virtualx-engine/drivers/vulkan/rendering_device_vulkan.h
2020-02-11 11:53:26 +01:00

830 lines
26 KiB
C++

#ifndef RENDERING_DEVICE_VULKAN_H
#define RENDERING_DEVICE_VULKAN_H
#include "core/oa_hash_map.h"
#include "core/os/thread_safe.h"
#include "servers/visual/rendering_device.h"
#include "thirdparty/glslang/glslang/Public/ShaderLang.h"
#include "vk_mem_alloc.h"
#include <vulkan/vulkan.h>
//todo:
//compute
//push constants
//views of texture slices
class VulkanContext;
class RenderingDeviceVulkan : public RenderingDevice {
_THREAD_SAFE_CLASS_
// Miscellaneous tables that map
// our enums to enums used
// by vulkan.
VkPhysicalDeviceLimits limits;
static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
static const char *named_formats[DATA_FORMAT_MAX];
static const VkCompareOp compare_operators[COMPARE_OP_MAX];
static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];
// Functions used for format
// validation, and ensures the
// user passes valid data.
static int get_format_vertex_size(DataFormat p_format);
static uint32_t get_image_format_pixel_size(DataFormat p_format);
static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmap, uint32_t *r_blockw = NULL, uint32_t *r_blockh = NULL);
static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
/***************************/
/**** ID INFRASTRUCTURE ****/
/***************************/
// Everything is exposed to the user
// as IDs instead of pointers. This
// has a negligible CPU performance
// impact (Open Addressing is used to
// improve cache efficiency), but
// makes sure the user can't screw up
// by providing a safety layer.
enum IDType {
ID_TYPE_TEXTURE,
ID_TYPE_FRAMEBUFFER_FORMAT,
ID_TYPE_FRAMEBUFFER,
ID_TYPE_SAMPLER,
ID_TYPE_VERTEX_DESCRIPTION,
ID_TYPE_VERTEX_BUFFER,
ID_TYPE_INDEX_BUFFER,
ID_TYPE_VERTEX_ARRAY,
ID_TYPE_INDEX_ARRAY,
ID_TYPE_SHADER,
ID_TYPE_UNIFORM_BUFFER,
ID_TYPE_STORAGE_BUFFER,
ID_TYPE_TEXTURE_BUFFER,
ID_TYPE_UNIFORM_SET,
ID_TYPE_RENDER_PIPELINE,
ID_TYPE_DRAW_LIST_THREAD_CONTEXT,
ID_TYPE_DRAW_LIST,
ID_TYPE_SPLIT_DRAW_LIST,
ID_TYPE_MAX,
ID_BASE_SHIFT = 58 //5 bits for ID types
};
VkDevice device;
// this is meant to be fast, not flexible
// so never keep pointers to the elements
// inside this structure
template <class T, IDType id_type>
class ID_Pool {
ID counter;
OAHashMap<ID, T> map;
public:
ID make_id(const T &p_instance) {
ID new_id = (ID(id_type) << ID_BASE_SHIFT) + counter;
counter++;
map.insert(new_id, p_instance);
return new_id;
}
bool owns(ID p_id) const {
if (p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type) {
return false;
}
return map.has(p_id);
}
T *getornull(ID p_id) const {
if (p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type) {
return NULL;
}
return map.lookup_ptr(p_id);
}
void free(ID p_id) {
ERR_FAIL_COND(p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type);
map.remove(p_id);
}
ID_Pool() {
counter = 1;
}
};
Map<ID, Set<ID> > dependency_map; //IDs to IDs that depend on it
Map<ID, Set<ID> > reverse_dependency_map; //same as above, but in reverse
void _add_dependency(ID p_id, ID p_depends_on);
void _free_dependencies(ID p_id);
/*****************/
/**** TEXTURE ****/
/*****************/
// In Vulkan, the concept of textures does not exist,
// intead there is the image (the memory prety much,
// the view (how the memory is interpreted) and the
// sampler (how it's sampled from the shader).
//
// Texture here includes the first two stages, but
// It's possible to create textures sharing the image
// but with different views. The main use case for this
// is textures that can be read as both SRGB/Linear,
// or slices of a texture (a mipmap, a layer, a 3D slice)
// for a framebuffer to render into it.
struct Texture {
VkImage image;
VmaAllocation allocation;
VmaAllocationInfo allocation_info;
VkImageView view;
TextureType type;
DataFormat format;
TextureSamples samples;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t layers;
uint32_t mipmaps;
uint32_t usage_flags;
VkImageLayout bound_layout; //layout used when bound to framebuffer being drawn
VkImageLayout unbound_layout; //layout used otherwise
uint32_t aspect_mask;
bool bound; //bound to framebffer
ID owner;
};
ID_Pool<Texture, ID_TYPE_TEXTURE> texture_owner;
uint32_t texture_upload_region_size_px;
/*****************/
/**** SAMPLER ****/
/*****************/
ID_Pool<VkSampler, ID_TYPE_SAMPLER> sampler_owner;
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
// These are temporary buffers on CPU memory that hold
// the information until the CPU fetches it and places it
// either on GPU buffers, or images (textures). It ensures
// updates are properly synchronized with whathever the
// GPU is doing.
//
// The logic here is as follows, only 3 of these
// blocks are created at the beginning (one per frame)
// they can each belong to a frame (assigned to current when
// used) and they can only be reused after the same frame is
// recycled.
//
// When CPU requires to allocate more than what is available,
// more of these buffers are created. If a limit is reached,
// then a fence will ensure will wait for blocks allocated
// in previous frames are processed. If that fails, then
// another fence will ensure everything pending for the current
// frame is processed (effectively stalling).
//
// See the comments in the code to understand better how it works.
struct StagingBufferBlock {
VkBuffer buffer;
VmaAllocation allocation;
uint64_t frame_used;
uint32_t fill_amount;
};
Vector<StagingBufferBlock> staging_buffer_blocks;
int staging_buffer_current;
uint32_t staging_buffer_block_size;
uint64_t staging_buffer_max_size;
bool staging_buffer_used;
Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true, bool p_on_draw_command_buffer = false);
Error _insert_staging_block();
struct Buffer {
uint32_t size;
VkBuffer buffer;
VmaAllocation allocation;
VkDescriptorBufferInfo buffer_info; //used for binding
Buffer() {
size = 0;
buffer = NULL;
allocation = NULL;
}
};
Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mapping);
Error _buffer_free(Buffer *p_buffer);
Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
// In Vulkan, framebuffers work similar to how they
// do in OpenGL, with the exception that
// the "format" (vkRenderPass) is not dynamic
// and must be more or less the same as the one
// used for the render pipelines.
struct FramebufferFormatKey {
Vector<AttachmentFormat> attachments;
bool operator<(const FramebufferFormatKey &p_key) const {
int as = attachments.size();
int bs = p_key.attachments.size();
if (as != bs) {
return as < bs;
}
const AttachmentFormat *af_a = attachments.ptr();
const AttachmentFormat *af_b = p_key.attachments.ptr();
for (int i = 0; i < as; i++) {
const AttachmentFormat &a = af_a[i];
const AttachmentFormat &b = af_b[i];
if (a.format != b.format) {
return a.format < b.format;
}
if (a.samples != b.samples) {
return a.samples < b.samples;
}
if (a.usage_flags != b.usage_flags) {
return a.usage_flags < b.usage_flags;
}
}
return false; //equal
}
};
VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, int *r_color_attachment_count = NULL);
// This is a cache and it's never freed, it ensures
// IDs for a given format are always unique.
Map<FramebufferFormatKey, ID> framebuffer_format_cache;
struct FramebufferFormat {
const Map<FramebufferFormatKey, ID>::Element *E;
VkRenderPass render_pass; //here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec)
int color_attachments; //used for pipeline validation
};
Map<ID, FramebufferFormat> framebuffer_formats;
struct Framebuffer {
ID format_id;
struct VersionKey {
InitialAction initial_action;
FinalAction final_action;
bool operator<(const VersionKey &p_key) const {
if (initial_action == p_key.initial_action) {
return final_action < p_key.final_action;
} else {
return initial_action < p_key.initial_action;
}
}
};
Vector<ID> texture_ids;
struct Version {
VkFramebuffer framebuffer;
VkRenderPass render_pass; //this one is owned
};
Map<VersionKey, Version> framebuffers;
Size2 size;
};
ID_Pool<Framebuffer, ID_TYPE_FRAMEBUFFER> framebuffer_owner;
/***********************/
/**** VERTEX BUFFER ****/
/***********************/
// Vertex buffers in Vulkan are similar to how
// they work in OpenGL, except that instead of
// an attribtue index, there is a buffer binding
// index (for binding the buffers in real-time)
// and a location index (what is used in the shader).
//
// This mapping is done here internally, and it's not
// exposed.
ID_Pool<Buffer, ID_TYPE_VERTEX_BUFFER> vertex_buffer_owner;
struct VertexDescriptionKey {
Vector<VertexDescription> vertex_descriptions;
int buffer_count;
bool operator<(const VertexDescriptionKey &p_key) const {
if (buffer_count != p_key.buffer_count) {
return buffer_count < p_key.buffer_count;
}
if (vertex_descriptions.size() != p_key.vertex_descriptions.size()) {
return vertex_descriptions.size() < p_key.vertex_descriptions.size();
} else {
int vdc = vertex_descriptions.size();
const VertexDescription *a_ptr = vertex_descriptions.ptr();
const VertexDescription *b_ptr = p_key.vertex_descriptions.ptr();
for (int i = 0; i < vdc; i++) {
const VertexDescription &a = a_ptr[i];
const VertexDescription &b = b_ptr[i];
if (a.location != b.location) {
return a.location < b.location;
}
if (a.offset != b.offset) {
return a.offset < b.offset;
}
if (a.format != b.format) {
return a.format < b.format;
}
if (a.stride != b.stride) {
return a.stride < b.stride;
}
return a.frequency < b.frequency;
}
return false; //they are equal
}
}
};
// This is a cache and it's never freed, it ensures that
// ID used for a specific format always remain the same.
Map<VertexDescriptionKey, ID> vertex_description_cache;
struct VertexDescriptionCache {
const Map<VertexDescriptionKey, ID>::Element *E;
VkVertexInputBindingDescription *bindings;
VkVertexInputAttributeDescription *attributes;
VkPipelineVertexInputStateCreateInfo create_info;
};
Map<ID, VertexDescriptionCache> vertex_descriptions;
struct VertexArray {
ID buffer;
ID description;
int vertex_count;
uint32_t max_instances_allowed;
Vector<VkBuffer> buffers; //not owned, just referenced
Vector<VkDeviceSize> offsets;
};
ID_Pool<VertexArray, ID_TYPE_VERTEX_ARRAY> vertex_array_owner;
struct IndexBuffer : public Buffer {
uint32_t max_index; //used for validation
uint32_t index_count;
VkIndexType index_type;
bool supports_restart_indices;
};
ID_Pool<IndexBuffer, ID_TYPE_INDEX_BUFFER> index_buffer_owner;
struct IndexArray {
uint32_t max_index; //remember the maximum index here too, for validation
VkBuffer buffer; //not owned, inherited from index buffer
uint32_t offset;
uint32_t indices;
VkIndexType index_type;
bool supports_restart_indices;
};
ID_Pool<IndexArray, ID_TYPE_INDEX_ARRAY> index_array_owner;
/****************/
/**** SHADER ****/
/****************/
// Shaders in Vulkan are just pretty much
// precompiled blocks of SPIR-V bytecode. They
// are most likely not really compiled to host
// assembly until a pipeline is created.
//
// When supplying the shaders, this implementation
// will use the reflection abilities of glslang to
// understand and cache everything required to
// create and use the descriptor sets (Vulkan's
// biggest pain).
//
// Additionally, hashes are created for every set
// to do quick validation and ensuring the user
// does not submit something invalid.
struct Shader {
struct UniformInfo {
UniformType type;
int binding;
uint32_t stages;
int length; //size of arrays (in total elements), or ubos (in bytes * total elements)
bool operator<(const UniformInfo &p_info) const {
if (type != p_info.type) {
return type < p_info.type;
}
if (binding != p_info.binding) {
return binding < p_info.binding;
}
if (stages != p_info.stages) {
return stages < p_info.stages;
}
return length < p_info.length;
}
};
struct Set {
Vector<UniformInfo> uniform_info;
VkDescriptorSetLayout descriptor_set_layout;
};
Vector<int> vertex_input_locations; //inputs used, this is mostly for validation
int fragment_outputs;
int max_output;
Vector<Set> sets;
Vector<uint32_t> set_hashes;
Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
VkPipelineLayout pipeline_layout;
};
bool _uniform_add_binding(Vector<Vector<VkDescriptorSetLayoutBinding> > &bindings, Vector<Vector<Shader::UniformInfo> > &uniform_infos, const glslang::TObjectReflection &reflection, RenderingDevice::ShaderStage p_stage, String *r_error);
ID_Pool<Shader, ID_TYPE_SHADER> shader_owner;
/******************/
/**** UNIFORMS ****/
/******************/
// Descriptor sets require allocation from a pool.
// The documentation on how to use pools properly
// is scarce, and the documentation is strange.
//
// Basically, you can mix and match pools as you
// like, but you'll run into fragmentation issues.
// Because of this, the recommended approach is to
// create a a pool for every descriptor set type,
// as this prevents fragmentation.
//
// This is implemented here as a having a list of
// pools (each can contain up to 64 sets) for each
// set layout. The amount of sets for each type
// is used as the key.
enum {
MAX_DESCRIPTOR_POOL_ELEMENT = 65535
};
struct DescriptorPoolKey {
union {
struct {
uint16_t uniform_type[UNIFORM_TYPE_MAX]; //using 16 bits because, for sending arrays, each element is a pool set.
};
struct {
uint64_t key1;
uint64_t key2;
uint64_t key3;
};
};
bool operator<(const DescriptorPoolKey &p_key) const {
if (key1 != p_key.key1) {
return key1 < p_key.key1;
}
if (key2 != p_key.key2) {
return key2 < p_key.key2;
}
return key3 < p_key.key3;
}
DescriptorPoolKey() {
key1 = 0;
key2 = 0;
key3 = 0;
}
};
struct DescriptorPool {
VkDescriptorPool pool;
uint32_t usage;
};
Map<DescriptorPoolKey, Set<DescriptorPool *> > descriptor_pools;
uint32_t max_descriptors_per_pool;
DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);
ID_Pool<Buffer, ID_TYPE_UNIFORM_BUFFER> uniform_buffer_owner;
ID_Pool<Buffer, ID_TYPE_STORAGE_BUFFER> storage_buffer_owner;
//texture buffer needs a view
struct TextureBuffer {
Buffer buffer;
VkBufferView view;
};
ID_Pool<TextureBuffer, ID_TYPE_TEXTURE_BUFFER> texture_buffer_owner;
// This structure contains the descriptor set. They _need_ to be allocated
// for a shader (and will be erased when this shader is erased), but should
// work for other shaders as long as the hash matches. This covers using
// them in shader variants.
//
// Keep also in mind that you can share buffers between descriptor sets, so
// the above restriction is not too serious.
struct UniformSet {
uint32_t hash;
ID shader_id;
DescriptorPool *pool;
DescriptorPoolKey pool_key;
VkDescriptorSet descriptor_set;
VkPipelineLayout pipeline_layout; //not owned, inherited from shader
Vector<ID> attachable_textures; //used for validation
};
ID_Pool<UniformSet, ID_TYPE_UNIFORM_SET> uniform_set_owner;
/*******************/
/**** PIPELINES ****/
/*******************/
// Render pipeline contains ALL the
// information required for drawing.
// This includes all the rasterizer state
// as well as shader used, framebuffer format,
// etc.
// While the pipeline is just a single object
// (VkPipeline) a lot of values are also saved
// here to do validation (vulkan does none by
// default) and warn the user if something
// was not supplied as intended.
struct RenderPipeline {
//Cached values for validation
ID framebuffer_format;
uint32_t dynamic_state;
ID vertex_format;
bool uses_restart_indices;
uint32_t primitive_minimum;
uint32_t primitive_divisor;
Vector<uint32_t> set_hashes;
//Actual pipeline
VkPipeline pipeline;
};
ID_Pool<RenderPipeline, ID_TYPE_RENDER_PIPELINE> pipeline_owner;
/*******************/
/**** DRAW LIST ****/
/*******************/
// Draw list contains both the command buffer
// used for drawing as well as a LOT of
// information used for validation. This
// validation is cheap so most of it can
// also run in release builds.
// When using split command lists, this is
// implemented internally using secondary command
// buffers. As they can be created in threads,
// each needs it's own command pool.
struct SplitDrawListAllocator {
VkCommandPool command_pool;
Vector<VkCommandBuffer> command_buffers; //one for each frame
};
Vector<SplitDrawListAllocator> split_draw_list_allocators;
struct DrawList {
VkCommandBuffer command_buffer; //if persistent, this is owned, otherwise it's shared with the ringbuffer
struct Validation {
bool active; //means command buffer was not closes, so you can keep adding things
ID framebuffer_format;
//actual render pass values
uint32_t dynamic_state;
ID vertex_format; //INVALID_ID if not set
uint32_t vertex_array_size; //0 if not set
uint32_t vertex_max_instances_allowed;
bool index_buffer_uses_restart_indices;
uint32_t index_array_size; //0 if index buffer not set
uint32_t index_array_max_index;
uint32_t index_array_offset;
Vector<uint32_t> set_hashes;
//last pipeline set values
bool pipeline_active;
uint32_t pipeline_dynamic_state;
ID pipeline_vertex_format;
bool pipeline_uses_restart_indices;
uint32_t pipeline_primitive_divisor;
uint32_t pipeline_primitive_minimum;
Vector<uint32_t> pipeline_set_hashes;
Validation() {
active = true;
dynamic_state = 0;
vertex_format = INVALID_ID;
vertex_array_size = INVALID_ID;
vertex_max_instances_allowed = 0xFFFFFFFF;
framebuffer_format = INVALID_ID;
index_array_size = 0; //not sent
index_array_max_index = 0; //not set
index_buffer_uses_restart_indices = false;
//pipeline state initalize
pipeline_active = false;
pipeline_dynamic_state = 0;
pipeline_vertex_format = INVALID_ID;
pipeline_uses_restart_indices = false;
}
} validation;
};
DrawList *draw_list; //one for regular draw lists, multiple for split.
uint32_t draw_list_count;
bool draw_list_split;
Vector<ID> draw_list_bound_textures;
bool draw_list_unbind_textures;
Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass);
Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents);
_FORCE_INLINE_ DrawList *_get_draw_list_ptr(ID p_id);
/**************************/
/**** FRAME MANAGEMENT ****/
/**************************/
// This is the frame structure. There are normally
// 3 of these (used for triple buffering), or 2
// (double buffering). They are cycled constantly.
//
// It contains two command buffers, one that is
// used internally for setting up (creating stuff)
// and another used mostly for drawing.
//
// They also contains a list of things that need
// to be disposed of when deleted, which can't
// happen immediately due to the asynchronous
// nature of the GPU. They will get deleted
// when the frame is cycled.
struct Frame {
//list in usage order, from last to free to first to free
List<Buffer> buffers_to_dispose_of;
List<Texture> textures_to_dispose_of;
List<Framebuffer> framebuffers_to_dispose_of;
List<VkSampler> samplers_to_dispose_of;
List<Shader> shaders_to_dispose_of;
List<VkBufferView> buffer_views_to_dispose_of;
List<UniformSet> uniform_sets_to_dispose_of;
List<RenderPipeline> pipelines_to_dispose_of;
VkCommandPool command_pool;
VkCommandBuffer setup_command_buffer; //used at the begining of every frame for set-up
VkCommandBuffer draw_command_buffer; //used at the begining of every frame for set-up
};
Frame *frames; //frames available, they are cycled (usually 3)
int frame; //current frame
int frame_count; //total amount of frames
uint64_t frames_drawn;
void _free_pending_resources();
VmaAllocator allocator;
VulkanContext *context;
void _free_internal(ID p_id);
public:
virtual ID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<PoolVector<uint8_t> > &p_data = Vector<PoolVector<uint8_t> >());
virtual ID texture_create_shared(const TextureView &p_view, ID p_with_texture);
virtual Error texture_update(ID p_texture, uint32_t p_mipmap, uint32_t p_layer, const PoolVector<uint8_t> &p_data, bool p_sync_with_draw = false);
virtual bool texture_is_format_supported_for_usage(DataFormat p_format, TextureUsageBits p_usage) const;
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
ID framebuffer_format_create(const Vector<AttachmentFormat> &p_format);
virtual ID framebuffer_create(const Vector<ID> &p_texture_attachments, ID p_format_check = INVALID_ID);
virtual ID framebuffer_get_format(ID p_framebuffer);
/*****************/
/**** SAMPLER ****/
/*****************/
virtual ID sampler_create(const SamplerState &p_state);
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
virtual ID vertex_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated
virtual ID vertex_description_create(const Vector<VertexDescription> &p_vertex_descriptions);
virtual ID vertex_array_create(uint32_t p_vertex_count, ID p_vertex_description, const Vector<ID> &p_src_buffers);
virtual ID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>(), bool p_use_restart_indices = false);
virtual ID index_array_create(ID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
/****************/
/**** SHADER ****/
/****************/
virtual ID shader_create_from_source(const Vector<ShaderStageSource> &p_stages, String *r_error = NULL, bool p_allow_cache = true);
/*****************/
/**** UNIFORM ****/
/*****************/
virtual ID uniform_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
virtual ID storage_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
virtual ID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
virtual ID uniform_set_create(const Vector<Uniform> &p_uniforms, ID p_shader, uint32_t p_shader_set);
virtual Error buffer_update(ID p_buffer, uint32_t p_offset, uint32_t p_size, void *p_data, bool p_sync_with_draw = false); //works for any buffer
/*************************/
/**** RENDER PIPELINE ****/
/*************************/
virtual ID render_pipeline_create(ID p_shader, ID p_framebuffer_format, ID p_vertex_description, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, int p_dynamic_state_flags = 0);
/****************/
/**** SCREEN ****/
/****************/
virtual int screen_get_width(int p_screen = 0) const;
virtual int screen_get_height(int p_screen = 0) const;
virtual ID screen_get_framebuffer_format() const;
/********************/
/**** DRAW LISTS ****/
/********************/
virtual ID draw_list_begin_for_screen(int p_screen = 0, const Color &p_clear_color = Color());
virtual ID draw_list_begin(ID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());
virtual Error draw_list_begin_split(ID p_framebuffer, uint32_t p_splits, ID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());
virtual void draw_list_bind_render_pipeline(ID p_list, ID p_render_pipeline);
virtual void draw_list_bind_uniform_set(ID p_list, ID p_uniform_set, uint32_t p_index);
virtual void draw_list_bind_vertex_array(ID p_list, ID p_vertex_array);
virtual void draw_list_bind_index_array(ID p_list, ID p_index_array);
virtual void draw_list_draw(ID p_list, bool p_use_indices, uint32_t p_instances = 1);
virtual void draw_list_enable_scissor(ID p_list, const Rect2 &p_rect);
virtual void draw_list_disable_scissor(ID p_list);
virtual void draw_list_end();
virtual void free(ID p_id);
/**************/
/**** FREE ****/
/**************/
void initialize(VulkanContext *p_context);
void finalize();
void finalize_frame();
void advance_frame();
RenderingDeviceVulkan();
};
#endif // RENDERING_DEVICE_VULKAN_H