virtualx-engine/servers/rendering/renderer_rd/environment/gi.cpp
2024-07-19 18:27:32 +02:00

4114 lines
157 KiB
C++

/**************************************************************************/
/* gi.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "gi.h"
#include "core/config/project_settings.h"
#include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
#include "servers/rendering/renderer_rd/renderer_scene_render_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/render_scene_buffers_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
#include "servers/rendering/rendering_server_default.h"
using namespace RendererRD;
const Vector3i GI::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF);
GI *GI::singleton = nullptr;
////////////////////////////////////////////////////////////////////////////////
// VOXEL GI STORAGE
RID GI::voxel_gi_allocate() {
return voxel_gi_owner.allocate_rid();
}
void GI::voxel_gi_free(RID p_voxel_gi) {
voxel_gi_allocate_data(p_voxel_gi, Transform3D(), AABB(), Vector3i(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<int>()); //deallocate
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
voxel_gi->dependency.deleted_notify(p_voxel_gi);
voxel_gi_owner.free(p_voxel_gi);
}
void GI::voxel_gi_initialize(RID p_voxel_gi) {
voxel_gi_owner.initialize_rid(p_voxel_gi, VoxelGI());
}
void GI::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
if (voxel_gi->octree_buffer.is_valid()) {
RD::get_singleton()->free(voxel_gi->octree_buffer);
RD::get_singleton()->free(voxel_gi->data_buffer);
if (voxel_gi->sdf_texture.is_valid()) {
RD::get_singleton()->free(voxel_gi->sdf_texture);
}
voxel_gi->sdf_texture = RID();
voxel_gi->octree_buffer = RID();
voxel_gi->data_buffer = RID();
voxel_gi->octree_buffer_size = 0;
voxel_gi->data_buffer_size = 0;
voxel_gi->cell_count = 0;
}
voxel_gi->to_cell_xform = p_to_cell_xform;
voxel_gi->bounds = p_aabb;
voxel_gi->octree_size = p_octree_size;
voxel_gi->level_counts = p_level_counts;
if (p_octree_cells.size()) {
ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32
uint32_t cell_count = p_octree_cells.size() / 32;
ERR_FAIL_COND(p_data_cells.size() != (int)cell_count * 16); //see that data size matches
voxel_gi->cell_count = cell_count;
voxel_gi->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells);
voxel_gi->octree_buffer_size = p_octree_cells.size();
voxel_gi->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells);
voxel_gi->data_buffer_size = p_data_cells.size();
if (p_distance_field.size()) {
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R8_UNORM;
tf.width = voxel_gi->octree_size.x;
tf.height = voxel_gi->octree_size.y;
tf.depth = voxel_gi->octree_size.z;
tf.texture_type = RD::TEXTURE_TYPE_3D;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
Vector<Vector<uint8_t>> s;
s.push_back(p_distance_field);
voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView(), s);
RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture");
}
#if 0
{
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R8_UNORM;
tf.width = voxel_gi->octree_size.x;
tf.height = voxel_gi->octree_size.y;
tf.depth = voxel_gi->octree_size.z;
tf.type = RD::TEXTURE_TYPE_3D;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UNORM);
tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UINT);
voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture");
}
RID shared_tex;
{
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_R8_UINT;
shared_tex = RD::get_singleton()->texture_create_shared(tv, voxel_gi->sdf_texture);
}
//update SDF texture
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.append_id(voxel_gi->octree_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.append_id(voxel_gi->data_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 3;
u.append_id(shared_tex);
uniforms.push_back(u);
}
RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, voxel_gi_sdf_shader_version_shader, 0);
{
uint32_t push_constant[4] = { 0, 0, 0, 0 };
for (int i = 0; i < voxel_gi->level_counts.size() - 1; i++) {
push_constant[0] += voxel_gi->level_counts[i];
}
push_constant[1] = push_constant[0] + voxel_gi->level_counts[voxel_gi->level_counts.size() - 1];
print_line("offset: " + itos(push_constant[0]));
print_line("size: " + itos(push_constant[1]));
//create SDF
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, voxel_gi_sdf_shader_pipeline);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, push_constant, sizeof(uint32_t) * 4);
RD::get_singleton()->compute_list_dispatch(compute_list, voxel_gi->octree_size.x / 4, voxel_gi->octree_size.y / 4, voxel_gi->octree_size.z / 4);
RD::get_singleton()->compute_list_end();
}
RD::get_singleton()->free(uniform_set);
RD::get_singleton()->free(shared_tex);
}
#endif
}
voxel_gi->version++;
voxel_gi->data_version++;
voxel_gi->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
AABB GI::voxel_gi_get_bounds(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, AABB());
return voxel_gi->bounds;
}
Vector3i GI::voxel_gi_get_octree_size(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, Vector3i());
return voxel_gi->octree_size;
}
Vector<uint8_t> GI::voxel_gi_get_octree_cells(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
if (voxel_gi->octree_buffer.is_valid()) {
return RD::get_singleton()->buffer_get_data(voxel_gi->octree_buffer);
}
return Vector<uint8_t>();
}
Vector<uint8_t> GI::voxel_gi_get_data_cells(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
if (voxel_gi->data_buffer.is_valid()) {
return RD::get_singleton()->buffer_get_data(voxel_gi->data_buffer);
}
return Vector<uint8_t>();
}
Vector<uint8_t> GI::voxel_gi_get_distance_field(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
if (voxel_gi->data_buffer.is_valid()) {
return RD::get_singleton()->texture_get_data(voxel_gi->sdf_texture, 0);
}
return Vector<uint8_t>();
}
Vector<int> GI::voxel_gi_get_level_counts(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, Vector<int>());
return voxel_gi->level_counts;
}
Transform3D GI::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, Transform3D());
return voxel_gi->to_cell_xform;
}
void GI::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->dynamic_range = p_range;
voxel_gi->version++;
}
float GI::voxel_gi_get_dynamic_range(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->dynamic_range;
}
void GI::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->propagation = p_range;
voxel_gi->version++;
}
float GI::voxel_gi_get_propagation(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->propagation;
}
void GI::voxel_gi_set_energy(RID p_voxel_gi, float p_energy) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->energy = p_energy;
}
float GI::voxel_gi_get_energy(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->energy;
}
void GI::voxel_gi_set_baked_exposure_normalization(RID p_voxel_gi, float p_baked_exposure) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->baked_exposure = p_baked_exposure;
}
float GI::voxel_gi_get_baked_exposure_normalization(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->baked_exposure;
}
void GI::voxel_gi_set_bias(RID p_voxel_gi, float p_bias) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->bias = p_bias;
}
float GI::voxel_gi_get_bias(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->bias;
}
void GI::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_normal_bias) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->normal_bias = p_normal_bias;
}
float GI::voxel_gi_get_normal_bias(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->normal_bias;
}
void GI::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->interior = p_enable;
}
void GI::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->use_two_bounces = p_enable;
voxel_gi->version++;
}
bool GI::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, false);
return voxel_gi->use_two_bounces;
}
bool GI::voxel_gi_is_interior(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->interior;
}
uint32_t GI::voxel_gi_get_version(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->version;
}
uint32_t GI::voxel_gi_get_data_version(RID p_voxel_gi) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, 0);
return voxel_gi->data_version;
}
RID GI::voxel_gi_get_octree_buffer(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, RID());
return voxel_gi->octree_buffer;
}
RID GI::voxel_gi_get_data_buffer(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, RID());
return voxel_gi->data_buffer;
}
RID GI::voxel_gi_get_sdf_texture(RID p_voxel_gi) {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, RID());
return voxel_gi->sdf_texture;
}
Dependency *GI::voxel_gi_get_dependency(RID p_voxel_gi) const {
VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL_V(voxel_gi, nullptr);
return &voxel_gi->dependency;
}
void GI::sdfgi_reset() {
sdfgi_current_version++;
}
////////////////////////////////////////////////////////////////////////////////
// SDFGI
static RID create_clear_texture(const RD::TextureFormat &p_format, const String &p_name) {
RID texture = RD::get_singleton()->texture_create(p_format, RD::TextureView());
ERR_FAIL_COND_V_MSG(texture.is_null(), RID(), String("Cannot create texture: ") + p_name);
RD::get_singleton()->set_resource_name(texture, p_name);
RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, p_format.mipmaps, 0, p_format.array_layers);
return texture;
}
void GI::SDFGI::create(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size, GI *p_gi) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
gi = p_gi;
num_cascades = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_cascades(p_env);
min_cell_size = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_min_cell_size(p_env);
uses_occlusion = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_use_occlusion(p_env);
y_scale_mode = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_y_scale(p_env);
static const float y_scale[3] = { 2.0, 1.5, 1.0 };
y_mult = y_scale[y_scale_mode];
version = gi->sdfgi_current_version;
cascades.resize(num_cascades);
probe_axis_count = SDFGI::PROBE_DIVISOR + 1;
solid_cell_ratio = gi->sdfgi_solid_cell_ratio;
solid_cell_count = uint32_t(float(cascade_size * cascade_size * cascade_size) * solid_cell_ratio);
float base_cell_size = min_cell_size;
RD::TextureFormat tf_sdf;
tf_sdf.format = RD::DATA_FORMAT_R8_UNORM;
tf_sdf.width = cascade_size; // Always 64x64
tf_sdf.height = cascade_size;
tf_sdf.depth = cascade_size;
tf_sdf.texture_type = RD::TEXTURE_TYPE_3D;
tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
{
RD::TextureFormat tf_render = tf_sdf;
tf_render.format = RD::DATA_FORMAT_R16_UINT;
render_albedo = create_clear_texture(tf_render, "SDFGI Render Albedo");
tf_render.format = RD::DATA_FORMAT_R32_UINT;
render_emission = create_clear_texture(tf_render, "SDFGI Render Emission");
render_emission_aniso = create_clear_texture(tf_render, "SDFGI Render Emission Aniso");
tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize
for (int i = 0; i < 8; i++) {
render_occlusion[i] = create_clear_texture(tf_render, String("SDFGI Render Occlusion ") + itos(i));
}
tf_render.format = RD::DATA_FORMAT_R32_UINT;
render_geom_facing = create_clear_texture(tf_render, "SDFGI Render Geometry Facing");
tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
render_sdf[0] = create_clear_texture(tf_render, "SDFGI Render SDF 0");
render_sdf[1] = create_clear_texture(tf_render, "SDFGI Render SDF 1");
tf_render.width /= 2;
tf_render.height /= 2;
tf_render.depth /= 2;
render_sdf_half[0] = create_clear_texture(tf_render, "SDFGI Render SDF Half 0");
render_sdf_half[1] = create_clear_texture(tf_render, "SDFGI Render SDF Half 1");
}
RD::TextureFormat tf_occlusion = tf_sdf;
tf_occlusion.format = RD::DATA_FORMAT_R16_UINT;
tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
tf_occlusion.depth *= cascades.size(); //use depth for occlusion slices
tf_occlusion.width *= 2; //use width for the other half
RD::TextureFormat tf_light = tf_sdf;
tf_light.format = RD::DATA_FORMAT_R32_UINT;
tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
RD::TextureFormat tf_aniso0 = tf_sdf;
tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
RD::TextureFormat tf_aniso1 = tf_sdf;
tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM;
int passes = nearest_shift(cascade_size) - 1;
//store lightprobe SH
RD::TextureFormat tf_probes;
tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf_probes.width = probe_axis_count * probe_axis_count;
tf_probes.height = probe_axis_count * SDFGI::SH_SIZE;
tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
tf_probes.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
history_size = p_requested_history_size;
RD::TextureFormat tf_probe_history = tf_probes;
tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed
tf_probe_history.array_layers = history_size;
RD::TextureFormat tf_probe_average = tf_probes;
tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed
tf_probe_average.texture_type = RD::TEXTURE_TYPE_2D;
lightprobe_history_scroll = create_clear_texture(tf_probe_history, "SDFGI LightProbe History Scroll");
lightprobe_average_scroll = create_clear_texture(tf_probe_average, "SDFGI LightProbe Average Scroll");
{
//octahedral lightprobes
RD::TextureFormat tf_octprobes = tf_probes;
tf_octprobes.array_layers = cascades.size() * 2;
tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE
tf_octprobes.width = probe_axis_count * probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
tf_octprobes.height = probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
//lightprobe texture is an octahedral texture
lightprobe_data = create_clear_texture(tf_octprobes, "SDFGI LightProbe Data");
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, lightprobe_data);
//texture handling ambient data, to integrate with volumetric foc
RD::TextureFormat tf_ambient = tf_probes;
tf_ambient.array_layers = cascades.size();
tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
tf_ambient.width = probe_axis_count * probe_axis_count;
tf_ambient.height = probe_axis_count;
tf_ambient.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
//lightprobe texture is an octahedral texture
ambient_texture = create_clear_texture(tf_ambient, "SDFGI Ambient Texture");
}
cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
occlusion_data = create_clear_texture(tf_occlusion, "SDFGI Occlusion Data");
{
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16;
occlusion_texture = RD::get_singleton()->texture_create_shared(tv, occlusion_data);
}
for (SDFGI::Cascade &cascade : cascades) {
/* 3D Textures */
cascade.sdf_tex = create_clear_texture(tf_sdf, "SDFGI Cascade SDF Texture");
cascade.light_data = create_clear_texture(tf_light, "SDFGI Cascade Light Data");
cascade.light_aniso_0_tex = create_clear_texture(tf_aniso0, "SDFGI Cascade Light Aniso 0 Texture");
cascade.light_aniso_1_tex = create_clear_texture(tf_aniso1, "SDFGI Cascade Light Aniso 1 Texture");
{
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data);
}
cascade.cell_size = base_cell_size;
Vector3 world_position = p_world_position;
world_position.y *= y_mult;
int32_t probe_cells = cascade_size / SDFGI::PROBE_DIVISOR;
Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells;
Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor());
cascade.position = probe_pos * probe_cells;
cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
base_cell_size *= 2.0;
/* Probe History */
cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
RD::get_singleton()->set_resource_name(cascade.lightprobe_history_tex, "SDFGI Cascade LightProbe History Texture");
RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work
cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
RD::get_singleton()->set_resource_name(cascade.lightprobe_average_tex, "SDFGI Cascade LightProbe Average Texture");
RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work
/* Buffers */
cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * solid_cell_count);
cascade.solid_cell_dispatch_buffer_storage = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>());
cascade.solid_cell_dispatch_buffer_call = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS));
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(render_albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 3;
for (int j = 0; j < 8; j++) {
u.append_id(render_occlusion[j]);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 4;
u.append_id(render_emission);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.append_id(render_emission_aniso);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 6;
u.append_id(render_geom_facing);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 7;
u.append_id(cascade.sdf_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 8;
u.append_id(occlusion_data);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 10;
u.append_id(cascade.solid_cell_dispatch_buffer_storage);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 11;
u.append_id(cascade.solid_cell_buffer);
uniforms.push_back(u);
}
cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_STORE), 0);
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(render_geom_facing);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 3;
u.append_id(render_emission);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 4;
u.append_id(render_emission_aniso);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 5;
u.append_id(cascade.solid_cell_dispatch_buffer_storage);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 6;
u.append_id(cascade.solid_cell_buffer);
uniforms.push_back(u);
}
cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL), 0);
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
for (int j = 0; j < 8; j++) {
u.append_id(render_occlusion[j]);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(occlusion_data);
uniforms.push_back(u);
}
cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0);
}
}
//direct light
for (SDFGI::Cascade &cascade : cascades) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 1;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (j < cascades.size()) {
u.append_id(cascades[j].sdf_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 2;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 3;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.append_id(cascade.solid_cell_dispatch_buffer_storage);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 4;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.append_id(cascade.solid_cell_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 5;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.append_id(cascade.light_data);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 6;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.append_id(cascade.light_aniso_0_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 7;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.append_id(cascade.light_aniso_1_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 8;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.append_id(cascades_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 9;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.append_id(cascade.lights_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 10;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(lightprobe_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 11;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(occlusion_texture);
uniforms.push_back(u);
}
cascade.sdf_direct_light_static_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_STATIC), 0);
cascade.sdf_direct_light_dynamic_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC), 0);
}
//preprocess initialize uniform set
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(render_sdf[0]);
uniforms.push_back(u);
}
sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0);
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(render_sdf_half[0]);
uniforms.push_back(u);
}
sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0);
}
//jump flood uniform set
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_sdf[0]);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(render_sdf[1]);
uniforms.push_back(u);
}
jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
RID aux0 = uniforms.write[0].get_id(0);
RID aux1 = uniforms.write[1].get_id(0);
uniforms.write[0].set_id(0, aux1);
uniforms.write[1].set_id(0, aux0);
jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
}
//jump flood half uniform set
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_sdf_half[0]);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(render_sdf_half[1]);
uniforms.push_back(u);
}
jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
RID aux0 = uniforms.write[0].get_id(0);
RID aux1 = uniforms.write[1].get_id(0);
uniforms.write[0].set_id(0, aux1);
uniforms.write[1].set_id(0, aux0);
jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
}
//upscale half size sdf
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
u.append_id(render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 3;
u.append_id(render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass
uniforms.push_back(u);
}
upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1;
sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0);
}
//occlusion uniform set
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 1;
u.append_id(render_albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 2;
for (int i = 0; i < 8; i++) {
u.append_id(render_occlusion[i]);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 3;
u.append_id(render_geom_facing);
uniforms.push_back(u);
}
occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_OCCLUSION), 0);
}
for (uint32_t i = 0; i < cascades.size(); i++) {
//integrate uniform
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 1;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (j < cascades.size()) {
u.append_id(cascades[j].sdf_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 2;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (j < cascades.size()) {
u.append_id(cascades[j].light_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 3;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (j < cascades.size()) {
u.append_id(cascades[j].light_aniso_0_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 4;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (j < cascades.size()) {
u.append_id(cascades[j].light_aniso_1_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 6;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 7;
u.append_id(cascades_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 8;
u.append_id(lightprobe_data);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 9;
u.append_id(cascades[i].lightprobe_history_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 10;
u.append_id(cascades[i].lightprobe_average_tex);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 11;
u.append_id(lightprobe_history_scroll);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 12;
u.append_id(lightprobe_average_scroll);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 13;
RID parent_average;
if (cascades.size() == 1) {
// If there is only one SDFGI cascade, we can't use the previous cascade for blending.
parent_average = cascades[i].lightprobe_average_tex;
} else if (i < cascades.size() - 1) {
parent_average = cascades[i + 1].lightprobe_average_tex;
} else {
parent_average = cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used
}
u.append_id(parent_average);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 14;
u.append_id(ambient_texture);
uniforms.push_back(u);
}
cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 0);
}
bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env);
energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env);
normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env);
probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env);
reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env);
}
void GI::SDFGI::free_data() {
// we don't free things here, we handle SDFGI differently at the moment destructing the object when it needs to change.
}
GI::SDFGI::~SDFGI() {
for (const SDFGI::Cascade &c : cascades) {
RD::get_singleton()->free(c.light_data);
RD::get_singleton()->free(c.light_aniso_0_tex);
RD::get_singleton()->free(c.light_aniso_1_tex);
RD::get_singleton()->free(c.sdf_tex);
RD::get_singleton()->free(c.solid_cell_dispatch_buffer_storage);
RD::get_singleton()->free(c.solid_cell_dispatch_buffer_call);
RD::get_singleton()->free(c.solid_cell_buffer);
RD::get_singleton()->free(c.lightprobe_history_tex);
RD::get_singleton()->free(c.lightprobe_average_tex);
RD::get_singleton()->free(c.lights_buffer);
}
RD::get_singleton()->free(render_albedo);
RD::get_singleton()->free(render_emission);
RD::get_singleton()->free(render_emission_aniso);
RD::get_singleton()->free(render_sdf[0]);
RD::get_singleton()->free(render_sdf[1]);
RD::get_singleton()->free(render_sdf_half[0]);
RD::get_singleton()->free(render_sdf_half[1]);
for (int i = 0; i < 8; i++) {
RD::get_singleton()->free(render_occlusion[i]);
}
RD::get_singleton()->free(render_geom_facing);
RD::get_singleton()->free(lightprobe_data);
RD::get_singleton()->free(lightprobe_history_scroll);
RD::get_singleton()->free(lightprobe_average_scroll);
RD::get_singleton()->free(occlusion_data);
RD::get_singleton()->free(ambient_texture);
RD::get_singleton()->free(cascades_ubo);
for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
if (RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
RD::get_singleton()->free(debug_uniform_set[v]);
}
debug_uniform_set[v] = RID();
}
if (RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
RD::get_singleton()->free(debug_probes_uniform_set);
}
debug_probes_uniform_set = RID();
if (debug_probes_scene_data_ubo.is_valid()) {
RD::get_singleton()->free(debug_probes_scene_data_ubo);
debug_probes_scene_data_ubo = RID();
}
}
void GI::SDFGI::update(RID p_env, const Vector3 &p_world_position) {
bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env);
energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env);
normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env);
probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env);
reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env);
int32_t drag_margin = (cascade_size / SDFGI::PROBE_DIVISOR) / 2;
for (SDFGI::Cascade &cascade : cascades) {
cascade.dirty_regions = Vector3i();
Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(cascade_size / SDFGI::PROBE_DIVISOR) * 0.5;
probe_half_size = Vector3(0, 0, 0);
Vector3 world_position = p_world_position;
world_position.y *= y_mult;
Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size);
for (int j = 0; j < 3; j++) {
if (pos_in_cascade[j] < cascade.position[j]) {
while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) {
cascade.position[j] -= drag_margin * 2;
cascade.dirty_regions[j] += drag_margin * 2;
}
} else if (pos_in_cascade[j] > cascade.position[j]) {
while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) {
cascade.position[j] += drag_margin * 2;
cascade.dirty_regions[j] -= drag_margin * 2;
}
}
if (cascade.dirty_regions[j] == 0) {
continue; // not dirty
} else if (uint32_t(ABS(cascade.dirty_regions[j])) >= cascade_size) {
//moved too much, just redraw everything (make all dirty)
cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
break;
}
}
if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
//see how much the total dirty volume represents from the total volume
uint32_t total_volume = cascade_size * cascade_size * cascade_size;
uint32_t safe_volume = 1;
for (int j = 0; j < 3; j++) {
safe_volume *= cascade_size - ABS(cascade.dirty_regions[j]);
}
uint32_t dirty_volume = total_volume - safe_volume;
if (dirty_volume > (safe_volume / 2)) {
//more than half the volume is dirty, make all dirty so its only rendered once
cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
}
}
}
}
void GI::SDFGI::update_light() {
RD::get_singleton()->draw_command_begin_label("SDFGI Update dynamic Light");
for (uint32_t i = 0; i < cascades.size(); i++) {
RD::get_singleton()->buffer_copy(cascades[i].solid_cell_dispatch_buffer_storage, cascades[i].solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
}
/* Update dynamic light */
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC]);
SDFGIShader::DirectLightPushConstant push_constant;
push_constant.grid_size[0] = cascade_size;
push_constant.grid_size[1] = cascade_size;
push_constant.grid_size[2] = cascade_size;
push_constant.max_cascades = cascades.size();
push_constant.probe_axis_size = probe_axis_count;
push_constant.bounce_feedback = bounce_feedback;
push_constant.y_mult = y_mult;
push_constant.use_occlusion = uses_occlusion;
for (uint32_t i = 0; i < cascades.size(); i++) {
SDFGI::Cascade &cascade = cascades[i];
push_constant.light_count = cascade_dynamic_light_count[i];
push_constant.cascade = i;
if (cascades[i].all_dynamic_lights_dirty || gi->sdfgi_frames_to_update_light == RS::ENV_SDFGI_UPDATE_LIGHT_IN_1_FRAME) {
push_constant.process_offset = 0;
push_constant.process_increment = 1;
} else {
static const uint32_t frames_to_update_table[RS::ENV_SDFGI_UPDATE_LIGHT_MAX] = {
1, 2, 4, 8, 16
};
uint32_t frames_to_update = frames_to_update_table[gi->sdfgi_frames_to_update_light];
push_constant.process_offset = RSG::rasterizer->get_frame_number() % frames_to_update;
push_constant.process_increment = frames_to_update;
}
cascades[i].all_dynamic_lights_dirty = false;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_dynamic_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer_call, 0);
}
RD::get_singleton()->compute_list_end();
RD::get_singleton()->draw_command_end_label();
}
void GI::SDFGI::update_probes(RID p_env, SkyRD::Sky *p_sky) {
RD::get_singleton()->draw_command_begin_label("SDFGI Update Probes");
SDFGIShader::IntegratePushConstant push_constant;
push_constant.grid_size[1] = cascade_size;
push_constant.grid_size[2] = cascade_size;
push_constant.grid_size[0] = cascade_size;
push_constant.max_cascades = cascades.size();
push_constant.probe_axis_size = probe_axis_count;
push_constant.history_index = render_pass % history_size;
push_constant.history_size = history_size;
static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
push_constant.ray_bias = probe_bias;
push_constant.image_size[0] = probe_axis_count * probe_axis_count;
push_constant.image_size[1] = probe_axis_count;
push_constant.store_ambient_texture = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_enabled(p_env);
RID sky_uniform_set = gi->sdfgi_shader.integrate_default_sky_uniform_set;
push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_DISABLED;
push_constant.y_mult = y_mult;
if (reads_sky && p_env.is_valid()) {
push_constant.sky_energy = RendererSceneRenderRD::get_singleton()->environment_get_bg_energy_multiplier(p_env);
if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_CLEAR_COLOR) {
push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_COLOR;
Color c = RSG::texture_storage->get_default_clear_color().srgb_to_linear();
push_constant.sky_color[0] = c.r;
push_constant.sky_color[1] = c.g;
push_constant.sky_color[2] = c.b;
} else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_COLOR) {
push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_COLOR;
Color c = RendererSceneRenderRD::get_singleton()->environment_get_bg_color(p_env);
push_constant.sky_color[0] = c.r;
push_constant.sky_color[1] = c.g;
push_constant.sky_color[2] = c.b;
} else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_SKY) {
if (p_sky && p_sky->radiance.is_valid()) {
if (integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(integrate_sky_uniform_set)) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 0;
u.append_id(p_sky->radiance);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 1;
u.append_id(RendererRD::MaterialStorage::get_singleton()->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 1);
}
sky_uniform_set = integrate_sky_uniform_set;
push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_SKY;
}
}
}
render_pass++;
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_PROCESS]);
int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
for (uint32_t i = 0; i < cascades.size(); i++) {
push_constant.cascade = i;
push_constant.world_offset[0] = cascades[i].position.x / probe_divisor;
push_constant.world_offset[1] = cascades[i].position.y / probe_divisor;
push_constant.world_offset[2] = cascades[i].position.z / probe_divisor;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
}
RD::get_singleton()->compute_list_end();
RD::get_singleton()->draw_command_end_label();
}
void GI::SDFGI::store_probes() {
RD::get_singleton()->draw_command_begin_label("SDFGI Store Probes");
SDFGIShader::IntegratePushConstant push_constant;
push_constant.grid_size[1] = cascade_size;
push_constant.grid_size[2] = cascade_size;
push_constant.grid_size[0] = cascade_size;
push_constant.max_cascades = cascades.size();
push_constant.probe_axis_size = probe_axis_count;
push_constant.history_index = render_pass % history_size;
push_constant.history_size = history_size;
static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
push_constant.ray_bias = probe_bias;
push_constant.image_size[0] = probe_axis_count * probe_axis_count;
push_constant.image_size[1] = probe_axis_count;
push_constant.store_ambient_texture = false;
push_constant.sky_mode = 0;
push_constant.y_mult = y_mult;
// Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces
RENDER_TIMESTAMP("Average SDFGI Probes");
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]);
//convert to octahedral to store
push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
for (uint32_t i = 0; i < cascades.size(); i++) {
push_constant.cascade = i;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
}
RD::get_singleton()->compute_list_end();
RD::get_singleton()->draw_command_end_label();
}
int GI::SDFGI::get_pending_region_data(int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const {
int dirty_count = 0;
for (uint32_t i = 0; i < cascades.size(); i++) {
const SDFGI::Cascade &c = cascades[i];
if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
if (dirty_count == p_region) {
r_local_offset = Vector3i();
r_local_size = Vector3i(1, 1, 1) * cascade_size;
r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
return i;
}
dirty_count++;
} else {
for (int j = 0; j < 3; j++) {
if (c.dirty_regions[j] != 0) {
if (dirty_count == p_region) {
Vector3i from = Vector3i(0, 0, 0);
Vector3i to = Vector3i(1, 1, 1) * cascade_size;
if (c.dirty_regions[j] > 0) {
//fill from the beginning
to[j] = c.dirty_regions[j];
} else {
//fill from the end
from[j] = to[j] + c.dirty_regions[j];
}
for (int k = 0; k < j; k++) {
// "chip" away previous regions to avoid re-voxelizing the same thing
if (c.dirty_regions[k] > 0) {
from[k] += c.dirty_regions[k];
} else if (c.dirty_regions[k] < 0) {
to[k] += c.dirty_regions[k];
}
}
r_local_offset = from;
r_local_size = to - from;
r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
return i;
}
dirty_count++;
}
}
}
}
return -1;
}
void GI::SDFGI::update_cascades() {
//update cascades
SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES];
int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
for (uint32_t i = 0; i < cascades.size(); i++) {
Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
cascade_data[i].offset[0] = pos.x;
cascade_data[i].offset[1] = pos.y;
cascade_data[i].offset[2] = pos.z;
cascade_data[i].to_cell = 1.0 / cascades[i].cell_size;
cascade_data[i].probe_offset[0] = cascades[i].position.x / probe_divisor;
cascade_data[i].probe_offset[1] = cascades[i].position.y / probe_divisor;
cascade_data[i].probe_offset[2] = cascades[i].position.z / probe_divisor;
cascade_data[i].pad = 0;
}
RD::get_singleton()->buffer_update(cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data);
}
void GI::SDFGI::debug_draw(uint32_t p_view_count, const Projection *p_projections, const Transform3D &p_transform, int p_width, int p_height, RID p_render_target, RID p_texture, const Vector<RID> &p_texture_views) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
for (uint32_t v = 0; v < p_view_count; v++) {
if (!debug_uniform_set[v].is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 1;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
if (i < cascades.size()) {
u.append_id(cascades[i].sdf_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 2;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
if (i < cascades.size()) {
u.append_id(cascades[i].light_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 3;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
if (i < cascades.size()) {
u.append_id(cascades[i].light_aniso_0_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 4;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
if (i < cascades.size()) {
u.append_id(cascades[i].light_aniso_1_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 5;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(occlusion_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 8;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 9;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.append_id(cascades_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 10;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.append_id(p_texture_views[v]);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 11;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(lightprobe_texture);
uniforms.push_back(u);
}
debug_uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_shader_version, 0);
}
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.debug_pipeline);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, debug_uniform_set[v], 0);
SDFGIShader::DebugPushConstant push_constant;
push_constant.grid_size[0] = cascade_size;
push_constant.grid_size[1] = cascade_size;
push_constant.grid_size[2] = cascade_size;
push_constant.max_cascades = cascades.size();
push_constant.screen_size[0] = p_width;
push_constant.screen_size[1] = p_height;
push_constant.y_mult = y_mult;
push_constant.z_near = -p_projections[v].get_z_near();
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
push_constant.cam_basis[i][j] = p_transform.basis.rows[j][i];
}
}
push_constant.cam_origin[0] = p_transform.origin[0];
push_constant.cam_origin[1] = p_transform.origin[1];
push_constant.cam_origin[2] = p_transform.origin[2];
// need to properly unproject for asymmetric projection matrices in stereo..
Projection inv_projection = p_projections[v].inverse();
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 3; j++) {
push_constant.inv_projection[j][i] = inv_projection.columns[i][j];
}
}
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DebugPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_width, p_height, 1);
RD::get_singleton()->compute_list_end();
}
Size2i rtsize = texture_storage->render_target_get_size(p_render_target);
copy_effects->copy_to_fb_rect(p_texture, texture_storage->render_target_get_rd_framebuffer(p_render_target), Rect2i(Point2i(), rtsize), true, false, false, false, RID(), p_view_count > 1);
}
void GI::SDFGI::debug_probes(RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms) {
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
// setup scene data
{
SDFGIShader::DebugProbesSceneData scene_data;
if (debug_probes_scene_data_ubo.is_null()) {
debug_probes_scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIShader::DebugProbesSceneData));
}
for (uint32_t v = 0; v < p_view_count; v++) {
RendererRD::MaterialStorage::store_camera(p_camera_with_transforms[v], scene_data.projection[v]);
}
RD::get_singleton()->buffer_update(debug_probes_scene_data_ubo, 0, sizeof(SDFGIShader::DebugProbesSceneData), &scene_data);
}
// setup push constant
SDFGIShader::DebugProbesPushConstant push_constant;
//gen spheres from strips
uint32_t band_points = 16;
push_constant.band_power = 4;
push_constant.sections_in_band = ((band_points / 2) - 1);
push_constant.band_mask = band_points - 2;
push_constant.section_arc = Math_TAU / float(push_constant.sections_in_band);
push_constant.y_mult = y_mult;
uint32_t total_points = push_constant.sections_in_band * band_points;
uint32_t total_probes = probe_axis_count * probe_axis_count * probe_axis_count;
push_constant.grid_size[0] = cascade_size;
push_constant.grid_size[1] = cascade_size;
push_constant.grid_size[2] = cascade_size;
push_constant.cascade = 0;
push_constant.probe_axis_size = probe_axis_count;
if (!debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 1;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.append_id(cascades_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 2;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(lightprobe_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 3;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 4;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(occlusion_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 5;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.append_id(debug_probes_scene_data_ubo);
uniforms.push_back(u);
}
debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_probes.version_get_shader(gi->sdfgi_shader.debug_probes_shader, 0), 0);
}
SDFGIShader::ProbeDebugMode mode = p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_PROBES_MULTIVIEW : SDFGIShader::PROBE_DEBUG_PROBES;
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE);
RD::get_singleton()->draw_command_begin_label("Debug SDFGI");
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[mode].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, total_probes, total_points);
if (gi->sdfgi_debug_probe_dir != Vector3()) {
uint32_t cascade = 0;
Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[cascade].position)) * cascades[cascade].cell_size * Vector3(1.0, 1.0 / y_mult, 1.0);
Vector3 probe_size = cascades[cascade].cell_size * (cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / y_mult, 1.0);
Vector3 ray_from = gi->sdfgi_debug_probe_pos;
Vector3 ray_to = gi->sdfgi_debug_probe_pos + gi->sdfgi_debug_probe_dir * cascades[cascade].cell_size * Math::sqrt(3.0) * cascade_size;
float sphere_radius = 0.2;
float closest_dist = 1e20;
gi->sdfgi_debug_probe_enabled = false;
Vector3i probe_from = cascades[cascade].position / (cascade_size / SDFGI::PROBE_DIVISOR);
for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) {
for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) {
for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) {
Vector3 pos = offset + probe_size * Vector3(i, j, k);
Vector3 res;
if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) {
float d = ray_from.distance_to(res);
if (d < closest_dist) {
closest_dist = d;
gi->sdfgi_debug_probe_enabled = true;
gi->sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k);
}
}
}
}
}
gi->sdfgi_debug_probe_dir = Vector3();
}
if (gi->sdfgi_debug_probe_enabled) {
uint32_t cascade = 0;
uint32_t probe_cells = (cascade_size / SDFGI::PROBE_DIVISOR);
Vector3i probe_from = cascades[cascade].position / probe_cells;
Vector3i ofs = gi->sdfgi_debug_probe_index - probe_from;
if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) {
return;
}
if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) {
return;
}
uint32_t mult = (SDFGI::PROBE_DIVISOR + 1);
uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x;
push_constant.probe_debug_index = index;
uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2;
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_VISIBILITY_MULTIVIEW : SDFGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, cell_count, total_points);
}
RD::get_singleton()->draw_command_end_label();
RD::get_singleton()->draw_list_end();
}
void GI::SDFGI::pre_process_gi(const Transform3D &p_transform, RenderDataRD *p_render_data) {
if (p_render_data->sdfgi_update_data == nullptr) {
return;
}
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
/* Update general SDFGI Buffer */
SDFGIData sdfgi_data;
sdfgi_data.grid_size[0] = cascade_size;
sdfgi_data.grid_size[1] = cascade_size;
sdfgi_data.grid_size[2] = cascade_size;
sdfgi_data.max_cascades = cascades.size();
sdfgi_data.probe_axis_size = probe_axis_count;
sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance
sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1;
sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1;
float csize = cascade_size;
sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]);
sdfgi_data.use_occlusion = uses_occlusion;
//sdfgi_data.energy = energy;
sdfgi_data.y_mult = y_mult;
float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]);
float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size;
sdfgi_data.occlusion_clamp[0] = occlusion_clamp;
sdfgi_data.occlusion_clamp[1] = occlusion_clamp;
sdfgi_data.occlusion_clamp[2] = occlusion_clamp;
sdfgi_data.normal_bias = (normal_bias / csize) * sdfgi_data.cascade_probe_size[0];
//vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) );
//vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx;
uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE;
sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size);
sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size);
sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0;
sdfgi_data.energy = energy;
sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0];
sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1];
sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0];
sdfgi_data.occlusion_renormalize[0] = 0.5;
sdfgi_data.occlusion_renormalize[1] = 1.0;
sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades);
int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) {
SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i];
Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
Vector3 cam_origin = p_transform.origin;
cam_origin.y *= y_mult;
pos -= cam_origin; //make pos local to camera, to reduce numerical error
c.position[0] = pos.x;
c.position[1] = pos.y;
c.position[2] = pos.z;
c.to_probe = 1.0 / (float(cascade_size) * cascades[i].cell_size / float(probe_axis_count - 1));
Vector3i probe_ofs = cascades[i].position / probe_divisor;
c.probe_world_offset[0] = probe_ofs.x;
c.probe_world_offset[1] = probe_ofs.y;
c.probe_world_offset[2] = probe_ofs.z;
c.to_cell = 1.0 / cascades[i].cell_size;
c.exposure_normalization = 1.0;
if (p_render_data->camera_attributes.is_valid()) {
float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
c.exposure_normalization = exposure_normalization / cascades[i].baked_exposure_normalization;
}
}
RD::get_singleton()->buffer_update(gi->sdfgi_ubo, 0, sizeof(SDFGIData), &sdfgi_data);
/* Update dynamic lights in SDFGI cascades */
for (uint32_t i = 0; i < cascades.size(); i++) {
SDFGI::Cascade &cascade = cascades[i];
SDFGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS];
uint32_t idx = 0;
for (uint32_t j = 0; j < (uint32_t)p_render_data->sdfgi_update_data->directional_lights->size(); j++) {
if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
break;
}
RID light_instance = p_render_data->sdfgi_update_data->directional_lights->get(j);
ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
RID light = light_storage->light_instance_get_base_light(light_instance);
Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
if (RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
continue;
}
Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
dir.y *= y_mult;
dir.normalize();
lights[idx].direction[0] = dir.x;
lights[idx].direction[1] = dir.y;
lights[idx].direction[2] = dir.z;
Color color = RSG::light_storage->light_get_color(light);
color = color.srgb_to_linear();
lights[idx].color[0] = color.r;
lights[idx].color[1] = color.g;
lights[idx].color[2] = color.b;
lights[idx].type = RS::LIGHT_DIRECTIONAL;
lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
}
if (p_render_data->camera_attributes.is_valid()) {
lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
}
lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
idx++;
}
AABB cascade_aabb;
cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascade.position)) * cascade.cell_size;
cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cascade.cell_size;
for (uint32_t j = 0; j < p_render_data->sdfgi_update_data->positional_light_count; j++) {
if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
break;
}
RID light_instance = p_render_data->sdfgi_update_data->positional_light_instances[j];
ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
RID light = light_storage->light_instance_get_base_light(light_instance);
AABB light_aabb = light_storage->light_instance_get_base_aabb(light_instance);
Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(light);
if (i > max_sdfgi_cascade) {
continue;
}
if (!cascade_aabb.intersects(light_aabb)) {
continue;
}
Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
//faster to not do this here
//dir.y *= y_mult;
//dir.normalize();
lights[idx].direction[0] = dir.x;
lights[idx].direction[1] = dir.y;
lights[idx].direction[2] = dir.z;
Vector3 pos = light_transform.origin;
pos.y *= y_mult;
lights[idx].position[0] = pos.x;
lights[idx].position[1] = pos.y;
lights[idx].position[2] = pos.z;
Color color = RSG::light_storage->light_get_color(light);
color = color.srgb_to_linear();
lights[idx].color[0] = color.r;
lights[idx].color[1] = color.g;
lights[idx].color[2] = color.b;
lights[idx].type = RSG::light_storage->light_get_type(light);
lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
// Convert from Luminous Power to Luminous Intensity
if (lights[idx].type == RS::LIGHT_OMNI) {
lights[idx].energy *= 1.0 / (Math_PI * 4.0);
} else if (lights[idx].type == RS::LIGHT_SPOT) {
// Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
// We make this assumption to keep them easy to control.
lights[idx].energy *= 1.0 / Math_PI;
}
}
if (p_render_data->camera_attributes.is_valid()) {
lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
}
lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
lights[idx].attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
lights[idx].radius = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE);
lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
idx++;
}
if (idx > 0) {
RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights);
}
cascade_dynamic_light_count[i] = idx;
}
}
void GI::SDFGI::render_region(Ref<RenderSceneBuffersRD> p_render_buffers, int p_region, const PagedArray<RenderGeometryInstance *> &p_instances, float p_exposure_normalization) {
//print_line("rendering region " + itos(p_region));
ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but...
AABB bounds;
Vector3i from;
Vector3i size;
int cascade_prev = get_pending_region_data(p_region - 1, from, size, bounds);
int cascade_next = get_pending_region_data(p_region + 1, from, size, bounds);
int cascade = get_pending_region_data(p_region, from, size, bounds);
ERR_FAIL_COND(cascade < 0);
if (cascade_prev != cascade) {
//initialize render
RD::get_singleton()->texture_clear(render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1);
RD::get_singleton()->texture_clear(render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1);
RD::get_singleton()->texture_clear(render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1);
RD::get_singleton()->texture_clear(render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1);
}
//print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(cascades[cascade].cell_size));
RendererSceneRenderRD::get_singleton()->_render_sdfgi(p_render_buffers, from, size, bounds, p_instances, render_albedo, render_emission, render_emission_aniso, render_geom_facing, p_exposure_normalization);
if (cascade_next != cascade) {
RD::get_singleton()->draw_command_begin_label("SDFGI Pre-Process Cascade");
RENDER_TIMESTAMP("> SDFGI Update SDF");
//done rendering! must update SDF
//clear dispatch indirect data
SDFGIShader::PreprocessPushConstant push_constant;
memset(&push_constant, 0, sizeof(SDFGIShader::PreprocessPushConstant));
RENDER_TIMESTAMP("SDFGI Scroll SDF");
//scroll
if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
//for scroll
Vector3i dirty = cascades[cascade].dirty_regions;
push_constant.scroll[0] = dirty.x;
push_constant.scroll[1] = dirty.y;
push_constant.scroll[2] = dirty.z;
} else {
//for no scroll
push_constant.scroll[0] = 0;
push_constant.scroll[1] = 0;
push_constant.scroll[2] = 0;
}
cascades[cascade].all_dynamic_lights_dirty = true;
cascades[cascade].baked_exposure_normalization = p_exposure_normalization;
push_constant.grid_size = cascade_size;
push_constant.cascade = cascade;
if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
RD::get_singleton()->buffer_copy(cascades[cascade].solid_cell_dispatch_buffer_storage, cascades[cascade].solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
//must pre scroll existing data because not all is dirty
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascades[cascade].solid_cell_dispatch_buffer_call, 0);
// no barrier do all together
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_occlusion_uniform_set, 0);
Vector3i dirty = cascades[cascade].dirty_regions;
Vector3i groups;
groups.x = cascade_size - ABS(dirty.x);
groups.y = cascade_size - ABS(dirty.y);
groups.z = cascade_size - ABS(dirty.z);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z);
//no barrier, continue together
{
//scroll probes and their history also
SDFGIShader::IntegratePushConstant ipush_constant;
ipush_constant.grid_size[1] = cascade_size;
ipush_constant.grid_size[2] = cascade_size;
ipush_constant.grid_size[0] = cascade_size;
ipush_constant.max_cascades = cascades.size();
ipush_constant.probe_axis_size = probe_axis_count;
ipush_constant.history_index = 0;
ipush_constant.history_size = history_size;
ipush_constant.ray_count = 0;
ipush_constant.ray_bias = 0;
ipush_constant.sky_mode = 0;
ipush_constant.sky_energy = 0;
ipush_constant.sky_color[0] = 0;
ipush_constant.sky_color[1] = 0;
ipush_constant.sky_color[2] = 0;
ipush_constant.y_mult = y_mult;
ipush_constant.store_ambient_texture = false;
ipush_constant.image_size[0] = probe_axis_count * probe_axis_count;
ipush_constant.image_size[1] = probe_axis_count;
int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
ipush_constant.cascade = cascade;
ipush_constant.world_offset[0] = cascades[cascade].position.x / probe_divisor;
ipush_constant.world_offset[1] = cascades[cascade].position.y / probe_divisor;
ipush_constant.world_offset[2] = cascades[cascade].position.z / probe_divisor;
ipush_constant.scroll[0] = dirty.x / probe_divisor;
ipush_constant.scroll[1] = dirty.y / probe_divisor;
ipush_constant.scroll[2] = dirty.z / probe_divisor;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
RD::get_singleton()->compute_list_add_barrier(compute_list);
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL_STORE]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
RD::get_singleton()->compute_list_add_barrier(compute_list);
if (bounce_feedback > 0.0) {
//multibounce requires this to be stored so direct light can read from it
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]);
//convert to octahedral to store
ipush_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
ipush_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
}
}
//ok finally barrier
RD::get_singleton()->compute_list_end();
}
//clear dispatch indirect data
uint32_t dispatch_indirct_data[4] = { 0, 0, 0, 0 };
RD::get_singleton()->buffer_update(cascades[cascade].solid_cell_dispatch_buffer_storage, 0, sizeof(uint32_t) * 4, dispatch_indirct_data);
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
bool half_size = true; //much faster, very little difference
static const int optimized_jf_group_size = 8;
if (half_size) {
push_constant.grid_size >>= 1;
uint32_t cascade_half_size = cascade_size >> 1;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_half_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
//must start with regular jumpflood
push_constant.half_size = true;
{
RENDER_TIMESTAMP("SDFGI Jump Flood (Half-Size)");
uint32_t s = cascade_half_size;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]);
int jf_us = 0;
//start with regular jump flood for very coarse reads, as this is impossible to optimize
while (s > 1) {
s /= 2;
push_constant.step_size = s;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
jf_us = jf_us == 0 ? 1 : 0;
if (cascade_half_size / (s / 2) >= optimized_jf_group_size) {
break;
}
}
RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half-Size)");
//continue with optimized jump flood for smaller reads
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
while (s > 1) {
s /= 2;
push_constant.step_size = s;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
jf_us = jf_us == 0 ? 1 : 0;
}
}
// restore grid size for last passes
push_constant.grid_size = cascade_size;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_upscale_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
//run one pass of fullsize jumpflood to fix up half size artifacts
push_constant.half_size = false;
push_constant.step_size = 1;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[upscale_jfa_uniform_set_index], 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
} else {
//full size jumpflood
RENDER_TIMESTAMP("SDFGI Jump Flood (Full-Size)");
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
push_constant.half_size = false;
{
uint32_t s = cascade_size;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]);
int jf_us = 0;
//start with regular jump flood for very coarse reads, as this is impossible to optimize
while (s > 1) {
s /= 2;
push_constant.step_size = s;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
jf_us = jf_us == 0 ? 1 : 0;
if (cascade_size / (s / 2) >= optimized_jf_group_size) {
break;
}
}
RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Full-Size)");
//continue with optimized jump flood for smaller reads
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
while (s > 1) {
s /= 2;
push_constant.step_size = s;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
RD::get_singleton()->compute_list_add_barrier(compute_list);
jf_us = jf_us == 0 ? 1 : 0;
}
}
}
RENDER_TIMESTAMP("SDFGI Occlusion");
// occlusion
{
uint32_t probe_size = cascade_size / SDFGI::PROBE_DIVISOR;
Vector3i probe_global_pos = cascades[cascade].position / probe_size;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_OCCLUSION]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, occlusion_uniform_set, 0);
for (int i = 0; i < 8; i++) {
//dispatch all at once for performance
Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1);
if ((probe_global_pos.x & 1) != 0) {
offset.x = (offset.x + 1) & 1;
}
if ((probe_global_pos.y & 1) != 0) {
offset.y = (offset.y + 1) & 1;
}
if ((probe_global_pos.z & 1) != 0) {
offset.z = (offset.z + 1) & 1;
}
push_constant.probe_offset[0] = offset.x;
push_constant.probe_offset[1] = offset.y;
push_constant.probe_offset[2] = offset.z;
push_constant.occlusion_index = i;
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute
RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z);
}
RD::get_singleton()->compute_list_add_barrier(compute_list);
}
RENDER_TIMESTAMP("SDFGI Store");
// store
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_STORE]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].sdf_store_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
RD::get_singleton()->compute_list_end();
//clear these textures, as they will have previous garbage on next draw
RD::get_singleton()->texture_clear(cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
#if 0
Vector<uint8_t> data = RD::get_singleton()->texture_get_data(cascades[cascade].sdf, 0);
Ref<Image> img;
img.instantiate();
for (uint32_t i = 0; i < cascade_size; i++) {
Vector<uint8_t> subarr = data.slice(128 * 128 * i, 128 * 128 * (i + 1));
img->set_data(cascade_size, cascade_size, false, Image::FORMAT_L8, subarr);
img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png");
}
//finalize render and update sdf
#endif
#if 0
Vector<uint8_t> data = RD::get_singleton()->texture_get_data(render_albedo, 0);
Ref<Image> img;
img.instantiate();
for (uint32_t i = 0; i < cascade_size; i++) {
Vector<uint8_t> subarr = data.slice(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2);
img->createcascade_size, cascade_size, false, Image::FORMAT_RGB565, subarr);
img->convert(Image::FORMAT_RGBA8);
img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png");
}
//finalize render and update sdf
#endif
RENDER_TIMESTAMP("< SDFGI Update SDF");
RD::get_singleton()->draw_command_end_label();
}
}
void GI::SDFGI::render_static_lights(RenderDataRD *p_render_data, Ref<RenderSceneBuffersRD> p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const PagedArray<RID> *p_positional_light_cull_result) {
ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but...
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
RD::get_singleton()->draw_command_begin_label("SDFGI Render Static Lights");
update_cascades();
SDFGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS];
uint32_t light_count[SDFGI::MAX_STATIC_LIGHTS];
for (uint32_t i = 0; i < p_cascade_count; i++) {
ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
{ //fill light buffer
AABB cascade_aabb;
cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cc.position)) * cc.cell_size;
cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cc.cell_size;
int idx = 0;
for (uint32_t j = 0; j < (uint32_t)p_positional_light_cull_result[i].size(); j++) {
if (idx == SDFGI::MAX_STATIC_LIGHTS) {
break;
}
RID light_instance = p_positional_light_cull_result[i][j];
ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
RID light = light_storage->light_instance_get_base_light(light_instance);
AABB light_aabb = light_storage->light_instance_get_base_aabb(light_instance);
Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(light);
if (p_cascade_indices[i] > max_sdfgi_cascade) {
continue;
}
if (!cascade_aabb.intersects(light_aabb)) {
continue;
}
lights[idx].type = RSG::light_storage->light_get_type(light);
Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
if (lights[idx].type == RS::LIGHT_DIRECTIONAL) {
dir.y *= y_mult; //only makes sense for directional
dir.normalize();
}
lights[idx].direction[0] = dir.x;
lights[idx].direction[1] = dir.y;
lights[idx].direction[2] = dir.z;
Vector3 pos = light_transform.origin;
pos.y *= y_mult;
lights[idx].position[0] = pos.x;
lights[idx].position[1] = pos.y;
lights[idx].position[2] = pos.z;
Color color = RSG::light_storage->light_get_color(light);
color = color.srgb_to_linear();
lights[idx].color[0] = color.r;
lights[idx].color[1] = color.g;
lights[idx].color[2] = color.b;
lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
// Convert from Luminous Power to Luminous Intensity
if (lights[idx].type == RS::LIGHT_OMNI) {
lights[idx].energy *= 1.0 / (Math_PI * 4.0);
} else if (lights[idx].type == RS::LIGHT_SPOT) {
// Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
// We make this assumption to keep them easy to control.
lights[idx].energy *= 1.0 / Math_PI;
}
}
if (p_render_data->camera_attributes.is_valid()) {
lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
}
lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
lights[idx].attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
lights[idx].radius = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE);
lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
idx++;
}
if (idx > 0) {
RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights);
}
light_count[i] = idx;
}
}
for (uint32_t i = 0; i < p_cascade_count; i++) {
ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
if (light_count[i] > 0) {
RD::get_singleton()->buffer_copy(cc.solid_cell_dispatch_buffer_storage, cc.solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
}
}
/* Static Lights */
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_STATIC]);
SDFGIShader::DirectLightPushConstant dl_push_constant;
dl_push_constant.grid_size[0] = cascade_size;
dl_push_constant.grid_size[1] = cascade_size;
dl_push_constant.grid_size[2] = cascade_size;
dl_push_constant.max_cascades = cascades.size();
dl_push_constant.probe_axis_size = probe_axis_count;
dl_push_constant.bounce_feedback = 0.0; // this is static light, do not multibounce yet
dl_push_constant.y_mult = y_mult;
dl_push_constant.use_occlusion = uses_occlusion;
//all must be processed
dl_push_constant.process_offset = 0;
dl_push_constant.process_increment = 1;
for (uint32_t i = 0; i < p_cascade_count; i++) {
ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
dl_push_constant.light_count = light_count[i];
dl_push_constant.cascade = p_cascade_indices[i];
if (dl_push_constant.light_count > 0) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_static_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer_call, 0);
}
}
RD::get_singleton()->compute_list_end();
RD::get_singleton()->draw_command_end_label();
}
////////////////////////////////////////////////////////////////////////////////
// VoxelGIInstance
void GI::VoxelGIInstance::update(bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
uint32_t data_version = gi->voxel_gi_get_data_version(probe);
// (RE)CREATE IF NEEDED
if (last_probe_data_version != data_version) {
//need to re-create everything
free_resources();
Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
if (octree_size != Vector3i()) {
//can create a 3D texture
Vector<int> levels = gi->voxel_gi_get_level_counts(probe);
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tf.width = octree_size.x;
tf.height = octree_size.y;
tf.depth = octree_size.z;
tf.texture_type = RD::TEXTURE_TYPE_3D;
tf.mipmaps = levels.size();
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(texture, "VoxelGI Instance Texture");
RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1);
{
int total_elements = 0;
for (int i = 0; i < levels.size(); i++) {
total_elements += levels[i];
}
write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
}
for (int i = 0; i < levels.size(); i++) {
VoxelGIInstance::Mipmap mipmap;
mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), texture, 0, i, 1, RD::TEXTURE_SLICE_3D);
mipmap.level = levels.size() - i - 1;
mipmap.cell_offset = 0;
for (uint32_t j = 0; j < mipmap.level; j++) {
mipmap.cell_offset += levels[j];
}
mipmap.cell_count = levels[mipmap.level];
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.append_id(gi->voxel_gi_get_octree_buffer(probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.append_id(gi->voxel_gi_get_data_buffer(probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 4;
u.append_id(write_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 9;
u.append_id(gi->voxel_gi_get_sdf_texture(probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
Vector<RD::Uniform> copy_uniforms = uniforms;
if (i == 0) {
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 3;
u.append_id(gi->voxel_gi_lights_uniform);
copy_uniforms.push_back(u);
}
mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT], 0);
copy_uniforms = uniforms; //restore
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 5;
u.append_id(texture);
copy_uniforms.push_back(u);
}
mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
} else {
mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP], 0);
}
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.append_id(mipmap.texture);
uniforms.push_back(u);
}
mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE], 0);
mipmaps.push_back(mipmap);
}
{
uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
uint32_t oversample = nearest_power_of_2_templated(4);
int mipmap_index = 0;
while (mipmap_index < mipmaps.size()) {
VoxelGIInstance::DynamicMap dmap;
if (oversample > 0) {
dmap.size = dynamic_map_size * (1 << oversample);
dmap.mipmap = -1;
oversample--;
} else {
dmap.size = dynamic_map_size >> mipmap_index;
dmap.mipmap = mipmap_index;
mipmap_index++;
}
RD::TextureFormat dtf;
dtf.width = dmap.size;
dtf.height = dmap.size;
dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
if (dynamic_maps.size() == 0) {
dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
}
dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
RD::get_singleton()->set_resource_name(dmap.texture, "VoxelGI Instance DMap Texture");
if (dynamic_maps.size() == 0) {
// Render depth for first one.
// Use 16-bit depth when supported to improve performance.
dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D16_UNORM, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
RD::get_singleton()->set_resource_name(dmap.fb_depth, "VoxelGI Instance DMap FB Depth");
}
//just use depth as-is
dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
RD::get_singleton()->set_resource_name(dmap.depth, "VoxelGI Instance DMap Depth");
if (dynamic_maps.size() == 0) {
dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
RD::get_singleton()->set_resource_name(dmap.albedo, "VoxelGI Instance DMap Albedo");
dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
RD::get_singleton()->set_resource_name(dmap.normal, "VoxelGI Instance DMap Normal");
dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
RD::get_singleton()->set_resource_name(dmap.orm, "VoxelGI Instance DMap ORM");
Vector<RID> fb;
fb.push_back(dmap.albedo);
fb.push_back(dmap.normal);
fb.push_back(dmap.orm);
fb.push_back(dmap.texture); //emission
fb.push_back(dmap.depth);
fb.push_back(dmap.fb_depth);
dmap.fb = RD::get_singleton()->framebuffer_create(fb);
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 3;
u.append_id(gi->voxel_gi_lights_uniform);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.append_id(dmap.albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 6;
u.append_id(dmap.normal);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 7;
u.append_id(dmap.orm);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 8;
u.append_id(dmap.fb_depth);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 9;
u.append_id(gi->voxel_gi_get_sdf_texture(probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 11;
u.append_id(dmap.texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 12;
u.append_id(dmap.depth);
uniforms.push_back(u);
}
dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
}
} else {
bool plot = dmap.mipmap >= 0;
bool write = dmap.mipmap < (mipmaps.size() - 1);
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.append_id(dynamic_maps[dynamic_maps.size() - 1].texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 6;
u.append_id(dynamic_maps[dynamic_maps.size() - 1].depth);
uniforms.push_back(u);
}
if (write) {
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 7;
u.append_id(dmap.texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 8;
u.append_id(dmap.depth);
uniforms.push_back(u);
}
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 9;
u.append_id(gi->voxel_gi_get_sdf_texture(probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
if (plot) {
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 11;
u.append_id(mipmaps[dmap.mipmap].texture);
uniforms.push_back(u);
}
}
dmap.uniform_set = RD::get_singleton()->uniform_set_create(
uniforms,
gi->voxel_gi_lighting_shader_version_shaders[(write && plot) ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : (write ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT)],
0);
}
dynamic_maps.push_back(dmap);
}
}
}
last_probe_data_version = data_version;
p_update_light_instances = true; //just in case
RendererSceneRenderRD::get_singleton()->base_uniforms_changed();
}
// UDPDATE TIME
if (has_dynamic_object_data) {
//if it has dynamic object data, it needs to be cleared
RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, mipmaps.size(), 0, 1);
}
uint32_t light_count = 0;
if (p_update_light_instances || p_dynamic_objects.size() > 0) {
light_count = MIN(gi->voxel_gi_max_lights, (uint32_t)p_light_instances.size());
{
Transform3D to_cell = gi->voxel_gi_get_to_cell_xform(probe);
Transform3D to_probe_xform = to_cell * transform.affine_inverse();
//update lights
for (uint32_t i = 0; i < light_count; i++) {
VoxelGILight &l = gi->voxel_gi_lights[i];
RID light_instance = p_light_instances[i];
RID light = light_storage->light_instance_get_base_light(light_instance);
l.type = RSG::light_storage->light_get_type(light);
if (l.type == RS::LIGHT_DIRECTIONAL && RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
light_count--;
continue;
}
l.attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
l.energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
l.energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
l.energy *= gi->voxel_gi_get_baked_exposure_normalization(probe);
// Convert from Luminous Power to Luminous Intensity
if (l.type == RS::LIGHT_OMNI) {
l.energy *= 1.0 / (Math_PI * 4.0);
} else if (l.type == RS::LIGHT_SPOT) {
// Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
// We make this assumption to keep them easy to control.
l.energy *= 1.0 / Math_PI;
}
}
l.radius = to_cell.basis.xform(Vector3(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
Color color = RSG::light_storage->light_get_color(light).srgb_to_linear();
l.color[0] = color.r;
l.color[1] = color.g;
l.color[2] = color.b;
l.cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
l.inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
Transform3D xform = light_storage->light_instance_get_base_transform(light_instance);
Vector3 pos = to_probe_xform.xform(xform.origin);
Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_column(2)).normalized();
l.position[0] = pos.x;
l.position[1] = pos.y;
l.position[2] = pos.z;
l.direction[0] = dir.x;
l.direction[1] = dir.y;
l.direction[2] = dir.z;
l.has_shadow = RSG::light_storage->light_has_shadow(light);
}
RD::get_singleton()->buffer_update(gi->voxel_gi_lights_uniform, 0, sizeof(VoxelGILight) * light_count, gi->voxel_gi_lights);
}
}
if (has_dynamic_object_data || p_update_light_instances || p_dynamic_objects.size()) {
// PROCESS MIPMAPS
if (mipmaps.size()) {
//can update mipmaps
Vector3i probe_size = gi->voxel_gi_get_octree_size(probe);
VoxelGIPushConstant push_constant;
push_constant.limits[0] = probe_size.x;
push_constant.limits[1] = probe_size.y;
push_constant.limits[2] = probe_size.z;
push_constant.stack_size = mipmaps.size();
push_constant.emission_scale = 1.0;
push_constant.propagation = gi->voxel_gi_get_propagation(probe);
push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
push_constant.light_count = light_count;
push_constant.aniso_strength = 0;
/* print_line("probe update to version " + itos(last_probe_version));
print_line("propagation " + rtos(push_constant.propagation));
print_line("dynrange " + rtos(push_constant.dynamic_range));
*/
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
int passes;
if (p_update_light_instances) {
passes = gi->voxel_gi_is_using_two_bounces(probe) ? 2 : 1;
} else {
passes = 1; //only re-blitting is necessary
}
int wg_size = 64;
int64_t wg_limit_x = (int64_t)RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
for (int pass = 0; pass < passes; pass++) {
if (p_update_light_instances) {
for (int i = 0; i < mipmaps.size(); i++) {
if (i == 0) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[pass == 0 ? VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT : VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
} else if (i == 1) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP]);
}
if (pass == 1 || i > 0) {
RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
}
if (pass == 0 || i > 0) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].uniform_set, 0);
} else {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].second_bounce_uniform_set, 0);
}
push_constant.cell_offset = mipmaps[i].cell_offset;
push_constant.cell_count = mipmaps[i].cell_count;
int64_t wg_todo = (mipmaps[i].cell_count + wg_size - 1) / wg_size;
while (wg_todo) {
int64_t wg_count = MIN(wg_todo, wg_limit_x);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
wg_todo -= wg_count;
push_constant.cell_offset += wg_count * wg_size;
}
}
RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
}
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE]);
for (int i = 0; i < mipmaps.size(); i++) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].write_uniform_set, 0);
push_constant.cell_offset = mipmaps[i].cell_offset;
push_constant.cell_count = mipmaps[i].cell_count;
int64_t wg_todo = (mipmaps[i].cell_count + wg_size - 1) / wg_size;
while (wg_todo) {
int64_t wg_count = MIN(wg_todo, wg_limit_x);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
wg_todo -= wg_count;
push_constant.cell_offset += wg_count * wg_size;
}
}
}
RD::get_singleton()->compute_list_end();
}
}
has_dynamic_object_data = false; //clear until dynamic object data is used again
if (p_dynamic_objects.size() && dynamic_maps.size()) {
Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
int multiplier = dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
Transform3D oversample_scale;
oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
Transform3D to_cell = oversample_scale * gi->voxel_gi_get_to_cell_xform(probe);
Transform3D to_world_xform = transform * to_cell.affine_inverse();
Transform3D to_probe_xform = to_world_xform.affine_inverse();
AABB probe_aabb(Vector3(), octree_size);
//this could probably be better parallelized in compute..
for (int i = 0; i < (int)p_dynamic_objects.size(); i++) {
RenderGeometryInstance *instance = p_dynamic_objects[i];
//transform aabb to voxel_gi
AABB aabb = (to_probe_xform * instance->get_transform()).xform(instance->get_aabb());
//this needs to wrap to grid resolution to avoid jitter
//also extend margin a bit just in case
Vector3i begin = aabb.position - Vector3i(1, 1, 1);
Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
for (int j = 0; j < 3; j++) {
if ((end[j] - begin[j]) & 1) {
end[j]++; //for half extents split, it needs to be even
}
begin[j] = MAX(begin[j], 0);
end[j] = MIN(end[j], octree_size[j] * multiplier);
}
//aabb = aabb.intersection(probe_aabb); //intersect
aabb.position = begin;
aabb.size = end - begin;
//print_line("aabb: " + aabb);
for (int j = 0; j < 6; j++) {
//if (j != 0 && j != 3) {
// continue;
//}
static const Vector3 render_z[6] = {
Vector3(1, 0, 0),
Vector3(0, 1, 0),
Vector3(0, 0, 1),
Vector3(-1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, 0, -1),
};
static const Vector3 render_up[6] = {
Vector3(0, 1, 0),
Vector3(0, 0, 1),
Vector3(0, 1, 0),
Vector3(0, 1, 0),
Vector3(0, 0, 1),
Vector3(0, 1, 0),
};
Vector3 render_dir = render_z[j];
Vector3 up_dir = render_up[j];
Vector3 center = aabb.get_center();
Transform3D xform;
xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
Vector3 x_dir = xform.basis.get_column(0).abs();
int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
Vector3 y_dir = xform.basis.get_column(1).abs();
int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
Vector3 z_dir = -xform.basis.get_column(2);
int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(0)) < 0);
bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(1)) < 0);
bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(2)) > 0);
Projection cm;
cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
if (RendererSceneRenderRD::get_singleton()->cull_argument.size() == 0) {
RendererSceneRenderRD::get_singleton()->cull_argument.push_back(nullptr);
}
RendererSceneRenderRD::get_singleton()->cull_argument[0] = instance;
float exposure_normalization = 1.0;
if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
exposure_normalization = gi->voxel_gi_get_baked_exposure_normalization(probe);
}
RendererSceneRenderRD::get_singleton()->_render_material(to_world_xform * xform, cm, true, RendererSceneRenderRD::get_singleton()->cull_argument, dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size), exposure_normalization);
VoxelGIDynamicPushConstant push_constant;
memset(&push_constant, 0, sizeof(VoxelGIDynamicPushConstant));
push_constant.limits[0] = octree_size.x;
push_constant.limits[1] = octree_size.y;
push_constant.limits[2] = octree_size.z;
push_constant.light_count = p_light_instances.size();
push_constant.x_dir[0] = x_dir[0];
push_constant.x_dir[1] = x_dir[1];
push_constant.x_dir[2] = x_dir[2];
push_constant.y_dir[0] = y_dir[0];
push_constant.y_dir[1] = y_dir[1];
push_constant.y_dir[2] = y_dir[2];
push_constant.z_dir[0] = z_dir[0];
push_constant.z_dir[1] = z_dir[1];
push_constant.z_dir[2] = z_dir[2];
push_constant.z_base = xform.origin[z_axis];
push_constant.z_sign = (z_flip ? -1.0 : 1.0);
push_constant.pos_multiplier = float(1.0) / multiplier;
push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
push_constant.flip_x = x_flip;
push_constant.flip_y = y_flip;
push_constant.rect_pos[0] = rect.position[0];
push_constant.rect_pos[1] = rect.position[1];
push_constant.rect_size[0] = rect.size[0];
push_constant.rect_size[1] = rect.size[1];
push_constant.prev_rect_ofs[0] = 0;
push_constant.prev_rect_ofs[1] = 0;
push_constant.prev_rect_size[0] = 0;
push_constant.prev_rect_size[1] = 0;
push_constant.on_mipmap = false;
push_constant.propagation = gi->voxel_gi_get_propagation(probe);
push_constant.pad[0] = 0;
push_constant.pad[1] = 0;
push_constant.pad[2] = 0;
//process lighting
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[0].uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, Math::division_round_up(rect.size.x, 8), Math::division_round_up(rect.size.y, 8), 1);
//print_line("rect: " + itos(i) + ": " + rect);
for (int k = 1; k < dynamic_maps.size(); k++) {
// enlarge the rect if needed so all pixels fit when downscaled,
// this ensures downsampling is smooth and optimal because no pixels are left behind
//x
if (rect.position.x & 1) {
rect.size.x++;
push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
} else {
push_constant.prev_rect_ofs[0] = 0;
}
if (rect.size.x & 1) {
rect.size.x++;
}
rect.position.x >>= 1;
rect.size.x = MAX(1, rect.size.x >> 1);
//y
if (rect.position.y & 1) {
rect.size.y++;
push_constant.prev_rect_ofs[1] = 1;
} else {
push_constant.prev_rect_ofs[1] = 0;
}
if (rect.size.y & 1) {
rect.size.y++;
}
rect.position.y >>= 1;
rect.size.y = MAX(1, rect.size.y >> 1);
//shrink limits to ensure plot does not go outside map
if (dynamic_maps[k].mipmap > 0) {
for (int l = 0; l < 3; l++) {
push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
}
}
//print_line("rect: " + itos(i) + ": " + rect);
push_constant.rect_pos[0] = rect.position[0];
push_constant.rect_pos[1] = rect.position[1];
push_constant.prev_rect_size[0] = push_constant.rect_size[0];
push_constant.prev_rect_size[1] = push_constant.rect_size[1];
push_constant.rect_size[0] = rect.size[0];
push_constant.rect_size[1] = rect.size[1];
push_constant.on_mipmap = dynamic_maps[k].mipmap > 0;
RD::get_singleton()->compute_list_add_barrier(compute_list);
if (dynamic_maps[k].mipmap < 0) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
} else if (k < dynamic_maps.size() - 1) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
} else {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
}
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[k].uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, Math::division_round_up(rect.size.x, 8), Math::division_round_up(rect.size.y, 8), 1);
}
RD::get_singleton()->compute_list_end();
}
}
has_dynamic_object_data = true; //clear until dynamic object data is used again
}
last_probe_version = gi->voxel_gi_get_version(probe);
}
void GI::VoxelGIInstance::free_resources() {
if (texture.is_valid()) {
RD::get_singleton()->free(texture);
RD::get_singleton()->free(write_buffer);
texture = RID();
write_buffer = RID();
mipmaps.clear();
}
for (int i = 0; i < dynamic_maps.size(); i++) {
RD::get_singleton()->free(dynamic_maps[i].texture);
RD::get_singleton()->free(dynamic_maps[i].depth);
// these only exist on the first level...
if (dynamic_maps[i].fb_depth.is_valid()) {
RD::get_singleton()->free(dynamic_maps[i].fb_depth);
}
if (dynamic_maps[i].albedo.is_valid()) {
RD::get_singleton()->free(dynamic_maps[i].albedo);
}
if (dynamic_maps[i].normal.is_valid()) {
RD::get_singleton()->free(dynamic_maps[i].normal);
}
if (dynamic_maps[i].orm.is_valid()) {
RD::get_singleton()->free(dynamic_maps[i].orm);
}
}
dynamic_maps.clear();
}
void GI::VoxelGIInstance::debug(RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
if (mipmaps.size() == 0) {
return;
}
Projection cam_transform = (p_camera_with_transform * Projection(transform)) * Projection(gi->voxel_gi_get_to_cell_xform(probe).affine_inverse());
int level = 0;
Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
VoxelGIDebugPushConstant push_constant;
push_constant.alpha = p_alpha;
push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
push_constant.cell_offset = mipmaps[level].cell_offset;
push_constant.level = level;
push_constant.bounds[0] = octree_size.x >> level;
push_constant.bounds[1] = octree_size.y >> level;
push_constant.bounds[2] = octree_size.z >> level;
push_constant.pad = 0;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
push_constant.projection[i * 4 + j] = cam_transform.columns[i][j];
}
}
if (gi->voxel_gi_debug_uniform_set.is_valid()) {
RD::get_singleton()->free(gi->voxel_gi_debug_uniform_set);
}
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.append_id(gi->voxel_gi_get_data_buffer(probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.append_id(texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 3;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
int cell_count;
if (!p_emission && p_lighting && has_dynamic_object_data) {
cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
} else {
cell_count = mipmaps[level].cell_count;
}
gi->voxel_gi_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_debug_shader_version_shaders[0], 0);
int voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_COLOR;
if (p_emission) {
voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_EMISSION;
} else if (p_lighting) {
voxel_gi_debug_pipeline = has_dynamic_object_data ? VOXEL_GI_DEBUG_LIGHT_FULL : VOXEL_GI_DEBUG_LIGHT;
}
RD::get_singleton()->draw_list_bind_render_pipeline(
p_draw_list,
gi->voxel_gi_debug_shader_version_pipelines[voxel_gi_debug_pipeline].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, gi->voxel_gi_debug_uniform_set, 0);
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(VoxelGIDebugPushConstant));
RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
}
////////////////////////////////////////////////////////////////////////////////
// GI
GI::GI() {
singleton = this;
sdfgi_ray_count = RS::EnvironmentSDFGIRayCount(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/probe_ray_count")), 0, int32_t(RS::ENV_SDFGI_RAY_COUNT_MAX - 1)));
sdfgi_frames_to_converge = RS::EnvironmentSDFGIFramesToConverge(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_converge")), 0, int32_t(RS::ENV_SDFGI_CONVERGE_MAX - 1)));
sdfgi_frames_to_update_light = RS::EnvironmentSDFGIFramesToUpdateLight(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_update_lights")), 0, int32_t(RS::ENV_SDFGI_UPDATE_LIGHT_MAX - 1)));
}
GI::~GI() {
singleton = nullptr;
}
void GI::init(SkyRD *p_sky) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
/* GI */
{
//kinda complicated to compute the amount of slots, we try to use as many as we can
voxel_gi_lights = memnew_arr(VoxelGILight, voxel_gi_max_lights);
voxel_gi_lights_uniform = RD::get_singleton()->uniform_buffer_create(voxel_gi_max_lights * sizeof(VoxelGILight));
voxel_gi_quality = RS::VoxelGIQuality(CLAMP(int(GLOBAL_GET("rendering/global_illumination/voxel_gi/quality")), 0, 1));
String defines = "\n#define MAX_LIGHTS " + itos(voxel_gi_max_lights) + "\n";
Vector<String> versions;
versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
voxel_gi_shader.initialize(versions, defines);
voxel_gi_lighting_shader_version = voxel_gi_shader.version_create();
for (int i = 0; i < VOXEL_GI_SHADER_VERSION_MAX; i++) {
voxel_gi_lighting_shader_version_shaders[i] = voxel_gi_shader.version_get_shader(voxel_gi_lighting_shader_version, i);
voxel_gi_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(voxel_gi_lighting_shader_version_shaders[i]);
}
}
{
String defines;
Vector<String> versions;
versions.push_back("\n#define MODE_DEBUG_COLOR\n");
versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
voxel_gi_debug_shader.initialize(versions, defines);
voxel_gi_debug_shader_version = voxel_gi_debug_shader.version_create();
for (int i = 0; i < VOXEL_GI_DEBUG_MAX; i++) {
voxel_gi_debug_shader_version_shaders[i] = voxel_gi_debug_shader.version_get_shader(voxel_gi_debug_shader_version, i);
RD::PipelineRasterizationState rs;
rs.cull_mode = RD::POLYGON_CULL_FRONT;
RD::PipelineDepthStencilState ds;
ds.enable_depth_test = true;
ds.enable_depth_write = true;
ds.depth_compare_operator = RD::COMPARE_OP_GREATER_OR_EQUAL;
voxel_gi_debug_shader_version_pipelines[i].setup(voxel_gi_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
}
}
/* SDGFI */
{
Vector<String> preprocess_modes;
preprocess_modes.push_back("\n#define MODE_SCROLL\n");
preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n");
preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n");
preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n");
preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n");
preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n");
preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n");
preprocess_modes.push_back("\n#define MODE_OCCLUSION\n");
preprocess_modes.push_back("\n#define MODE_STORE\n");
String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n";
sdfgi_shader.preprocess.initialize(preprocess_modes, defines);
sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create();
for (int i = 0; i < SDFGIShader::PRE_PROCESS_MAX; i++) {
sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i));
}
}
{
//calculate tables
String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
Vector<String> direct_light_modes;
direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n");
direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n");
sdfgi_shader.direct_light.initialize(direct_light_modes, defines);
sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create();
for (int i = 0; i < SDFGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i));
}
}
{
//calculate tables
String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n";
if (p_sky->sky_use_cubemap_array) {
defines += "\n#define USE_CUBEMAP_ARRAY\n";
}
Vector<String> integrate_modes;
integrate_modes.push_back("\n#define MODE_PROCESS\n");
integrate_modes.push_back("\n#define MODE_STORE\n");
integrate_modes.push_back("\n#define MODE_SCROLL\n");
integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n");
sdfgi_shader.integrate.initialize(integrate_modes, defines);
sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create();
for (int i = 0; i < SDFGIShader::INTEGRATE_MODE_MAX; i++) {
sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i));
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 0;
if (p_sky->sky_use_cubemap_array) {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_WHITE));
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_WHITE));
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 1;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
}
}
//GK
{
//calculate tables
String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
if (RendererSceneRenderRD::get_singleton()->is_vrs_supported()) {
defines += "\n#define USE_VRS\n";
}
if (!RD::get_singleton()->sampler_is_format_supported_for_filter(RD::DATA_FORMAT_R8G8_UINT, RD::SAMPLER_FILTER_LINEAR)) {
defines += "\n#define SAMPLE_VOXEL_GI_NEAREST\n";
}
Vector<String> gi_modes;
gi_modes.push_back("\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_VOXEL_GI
gi_modes.push_back("\n#define USE_SDFGI\n"); // MODE_SDFGI
gi_modes.push_back("\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_COMBINED
shader.initialize(gi_modes, defines);
shader_version = shader.version_create();
Vector<RD::PipelineSpecializationConstant> specialization_constants;
{
RD::PipelineSpecializationConstant sc;
sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
sc.constant_id = 0; // SHADER_SPECIALIZATION_HALF_RES
sc.bool_value = false;
specialization_constants.push_back(sc);
sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
sc.constant_id = 1; // SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX
sc.bool_value = false;
specialization_constants.push_back(sc);
sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
sc.constant_id = 2; // SHADER_SPECIALIZATION_USE_VRS
sc.bool_value = false;
specialization_constants.push_back(sc);
}
for (int v = 0; v < SHADER_SPECIALIZATION_VARIATIONS; v++) {
specialization_constants.ptrw()[0].bool_value = (v & SHADER_SPECIALIZATION_HALF_RES) ? true : false;
specialization_constants.ptrw()[1].bool_value = (v & SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX) ? true : false;
specialization_constants.ptrw()[2].bool_value = (v & SHADER_SPECIALIZATION_USE_VRS) ? true : false;
for (int i = 0; i < MODE_MAX; i++) {
pipelines[v][i] = RD::get_singleton()->compute_pipeline_create(shader.version_get_shader(shader_version, i), specialization_constants);
}
}
sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIData));
}
{
String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
Vector<String> debug_modes;
debug_modes.push_back("");
sdfgi_shader.debug.initialize(debug_modes, defines);
sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create();
sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0);
sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version);
}
{
String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
Vector<String> versions;
versions.push_back("\n#define MODE_PROBES\n");
versions.push_back("\n#define MODE_PROBES\n#define USE_MULTIVIEW\n");
versions.push_back("\n#define MODE_VISIBILITY\n");
versions.push_back("\n#define MODE_VISIBILITY\n#define USE_MULTIVIEW\n");
sdfgi_shader.debug_probes.initialize(versions, defines);
// TODO disable multiview versions if turned off
sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create();
{
RD::PipelineRasterizationState rs;
rs.cull_mode = RD::POLYGON_CULL_DISABLED;
RD::PipelineDepthStencilState ds;
ds.enable_depth_test = true;
ds.enable_depth_write = true;
ds.depth_compare_operator = RD::COMPARE_OP_GREATER_OR_EQUAL;
for (int i = 0; i < SDFGIShader::PROBE_DEBUG_MAX; i++) {
// TODO check if version is enabled
RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i);
sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
}
}
}
default_voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(VoxelGIData) * MAX_VOXEL_GI_INSTANCES);
half_resolution = GLOBAL_GET("rendering/global_illumination/gi/use_half_resolution");
}
void GI::free() {
if (default_voxel_gi_buffer.is_valid()) {
RD::get_singleton()->free(default_voxel_gi_buffer);
}
if (voxel_gi_lights_uniform.is_valid()) {
RD::get_singleton()->free(voxel_gi_lights_uniform);
}
if (sdfgi_ubo.is_valid()) {
RD::get_singleton()->free(sdfgi_ubo);
}
if (voxel_gi_debug_shader_version.is_valid()) {
voxel_gi_debug_shader.version_free(voxel_gi_debug_shader_version);
}
if (voxel_gi_lighting_shader_version.is_valid()) {
voxel_gi_shader.version_free(voxel_gi_lighting_shader_version);
}
if (shader_version.is_valid()) {
shader.version_free(shader_version);
}
if (sdfgi_shader.debug_probes_shader.is_valid()) {
sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader);
}
if (sdfgi_shader.debug_shader.is_valid()) {
sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader);
}
if (sdfgi_shader.direct_light_shader.is_valid()) {
sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader);
}
if (sdfgi_shader.integrate_shader.is_valid()) {
sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader);
}
if (sdfgi_shader.preprocess_shader.is_valid()) {
sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader);
}
if (voxel_gi_lights) {
memdelete_arr(voxel_gi_lights);
}
}
Ref<GI::SDFGI> GI::create_sdfgi(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size) {
Ref<SDFGI> sdfgi;
sdfgi.instantiate();
sdfgi->create(p_env, p_world_position, p_requested_history_size, this);
return sdfgi;
}
void GI::setup_voxel_gi_instances(RenderDataRD *p_render_data, Ref<RenderSceneBuffersRD> p_render_buffers, const Transform3D &p_transform, const PagedArray<RID> &p_voxel_gi_instances, uint32_t &r_voxel_gi_instances_used) {
ERR_FAIL_COND(p_render_buffers.is_null());
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
ERR_FAIL_NULL(texture_storage);
r_voxel_gi_instances_used = 0;
Ref<RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
ERR_FAIL_COND(rbgi.is_null());
RID voxel_gi_buffer = rbgi->get_voxel_gi_buffer();
VoxelGIData voxel_gi_data[MAX_VOXEL_GI_INSTANCES];
bool voxel_gi_instances_changed = false;
Transform3D to_camera;
to_camera.origin = p_transform.origin; //only translation, make local
for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
RID texture;
if (i < (int)p_voxel_gi_instances.size()) {
VoxelGIInstance *gipi = voxel_gi_instance_owner.get_or_null(p_voxel_gi_instances[i]);
if (gipi) {
texture = gipi->texture;
VoxelGIData &gipd = voxel_gi_data[i];
RID base_probe = gipi->probe;
Transform3D to_cell = voxel_gi_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
gipd.xform[0] = to_cell.basis.rows[0][0];
gipd.xform[1] = to_cell.basis.rows[1][0];
gipd.xform[2] = to_cell.basis.rows[2][0];
gipd.xform[3] = 0;
gipd.xform[4] = to_cell.basis.rows[0][1];
gipd.xform[5] = to_cell.basis.rows[1][1];
gipd.xform[6] = to_cell.basis.rows[2][1];
gipd.xform[7] = 0;
gipd.xform[8] = to_cell.basis.rows[0][2];
gipd.xform[9] = to_cell.basis.rows[1][2];
gipd.xform[10] = to_cell.basis.rows[2][2];
gipd.xform[11] = 0;
gipd.xform[12] = to_cell.origin.x;
gipd.xform[13] = to_cell.origin.y;
gipd.xform[14] = to_cell.origin.z;
gipd.xform[15] = 1;
Vector3 bounds = voxel_gi_get_octree_size(base_probe);
gipd.bounds[0] = bounds.x;
gipd.bounds[1] = bounds.y;
gipd.bounds[2] = bounds.z;
gipd.dynamic_range = voxel_gi_get_dynamic_range(base_probe) * voxel_gi_get_energy(base_probe);
gipd.bias = voxel_gi_get_bias(base_probe);
gipd.normal_bias = voxel_gi_get_normal_bias(base_probe);
gipd.blend_ambient = !voxel_gi_is_interior(base_probe);
gipd.mipmaps = gipi->mipmaps.size();
gipd.exposure_normalization = 1.0;
if (p_render_data->camera_attributes.is_valid()) {
float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
gipd.exposure_normalization = exposure_normalization / voxel_gi_get_baked_exposure_normalization(base_probe);
}
}
r_voxel_gi_instances_used++;
}
if (texture == RID()) {
texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
}
if (texture != rbgi->voxel_gi_textures[i]) {
voxel_gi_instances_changed = true;
rbgi->voxel_gi_textures[i] = texture;
}
}
if (voxel_gi_instances_changed) {
for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
if (RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) {
RD::get_singleton()->free(rbgi->uniform_set[v]);
}
rbgi->uniform_set[v] = RID();
}
if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
// VoxelGI instances have changed, so we need to update volumetric fog.
Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
fog->sync_gi_dependent_sets_validity(true);
}
}
if (p_voxel_gi_instances.size() > 0) {
RD::get_singleton()->draw_command_begin_label("VoxelGIs Setup");
RD::get_singleton()->buffer_update(voxel_gi_buffer, 0, sizeof(VoxelGIData) * MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size()), voxel_gi_data);
RD::get_singleton()->draw_command_end_label();
}
}
RID GI::RenderBuffersGI::get_voxel_gi_buffer() {
if (voxel_gi_buffer.is_null()) {
voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::VoxelGIData) * GI::MAX_VOXEL_GI_INSTANCES);
}
return voxel_gi_buffer;
}
void GI::RenderBuffersGI::free_data() {
for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
if (RD::get_singleton()->uniform_set_is_valid(uniform_set[v])) {
RD::get_singleton()->free(uniform_set[v]);
}
uniform_set[v] = RID();
}
if (scene_data_ubo.is_valid()) {
RD::get_singleton()->free(scene_data_ubo);
scene_data_ubo = RID();
}
if (voxel_gi_buffer.is_valid()) {
RD::get_singleton()->free(voxel_gi_buffer);
voxel_gi_buffer = RID();
}
}
void GI::process_gi(Ref<RenderSceneBuffersRD> p_render_buffers, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer, RID p_environment, uint32_t p_view_count, const Projection *p_projections, const Vector3 *p_eye_offsets, const Transform3D &p_cam_transform, const PagedArray<RID> &p_voxel_gi_instances) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
ERR_FAIL_COND_MSG(p_view_count > 2, "Maximum of 2 views supported for Processing GI.");
RD::get_singleton()->draw_command_begin_label("GI Render");
ERR_FAIL_COND(p_render_buffers.is_null());
Ref<RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
ERR_FAIL_COND(rbgi.is_null());
Size2i internal_size = p_render_buffers->get_internal_size();
if (rbgi->using_half_size_gi != half_resolution) {
p_render_buffers->clear_context(RB_SCOPE_GI);
}
if (!p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) {
Size2i size = internal_size;
uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
if (half_resolution) {
size.x >>= 1;
size.y >>= 1;
}
p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_AMBIENT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size);
p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_REFLECTION, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size);
rbgi->using_half_size_gi = half_resolution;
}
// Setup our scene data
{
SceneData scene_data;
if (rbgi->scene_data_ubo.is_null()) {
rbgi->scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SceneData));
}
Projection correction;
correction.set_depth_correction(false);
for (uint32_t v = 0; v < p_view_count; v++) {
Projection temp = correction * p_projections[v];
RendererRD::MaterialStorage::store_camera(temp.inverse(), scene_data.inv_projection[v]);
scene_data.eye_offset[v][0] = p_eye_offsets[v].x;
scene_data.eye_offset[v][1] = p_eye_offsets[v].y;
scene_data.eye_offset[v][2] = p_eye_offsets[v].z;
scene_data.eye_offset[v][3] = 0.0;
}
// Note that we will be ignoring the origin of this transform.
RendererRD::MaterialStorage::store_transform(p_cam_transform, scene_data.cam_transform);
scene_data.screen_size[0] = internal_size.x;
scene_data.screen_size[1] = internal_size.y;
RD::get_singleton()->buffer_update(rbgi->scene_data_ubo, 0, sizeof(SceneData), &scene_data);
}
// Now compute the contents of our buffers.
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
// Render each eye separately.
// We need to look into whether we can make our compute shader use Multiview but not sure that works or makes a difference..
// setup our push constant
PushConstant push_constant;
push_constant.max_voxel_gi_instances = MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size());
push_constant.high_quality_vct = voxel_gi_quality == RS::VOXEL_GI_QUALITY_HIGH;
// these should be the same for all views
push_constant.orthogonal = p_projections[0].is_orthogonal();
push_constant.z_near = p_projections[0].get_z_near();
push_constant.z_far = p_projections[0].get_z_far();
// these are only used if we have 1 view, else we use the projections in our scene data
push_constant.proj_info[0] = -2.0f / (internal_size.x * p_projections[0].columns[0][0]);
push_constant.proj_info[1] = -2.0f / (internal_size.y * p_projections[0].columns[1][1]);
push_constant.proj_info[2] = (1.0f - p_projections[0].columns[0][2]) / p_projections[0].columns[0][0];
push_constant.proj_info[3] = (1.0f + p_projections[0].columns[1][2]) / p_projections[0].columns[1][1];
bool use_sdfgi = p_render_buffers->has_custom_data(RB_SCOPE_SDFGI);
bool use_voxel_gi_instances = push_constant.max_voxel_gi_instances > 0;
Ref<SDFGI> sdfgi;
if (use_sdfgi) {
sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
}
uint32_t pipeline_specialization = 0;
if (rbgi->using_half_size_gi) {
pipeline_specialization |= SHADER_SPECIALIZATION_HALF_RES;
}
if (p_view_count > 1) {
pipeline_specialization |= SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX;
}
bool has_vrs_texture = p_render_buffers->has_texture(RB_SCOPE_VRS, RB_TEXTURE);
if (has_vrs_texture) {
pipeline_specialization |= SHADER_SPECIALIZATION_USE_VRS;
}
Mode mode = (use_sdfgi && use_voxel_gi_instances) ? MODE_COMBINED : (use_sdfgi ? MODE_SDFGI : MODE_VOXEL_GI);
for (uint32_t v = 0; v < p_view_count; v++) {
push_constant.view_index = v;
// setup our uniform set
if (rbgi->uniform_set[v].is_null() || !RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 1;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (use_sdfgi && j < sdfgi->cascades.size()) {
u.append_id(sdfgi->cascades[j].sdf_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 2;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (use_sdfgi && j < sdfgi->cascades.size()) {
u.append_id(sdfgi->cascades[j].light_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 3;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (use_sdfgi && j < sdfgi->cascades.size()) {
u.append_id(sdfgi->cascades[j].light_aniso_0_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 4;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
if (use_sdfgi && j < sdfgi->cascades.size()) {
u.append_id(sdfgi->cascades[j].light_aniso_1_tex);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 5;
if (use_sdfgi) {
u.append_id(sdfgi->occlusion_texture);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 6;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 7;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 9;
u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_AMBIENT, v, 0));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 10;
u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_REFLECTION, v, 0));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 11;
if (use_sdfgi) {
u.append_id(sdfgi->lightprobe_texture);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 12;
u.append_id(p_render_buffers->get_depth_texture(v));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 13;
u.append_id(p_normal_roughness_slices[v]);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 14;
RID buffer = p_voxel_gi_buffer.is_valid() ? p_voxel_gi_buffer : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
u.append_id(buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 15;
u.append_id(sdfgi_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 16;
u.append_id(rbgi->get_voxel_gi_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 17;
for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
u.append_id(rbgi->voxel_gi_textures[i]);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 18;
u.append_id(rbgi->scene_data_ubo);
uniforms.push_back(u);
}
if (RendererSceneRenderRD::get_singleton()->is_vrs_supported()) {
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 19;
RID buffer = has_vrs_texture ? p_render_buffers->get_texture_slice(RB_SCOPE_VRS, RB_TEXTURE, v, 0) : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_VRS);
u.append_id(buffer);
uniforms.push_back(u);
}
rbgi->uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, shader.version_get_shader(shader_version, 0), 0);
}
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, pipelines[pipeline_specialization][mode]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rbgi->uniform_set[v], 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
if (rbgi->using_half_size_gi) {
RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x >> 1, internal_size.y >> 1, 1);
} else {
RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x, internal_size.y, 1);
}
}
RD::get_singleton()->compute_list_end();
RD::get_singleton()->draw_command_end_label();
}
RID GI::voxel_gi_instance_create(RID p_base) {
VoxelGIInstance voxel_gi;
voxel_gi.gi = this;
voxel_gi.probe = p_base;
RID rid = voxel_gi_instance_owner.make_rid(voxel_gi);
return rid;
}
void GI::voxel_gi_instance_free(RID p_rid) {
GI::VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_rid);
voxel_gi->free_resources();
voxel_gi_instance_owner.free(p_rid);
}
void GI::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->transform = p_xform;
}
bool GI::voxel_gi_needs_update(RID p_probe) const {
VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
ERR_FAIL_NULL_V(voxel_gi, false);
return voxel_gi->last_probe_version != voxel_gi_get_version(voxel_gi->probe);
}
void GI::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->update(p_update_light_instances, p_light_instances, p_dynamic_objects);
}
void GI::debug_voxel_gi(RID p_voxel_gi, RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_voxel_gi);
ERR_FAIL_NULL(voxel_gi);
voxel_gi->debug(p_draw_list, p_framebuffer, p_camera_with_transform, p_lighting, p_emission, p_alpha);
}