->reflection_probe_shadow_atlas;
}
RID environment;
if (scenario->environment.is_valid()) {
environment = scenario->environment;
} else {
environment = scenario->fallback_environment;
}
RENDER_TIMESTAMP("Render Reflection Probe, Step " + itos(p_step));
_render_scene(xform, cm, false, false, RID(), environment, RID(), RSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step, lod_threshold, use_shadows);
} else {
//do roughness postprocess step until it believes it's done
RENDER_TIMESTAMP("Post-Process Reflection Probe, Step " + itos(p_step));
return scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance);
}
return false;
}
void RendererSceneCull::render_probes() {
/* REFLECTION PROBES */
SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first();
bool busy = false;
while (ref_probe) {
SelfList<InstanceReflectionProbeData> *next = ref_probe->next();
RID base = ref_probe->self()->owner->base;
switch (RSG::storage->reflection_probe_get_update_mode(base)) {
case RS::REFLECTION_PROBE_UPDATE_ONCE: {
if (busy) { //already rendering something
break;
}
bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step);
if (done) {
reflection_probe_render_list.remove(ref_probe);
} else {
ref_probe->self()->render_step++;
}
busy = true; //do not render another one of this kind
} break;
case RS::REFLECTION_PROBE_UPDATE_ALWAYS: {
int step = 0;
bool done = false;
while (!done) {
done = _render_reflection_probe_step(ref_probe->self()->owner, step);
step++;
}
reflection_probe_render_list.remove(ref_probe);
} break;
}
ref_probe = next;
}
/* GI PROBES */
SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first();
if (gi_probe) {
RENDER_TIMESTAMP("Render GI Probes");
}
while (gi_probe) {
SelfList<InstanceGIProbeData> *next = gi_probe->next();
InstanceGIProbeData *probe = gi_probe->self();
//Instance *instance_probe = probe->owner;
//check if probe must be setup, but don't do if on the lighting thread
bool cache_dirty = false;
int cache_count = 0;
{
int light_cache_size = probe->light_cache.size();
const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr();
const RID *instance_caches = probe->light_instances.ptr();
int idx = 0; //must count visible lights
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
}
if (cache_dirty) {
//do nothing, since idx must count all visible lights anyway
} else if (idx >= light_cache_size) {
cache_dirty = true;
} else {
const InstanceGIProbeData::LightCache *cache = &caches[idx];
if (
instance_caches[idx] != instance_light->instance ||
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
cache->type != RSG::storage->light_get_type(instance->base) ||
cache->transform != instance->transform ||
cache->color != RSG::storage->light_get_color(instance->base) ||
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
cache_dirty = true;
}
}
idx++;
}
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
}
if (cache_dirty) {
//do nothing, since idx must count all visible lights anyway
} else if (idx >= light_cache_size) {
cache_dirty = true;
} else {
const InstanceGIProbeData::LightCache *cache = &caches[idx];
if (
instance_caches[idx] != instance_light->instance ||
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
cache->type != RSG::storage->light_get_type(instance->base) ||
cache->transform != instance->transform ||
cache->color != RSG::storage->light_get_color(instance->base) ||
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION) ||
cache->sky_only != RSG::storage->light_directional_is_sky_only(instance->base)) {
cache_dirty = true;
}
}
idx++;
}
if (idx != light_cache_size) {
cache_dirty = true;
}
cache_count = idx;
}
bool update_lights = scene_render->gi_probe_needs_update(probe->probe_instance);
if (cache_dirty) {
probe->light_cache.resize(cache_count);
probe->light_instances.resize(cache_count);
if (cache_count) {
InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw();
RID *instance_caches = probe->light_instances.ptrw();
int idx = 0; //must count visible lights
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
}
InstanceGIProbeData::LightCache *cache = &caches[idx];
instance_caches[idx] = instance_light->instance;
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
cache->type = RSG::storage->light_get_type(instance->base);
cache->transform = instance->transform;
cache->color = RSG::storage->light_get_color(instance->base);
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
idx++;
}
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
}
InstanceGIProbeData::LightCache *cache = &caches[idx];
instance_caches[idx] = instance_light->instance;
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
cache->type = RSG::storage->light_get_type(instance->base);
cache->transform = instance->transform;
cache->color = RSG::storage->light_get_color(instance->base);
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
cache->sky_only = RSG::storage->light_directional_is_sky_only(instance->base);
idx++;
}
}
update_lights = true;
}
frustum_cull_result.geometry_instances.clear();
RID instance_pair_buffer[MAX_INSTANCE_PAIRS];
for (Set<Instance *>::Element *E = probe->dynamic_geometries.front(); E; E = E->next()) {
Instance *ins = E->get();
if (!ins->visible) {
continue;
}
InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data;
if (ins->scenario && ins->array_index >= 0 && (ins->scenario->instance_data[ins->array_index].flags & InstanceData::FLAG_GEOM_GI_PROBE_DIRTY)) {
uint32_t idx = 0;
for (Set<Instance *>::Element *F = geom->gi_probes.front(); F; F = F->next()) {
InstanceGIProbeData *gi_probe2 = static_cast<InstanceGIProbeData *>(F->get()->base_data);
instance_pair_buffer[idx++] = gi_probe2->probe_instance;
if (idx == MAX_INSTANCE_PAIRS) {
break;
}
}
scene_render->geometry_instance_pair_gi_probe_instances(geom->geometry_instance, instance_pair_buffer, idx);
ins->scenario->instance_data[ins->array_index].flags &= ~uint32_t(InstanceData::FLAG_GEOM_GI_PROBE_DIRTY);
}
frustum_cull_result.geometry_instances.push_back(geom->geometry_instance);
}
scene_render->gi_probe_update(probe->probe_instance, update_lights, probe->light_instances, frustum_cull_result.geometry_instances);
gi_probe_update_list.remove(gi_probe);
gi_probe = next;
}
}
void RendererSceneCull::render_particle_colliders() {
while (heightfield_particle_colliders_update_list.front()) {
Instance *hfpc = heightfield_particle_colliders_update_list.front()->get();
if (hfpc->scenario && hfpc->base_type == RS::INSTANCE_PARTICLES_COLLISION && RSG::storage->particles_collision_is_heightfield(hfpc->base)) {
//update heightfield
instance_cull_result.clear();
frustum_cull_result.geometry_instances.clear();
struct CullAABB {
PagedArray<Instance *> *result;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
result->push_back(p_instance);
return false;
}
};
CullAABB cull_aabb;
cull_aabb.result = &instance_cull_result;
hfpc->scenario->indexers[Scenario::INDEXER_GEOMETRY].aabb_query(hfpc->transformed_aabb, cull_aabb);
hfpc->scenario->indexers[Scenario::INDEXER_VOLUMES].aabb_query(hfpc->transformed_aabb, cull_aabb);
for (int i = 0; i < (int)instance_cull_result.size(); i++) {
Instance *instance = instance_cull_result[i];
if (!instance || !((1 << instance->base_type) & (RS::INSTANCE_GEOMETRY_MASK & (~(1 << RS::INSTANCE_PARTICLES))))) { //all but particles to avoid self collision
continue;
}
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
frustum_cull_result.geometry_instances.push_back(geom->geometry_instance);
}
scene_render->render_particle_collider_heightfield(hfpc->base, hfpc->transform, frustum_cull_result.geometry_instances);
}
heightfield_particle_colliders_update_list.erase(heightfield_particle_colliders_update_list.front());
}
}
void RendererSceneCull::_update_instance_shader_parameters_from_material(Map<StringName, Instance::InstanceShaderParameter> &isparams, const Map<StringName, Instance::InstanceShaderParameter> &existing_isparams, RID p_material) {
List<RendererStorage::InstanceShaderParam> plist;
RSG::storage->material_get_instance_shader_parameters(p_material, &plist);
for (List<RendererStorage::InstanceShaderParam>::Element *E = plist.front(); E; E = E->next()) {
StringName name = E->get().info.name;
if (isparams.has(name)) {
if (isparams[name].info.type != E->get().info.type) {
WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different data types. Only the first one (in order) will display correctly.");
}
if (isparams[name].index != E->get().index) {
WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different indices. Only the first one (in order) will display correctly.");
}
continue; //first one found always has priority
}
Instance::InstanceShaderParameter isp;
isp.index = E->get().index;
isp.info = E->get().info;
isp.default_value = E->get().default_value;
if (existing_isparams.has(name)) {
isp.value = existing_isparams[name].value;
} else {
isp.value = E->get().default_value;
}
isparams[name] = isp;
}
}
void RendererSceneCull::_update_dirty_instance(Instance *p_instance) {
if (p_instance->update_aabb) {
_update_instance_aabb(p_instance);
}
if (p_instance->update_dependencies) {
p_instance->dependency_tracker.update_begin();
if (p_instance->base.is_valid()) {
RSG::storage->base_update_dependency(p_instance->base, &p_instance->dependency_tracker);
}
if (p_instance->material_override.is_valid()) {
RSG::storage->material_update_dependency(p_instance->material_override, &p_instance->dependency_tracker);
}
if (p_instance->base_type == RS::INSTANCE_MESH) {
//remove materials no longer used and un-own them
int new_mat_count = RSG::storage->mesh_get_surface_count(p_instance->base);
p_instance->materials.resize(new_mat_count);
_instance_update_mesh_instance(p_instance);
}
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
bool can_cast_shadows = true;
bool is_animated = false;
Map<StringName, Instance::InstanceShaderParameter> isparams;
if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) {
can_cast_shadows = false;
}
if (p_instance->material_override.is_valid()) {
if (!RSG::storage->material_casts_shadows(p_instance->material_override)) {
can_cast_shadows = false;
}
is_animated = RSG::storage->material_is_animated(p_instance->material_override);
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, p_instance->material_override);
} else {
if (p_instance->base_type == RS::INSTANCE_MESH) {
RID mesh = p_instance->base;
if (mesh.is_valid()) {
bool cast_shadows = false;
for (int i = 0; i < p_instance->materials.size(); i++) {
RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::storage->mesh_surface_get_material(mesh, i);
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (RSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
RSG::storage->material_update_dependency(mat, &p_instance->dependency_tracker);
}
}
if (!cast_shadows) {
can_cast_shadows = false;
}
}
} else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) {
RID mesh = RSG::storage->multimesh_get_mesh(p_instance->base);
if (mesh.is_valid()) {
bool cast_shadows = false;
int sc = RSG::storage->mesh_get_surface_count(mesh);
for (int i = 0; i < sc; i++) {
RID mat = RSG::storage->mesh_surface_get_material(mesh, i);
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (RSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
RSG::storage->material_update_dependency(mat, &p_instance->dependency_tracker);
}
}
if (!cast_shadows) {
can_cast_shadows = false;
}
RSG::storage->base_update_dependency(mesh, &p_instance->dependency_tracker);
}
} else if (p_instance->base_type == RS::INSTANCE_IMMEDIATE) {
RID mat = RSG::storage->immediate_get_material(p_instance->base);
if (!(!mat.is_valid() || RSG::storage->material_casts_shadows(mat))) {
can_cast_shadows = false;
}
if (mat.is_valid() && RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
if (mat.is_valid()) {
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
}
if (mat.is_valid()) {
RSG::storage->material_update_dependency(mat, &p_instance->dependency_tracker);
}
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
bool cast_shadows = false;
int dp = RSG::storage->particles_get_draw_passes(p_instance->base);
for (int i = 0; i < dp; i++) {
RID mesh = RSG::storage->particles_get_draw_pass_mesh(p_instance->base, i);
if (!mesh.is_valid()) {
continue;
}
int sc = RSG::storage->mesh_get_surface_count(mesh);
for (int j = 0; j < sc; j++) {
RID mat = RSG::storage->mesh_surface_get_material(mesh, j);
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (RSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
RSG::storage->material_update_dependency(mat, &p_instance->dependency_tracker);
}
}
}
if (!cast_shadows) {
can_cast_shadows = false;
}
}
}
if (can_cast_shadows != geom->can_cast_shadows) {
//ability to cast shadows change, let lights now
for (Set<Instance *>::Element *E = geom->lights.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
light->shadow_dirty = true;
}
geom->can_cast_shadows = can_cast_shadows;
}
geom->material_is_animated = is_animated;
p_instance->instance_shader_parameters = isparams;
if (p_instance->instance_allocated_shader_parameters != (p_instance->instance_shader_parameters.size() > 0)) {
p_instance->instance_allocated_shader_parameters = (p_instance->instance_shader_parameters.size() > 0);
if (p_instance->instance_allocated_shader_parameters) {
p_instance->instance_allocated_shader_parameters_offset = RSG::storage->global_variables_instance_allocate(p_instance->self);
scene_render->geometry_instance_set_instance_shader_parameters_offset(geom->geometry_instance, p_instance->instance_allocated_shader_parameters_offset);
for (Map<StringName, Instance::InstanceShaderParameter>::Element *E = p_instance->instance_shader_parameters.front(); E; E = E->next()) {
if (E->get().value.get_type() != Variant::NIL) {
RSG::storage->global_variables_instance_update(p_instance->self, E->get().index, E->get().value);
}
}
} else {
RSG::storage->global_variables_instance_free(p_instance->self);
p_instance->instance_allocated_shader_parameters_offset = -1;
scene_render->geometry_instance_set_instance_shader_parameters_offset(geom->geometry_instance, -1);
}
}
}
if (p_instance->skeleton.is_valid()) {
RSG::storage->skeleton_update_dependency(p_instance->skeleton, &p_instance->dependency_tracker);
}
p_instance->dependency_tracker.update_end();
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
scene_render->geometry_instance_set_surface_materials(geom->geometry_instance, p_instance->materials);
}
}
_instance_update_list.remove(&p_instance->update_item);
_update_instance(p_instance);
p_instance->update_aabb = false;
p_instance->update_dependencies = false;
}
void RendererSceneCull::update_dirty_instances() {
RSG::storage->update_dirty_resources();
while (_instance_update_list.first()) {
_update_dirty_instance(_instance_update_list.first()->self());
}
}
void RendererSceneCull::update() {
//optimize bvhs
for (uint32_t i = 0; i < scenario_owner.get_rid_count(); i++) {
Scenario *s = scenario_owner.get_ptr_by_index(i);
s->indexers[Scenario::INDEXER_GEOMETRY].optimize_incremental(indexer_update_iterations);
s->indexers[Scenario::INDEXER_VOLUMES].optimize_incremental(indexer_update_iterations);
}
scene_render->update();
update_dirty_instances();
render_particle_colliders();
}
bool RendererSceneCull::free(RID p_rid) {
if (scene_render->free(p_rid)) {
return true;
}
if (camera_owner.owns(p_rid)) {
Camera *camera = camera_owner.getornull(p_rid);
camera_owner.free(p_rid);
memdelete(camera);
} else if (scenario_owner.owns(p_rid)) {
Scenario *scenario = scenario_owner.getornull(p_rid);
while (scenario->instances.first()) {
instance_set_scenario(scenario->instances.first()->self()->self, RID());
}
scenario->instance_aabbs.reset();
scenario->instance_data.reset();
scene_render->free(scenario->reflection_probe_shadow_atlas);
scene_render->free(scenario->reflection_atlas);
scenario_owner.free(p_rid);
memdelete(scenario);
} else if (instance_owner.owns(p_rid)) {
// delete the instance
update_dirty_instances();
Instance *instance = instance_owner.getornull(p_rid);
instance_geometry_set_lightmap(p_rid, RID(), Rect2(), 0);
instance_set_scenario(p_rid, RID());
instance_set_base(p_rid, RID());
instance_geometry_set_material_override(p_rid, RID());
instance_attach_skeleton(p_rid, RID());
if (instance->instance_allocated_shader_parameters) {
//free the used shader parameters
RSG::storage->global_variables_instance_free(instance->self);
}
update_dirty_instances(); //in case something changed this
instance_owner.free(p_rid);
memdelete(instance);
} else {
return false;
}
return true;
}
TypedArray<Image> RendererSceneCull::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
return scene_render->bake_render_uv2(p_base, p_material_overrides, p_image_size);
}
/*******************************/
/* Passthrough to Scene Render */
/*******************************/
/* ENVIRONMENT API */
RendererSceneCull *RendererSceneCull::singleton = nullptr;
void RendererSceneCull::set_scene_render(RendererSceneRender *p_scene_render) {
scene_render = p_scene_render;
geometry_instance_pair_mask = scene_render->geometry_instance_get_pair_mask();
}
RendererSceneCull::RendererSceneCull() {
render_pass = 1;
singleton = this;
instance_cull_result.set_page_pool(&instance_cull_page_pool);
instance_shadow_cull_result.set_page_pool(&instance_cull_page_pool);
for (uint32_t i = 0; i < MAX_UPDATE_SHADOWS; i++) {
render_shadow_data[i].instances.set_page_pool(&geometry_instance_cull_page_pool);
}
for (uint32_t i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
render_sdfgi_data[i].instances.set_page_pool(&geometry_instance_cull_page_pool);
}
frustum_cull_result.init(&rid_cull_page_pool, &geometry_instance_cull_page_pool, &instance_cull_page_pool);
frustum_cull_result_threads.resize(RendererThreadPool::singleton->thread_work_pool.get_thread_count());
for (uint32_t i = 0; i < frustum_cull_result_threads.size(); i++) {
frustum_cull_result_threads[i].init(&rid_cull_page_pool, &geometry_instance_cull_page_pool, &instance_cull_page_pool);
}
indexer_update_iterations = GLOBAL_GET("rendering/limits/spatial_indexer/update_iterations_per_frame");
thread_cull_threshold = GLOBAL_GET("rendering/limits/spatial_indexer/threaded_cull_minimum_instances");
thread_cull_threshold = MAX(thread_cull_threshold, (uint32_t)RendererThreadPool::singleton->thread_work_pool.get_thread_count()); //make sure there is at least one thread per CPU
}
RendererSceneCull::~RendererSceneCull() {
instance_cull_result.reset();
instance_shadow_cull_result.reset();
for (uint32_t i = 0; i < MAX_UPDATE_SHADOWS; i++) {
render_shadow_data[i].instances.reset();
}
for (uint32_t i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
render_sdfgi_data[i].instances.reset();
}
frustum_cull_result.reset();
for (uint32_t i = 0; i < frustum_cull_result_threads.size(); i++) {
frustum_cull_result_threads[i].reset();
}
frustum_cull_result_threads.clear();
}