virtualx-engine/drivers/gles3/rasterizer_scene_gles3.h
Hugo Locurcio af45c97652
Add fast approximate antialiasing (FXAA) to Viewport
This backports FXAA from the `master` branch.

Co-authored-by: Clay John <claynjohn@gmail.com>
2020-10-20 14:54:52 +02:00

880 lines
27 KiB
C++

/*************************************************************************/
/* rasterizer_scene_gles3.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZERSCENEGLES3_H
#define RASTERIZERSCENEGLES3_H
/* Must come before shaders or the Windows build fails... */
#include "rasterizer_storage_gles3.h"
#include "drivers/gles3/shaders/cube_to_dp.glsl.gen.h"
#include "drivers/gles3/shaders/effect_blur.glsl.gen.h"
#include "drivers/gles3/shaders/exposure.glsl.gen.h"
#include "drivers/gles3/shaders/resolve.glsl.gen.h"
#include "drivers/gles3/shaders/scene.glsl.gen.h"
#include "drivers/gles3/shaders/screen_space_reflection.glsl.gen.h"
#include "drivers/gles3/shaders/ssao.glsl.gen.h"
#include "drivers/gles3/shaders/ssao_blur.glsl.gen.h"
#include "drivers/gles3/shaders/ssao_minify.glsl.gen.h"
#include "drivers/gles3/shaders/subsurf_scattering.glsl.gen.h"
#include "drivers/gles3/shaders/tonemap.glsl.gen.h"
class RasterizerSceneGLES3 : public RasterizerScene {
public:
enum ShadowFilterMode {
SHADOW_FILTER_NEAREST,
SHADOW_FILTER_PCF5,
SHADOW_FILTER_PCF13,
};
ShadowFilterMode shadow_filter_mode;
uint64_t shadow_atlas_realloc_tolerance_msec;
enum SubSurfaceScatterQuality {
SSS_QUALITY_LOW,
SSS_QUALITY_MEDIUM,
SSS_QUALITY_HIGH,
};
SubSurfaceScatterQuality subsurface_scatter_quality;
float subsurface_scatter_size;
bool subsurface_scatter_follow_surface;
bool subsurface_scatter_weight_samples;
uint64_t render_pass;
uint64_t scene_pass;
uint32_t current_material_index;
uint32_t current_geometry_index;
RID default_material;
RID default_material_twosided;
RID default_shader;
RID default_shader_twosided;
RID default_worldcoord_material;
RID default_worldcoord_material_twosided;
RID default_worldcoord_shader;
RID default_worldcoord_shader_twosided;
RID default_overdraw_material;
RID default_overdraw_shader;
RasterizerStorageGLES3 *storage;
Vector<RasterizerStorageGLES3::RenderTarget::Exposure> exposure_shrink;
int exposure_shrink_size;
struct State {
bool texscreen_copied;
int current_blend_mode;
float current_line_width;
int current_depth_draw;
bool current_depth_test;
GLuint current_main_tex;
SceneShaderGLES3 scene_shader;
CubeToDpShaderGLES3 cube_to_dp_shader;
ResolveShaderGLES3 resolve_shader;
ScreenSpaceReflectionShaderGLES3 ssr_shader;
EffectBlurShaderGLES3 effect_blur_shader;
SubsurfScatteringShaderGLES3 sss_shader;
SsaoMinifyShaderGLES3 ssao_minify_shader;
SsaoShaderGLES3 ssao_shader;
SsaoBlurShaderGLES3 ssao_blur_shader;
ExposureShaderGLES3 exposure_shader;
TonemapShaderGLES3 tonemap_shader;
struct SceneDataUBO {
//this is a std140 compatible struct. Please read the OpenGL 3.3 Specification spec before doing any changes
float projection_matrix[16];
float inv_projection_matrix[16];
float camera_inverse_matrix[16];
float camera_matrix[16];
float ambient_light_color[4];
float bg_color[4];
float fog_color_enabled[4];
float fog_sun_color_amount[4];
float ambient_energy;
float bg_energy;
float z_offset;
float z_slope_scale;
float shadow_dual_paraboloid_render_zfar;
float shadow_dual_paraboloid_render_side;
float viewport_size[2];
float screen_pixel_size[2];
float shadow_atlas_pixel_size[2];
float shadow_directional_pixel_size[2];
float time;
float z_far;
float reflection_multiplier;
float subsurface_scatter_width;
float ambient_occlusion_affect_light;
float ambient_occlusion_affect_ssao;
float opaque_prepass_threshold;
uint32_t fog_depth_enabled;
float fog_depth_begin;
float fog_depth_end;
float fog_density;
float fog_depth_curve;
uint32_t fog_transmit_enabled;
float fog_transmit_curve;
uint32_t fog_height_enabled;
float fog_height_min;
float fog_height_max;
float fog_height_curve;
// make sure this struct is padded to be a multiple of 16 bytes for webgl
float pad[2];
} ubo_data;
GLuint scene_ubo;
struct EnvironmentRadianceUBO {
float transform[16];
float ambient_contribution;
uint8_t padding[12];
} env_radiance_data;
GLuint env_radiance_ubo;
GLuint sky_verts;
GLuint sky_array;
GLuint directional_ubo;
GLuint spot_array_ubo;
GLuint omni_array_ubo;
GLuint reflection_array_ubo;
GLuint immediate_buffer;
GLuint immediate_array;
uint32_t ubo_light_size;
uint8_t *spot_array_tmp;
uint8_t *omni_array_tmp;
uint8_t *reflection_array_tmp;
int max_ubo_lights;
int max_forward_lights_per_object;
int max_ubo_reflections;
int max_skeleton_bones;
bool used_contact_shadows;
int spot_light_count;
int omni_light_count;
int directional_light_count;
int reflection_probe_count;
bool cull_front;
bool cull_disabled;
bool used_sss;
bool used_screen_texture;
bool used_depth_prepass;
bool used_depth_texture;
bool prepared_depth_texture;
bool bound_depth_texture;
VS::ViewportDebugDraw debug_draw;
} state;
/* SHADOW ATLAS API */
struct ShadowAtlas : public RID_Data {
enum {
QUADRANT_SHIFT = 27,
SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1,
SHADOW_INVALID = 0xFFFFFFFF
};
struct Quadrant {
uint32_t subdivision;
struct Shadow {
RID owner;
uint64_t version;
uint64_t alloc_tick;
Shadow() {
version = 0;
alloc_tick = 0;
}
};
Vector<Shadow> shadows;
Quadrant() {
subdivision = 0; //not in use
}
} quadrants[4];
int size_order[4];
uint32_t smallest_subdiv;
int size;
GLuint fbo;
GLuint depth;
Map<RID, uint32_t> shadow_owners;
};
struct ShadowCubeMap {
GLuint fbo_id[6];
GLuint cubemap;
uint32_t size;
};
Vector<ShadowCubeMap> shadow_cubemaps;
RID_Owner<ShadowAtlas> shadow_atlas_owner;
RID shadow_atlas_create();
void shadow_atlas_set_size(RID p_atlas, int p_size);
void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision);
bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow);
bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version);
struct DirectionalShadow {
GLuint fbo;
GLuint depth;
int light_count;
int size;
int current_light;
} directional_shadow;
virtual int get_directional_light_shadow_size(RID p_light_intance);
virtual void set_directional_shadow_count(int p_count);
/* REFLECTION PROBE ATLAS API */
struct ReflectionAtlas : public RID_Data {
int subdiv;
int size;
struct Reflection {
RID owner;
uint64_t last_frame;
};
GLuint fbo[6];
GLuint color;
Vector<Reflection> reflections;
};
mutable RID_Owner<ReflectionAtlas> reflection_atlas_owner;
virtual RID reflection_atlas_create();
virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_size);
virtual void reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv);
/* REFLECTION CUBEMAPS */
struct ReflectionCubeMap {
GLuint fbo_id[6];
GLuint cubemap;
GLuint depth;
int size;
};
Vector<ReflectionCubeMap> reflection_cubemaps;
/* REFLECTION PROBE INSTANCE */
struct ReflectionProbeInstance : public RID_Data {
RasterizerStorageGLES3::ReflectionProbe *probe_ptr;
RID probe;
RID self;
RID atlas;
int reflection_atlas_index;
int render_step;
uint64_t last_pass;
int reflection_index;
Transform transform;
};
struct ReflectionProbeDataUBO {
float box_extents[4];
float box_ofs[4];
float params[4]; // intensity, 0, 0, boxproject
float ambient[4]; //color, probe contrib
float atlas_clamp[4];
float local_matrix[16]; //up to here for spot and omni, rest is for directional
//notes: for ambientblend, use distance to edge to blend between already existing global environment
};
mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner;
virtual RID reflection_probe_instance_create(RID p_probe);
virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform);
virtual void reflection_probe_release_atlas_index(RID p_instance);
virtual bool reflection_probe_instance_needs_redraw(RID p_instance);
virtual bool reflection_probe_instance_has_reflection(RID p_instance);
virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas);
virtual bool reflection_probe_instance_postprocess_step(RID p_instance);
/* ENVIRONMENT API */
struct Environment : public RID_Data {
VS::EnvironmentBG bg_mode;
RID sky;
float sky_custom_fov;
Basis sky_orientation;
Color bg_color;
float bg_energy;
float sky_ambient;
int camera_feed_id;
Color ambient_color;
float ambient_energy;
float ambient_sky_contribution;
int canvas_max_layer;
bool ssr_enabled;
int ssr_max_steps;
float ssr_fade_in;
float ssr_fade_out;
float ssr_depth_tolerance;
bool ssr_roughness;
bool ssao_enabled;
float ssao_intensity;
float ssao_radius;
float ssao_intensity2;
float ssao_radius2;
float ssao_bias;
float ssao_light_affect;
float ssao_ao_channel_affect;
Color ssao_color;
VS::EnvironmentSSAOQuality ssao_quality;
float ssao_bilateral_sharpness;
VS::EnvironmentSSAOBlur ssao_filter;
bool glow_enabled;
int glow_levels;
float glow_intensity;
float glow_strength;
float glow_bloom;
VS::EnvironmentGlowBlendMode glow_blend_mode;
float glow_hdr_bleed_threshold;
float glow_hdr_bleed_scale;
float glow_hdr_luminance_cap;
bool glow_bicubic_upscale;
VS::EnvironmentToneMapper tone_mapper;
float tone_mapper_exposure;
float tone_mapper_exposure_white;
bool auto_exposure;
float auto_exposure_speed;
float auto_exposure_min;
float auto_exposure_max;
float auto_exposure_grey;
bool dof_blur_far_enabled;
float dof_blur_far_distance;
float dof_blur_far_transition;
float dof_blur_far_amount;
VS::EnvironmentDOFBlurQuality dof_blur_far_quality;
bool dof_blur_near_enabled;
float dof_blur_near_distance;
float dof_blur_near_transition;
float dof_blur_near_amount;
VS::EnvironmentDOFBlurQuality dof_blur_near_quality;
bool adjustments_enabled;
float adjustments_brightness;
float adjustments_contrast;
float adjustments_saturation;
RID color_correction;
bool fog_enabled;
Color fog_color;
Color fog_sun_color;
float fog_sun_amount;
bool fog_depth_enabled;
float fog_depth_begin;
float fog_depth_end;
float fog_depth_curve;
bool fog_transmit_enabled;
float fog_transmit_curve;
bool fog_height_enabled;
float fog_height_min;
float fog_height_max;
float fog_height_curve;
Environment() :
bg_mode(VS::ENV_BG_CLEAR_COLOR),
sky_custom_fov(0.0),
bg_energy(1.0),
sky_ambient(0),
camera_feed_id(0),
ambient_energy(1.0),
ambient_sky_contribution(0.0),
canvas_max_layer(0),
ssr_enabled(false),
ssr_max_steps(64),
ssr_fade_in(0.15),
ssr_fade_out(2.0),
ssr_depth_tolerance(0.2),
ssr_roughness(true),
ssao_enabled(false),
ssao_intensity(1.0),
ssao_radius(1.0),
ssao_intensity2(1.0),
ssao_radius2(0.0),
ssao_bias(0.01),
ssao_light_affect(0),
ssao_ao_channel_affect(0),
ssao_quality(VS::ENV_SSAO_QUALITY_LOW),
ssao_bilateral_sharpness(4),
ssao_filter(VS::ENV_SSAO_BLUR_3x3),
glow_enabled(false),
glow_levels((1 << 2) | (1 << 4)),
glow_intensity(0.8),
glow_strength(1.0),
glow_bloom(0.0),
glow_blend_mode(VS::GLOW_BLEND_MODE_SOFTLIGHT),
glow_hdr_bleed_threshold(1.0),
glow_hdr_bleed_scale(2.0),
glow_hdr_luminance_cap(12.0),
glow_bicubic_upscale(false),
tone_mapper(VS::ENV_TONE_MAPPER_LINEAR),
tone_mapper_exposure(1.0),
tone_mapper_exposure_white(1.0),
auto_exposure(false),
auto_exposure_speed(0.5),
auto_exposure_min(0.05),
auto_exposure_max(8),
auto_exposure_grey(0.4),
dof_blur_far_enabled(false),
dof_blur_far_distance(10),
dof_blur_far_transition(5),
dof_blur_far_amount(0.1),
dof_blur_far_quality(VS::ENV_DOF_BLUR_QUALITY_MEDIUM),
dof_blur_near_enabled(false),
dof_blur_near_distance(2),
dof_blur_near_transition(1),
dof_blur_near_amount(0.1),
dof_blur_near_quality(VS::ENV_DOF_BLUR_QUALITY_MEDIUM),
adjustments_enabled(false),
adjustments_brightness(1.0),
adjustments_contrast(1.0),
adjustments_saturation(1.0),
fog_enabled(false),
fog_color(Color(0.5, 0.5, 0.5)),
fog_sun_color(Color(0.8, 0.8, 0.0)),
fog_sun_amount(0),
fog_depth_enabled(true),
fog_depth_begin(10),
fog_depth_end(0),
fog_depth_curve(1),
fog_transmit_enabled(true),
fog_transmit_curve(1),
fog_height_enabled(false),
fog_height_min(10),
fog_height_max(0),
fog_height_curve(1) {
}
};
RID_Owner<Environment> environment_owner;
virtual RID environment_create();
virtual void environment_set_background(RID p_env, VS::EnvironmentBG p_bg);
virtual void environment_set_sky(RID p_env, RID p_sky);
virtual void environment_set_sky_custom_fov(RID p_env, float p_scale);
virtual void environment_set_sky_orientation(RID p_env, const Basis &p_orientation);
virtual void environment_set_bg_color(RID p_env, const Color &p_color);
virtual void environment_set_bg_energy(RID p_env, float p_energy);
virtual void environment_set_canvas_max_layer(RID p_env, int p_max_layer);
virtual void environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy = 1.0, float p_sky_contribution = 0.0);
virtual void environment_set_camera_feed_id(RID p_env, int p_camera_feed_id);
virtual void environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality);
virtual void environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality);
virtual void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale);
virtual void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture);
virtual void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness);
virtual void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness);
virtual void environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale);
virtual void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp);
virtual void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount);
virtual void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve);
virtual void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve);
virtual bool is_environment(RID p_env);
virtual VS::EnvironmentBG environment_get_background(RID p_env);
virtual int environment_get_canvas_max_layer(RID p_env);
/* LIGHT INSTANCE */
struct LightDataUBO {
float light_pos_inv_radius[4];
float light_direction_attenuation[4];
float light_color_energy[4];
float light_params[4]; //spot attenuation, spot angle, specular, shadow enabled
float light_clamp[4];
float light_shadow_color_contact[4];
union {
struct {
float matrix1[16]; //up to here for spot and omni, rest is for directional
float matrix2[16];
float matrix3[16];
float matrix4[16];
};
float matrix[4 * 16];
} shadow;
float shadow_split_offsets[4];
};
struct LightInstance : public RID_Data {
struct ShadowTransform {
CameraMatrix camera;
Transform transform;
float farplane;
float split;
float bias_scale;
};
ShadowTransform shadow_transform[4];
RID self;
RID light;
RasterizerStorageGLES3::Light *light_ptr;
Transform transform;
Vector3 light_vector;
Vector3 spot_vector;
float linear_att;
uint64_t shadow_pass;
uint64_t last_scene_pass;
uint64_t last_scene_shadow_pass;
uint64_t last_pass;
uint16_t light_index;
uint16_t light_directional_index;
uint32_t current_shadow_atlas_key;
Vector2 dp;
Rect2 directional_rect;
Set<RID> shadow_atlases; //shadow atlases where this light is registered
LightInstance() {}
};
mutable RID_Owner<LightInstance> light_instance_owner;
virtual RID light_instance_create(RID p_light);
virtual void light_instance_set_transform(RID p_light_instance, const Transform &p_transform);
virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale = 1.0);
virtual void light_instance_mark_visible(RID p_light_instance);
/* REFLECTION INSTANCE */
struct GIProbeInstance : public RID_Data {
RID data;
RasterizerStorageGLES3::GIProbe *probe;
GLuint tex_cache;
Vector3 cell_size_cache;
Vector3 bounds;
Transform transform_to_data;
GIProbeInstance() :
probe(NULL),
tex_cache(0) {
}
};
mutable RID_Owner<GIProbeInstance> gi_probe_instance_owner;
virtual RID gi_probe_instance_create();
virtual void gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data);
virtual void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform);
virtual void gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds);
/* RENDER LIST */
struct RenderList {
enum {
DEFAULT_MAX_ELEMENTS = 65536,
SORT_FLAG_SKELETON = 1,
SORT_FLAG_INSTANCING = 2,
MAX_DIRECTIONAL_LIGHTS = 16,
DEFAULT_MAX_LIGHTS = 4096,
DEFAULT_MAX_REFLECTIONS = 1024,
SORT_KEY_PRIORITY_SHIFT = 56,
SORT_KEY_PRIORITY_MASK = 0xFF,
//depth layer for opaque (56-52)
SORT_KEY_OPAQUE_DEPTH_LAYER_SHIFT = 52,
SORT_KEY_OPAQUE_DEPTH_LAYER_MASK = 0xF,
//64 bits unsupported in MSVC
#define SORT_KEY_UNSHADED_FLAG (uint64_t(1) << 49)
#define SORT_KEY_NO_DIRECTIONAL_FLAG (uint64_t(1) << 48)
#define SORT_KEY_LIGHTMAP_CAPTURE_FLAG (uint64_t(1) << 47)
#define SORT_KEY_LIGHTMAP_FLAG (uint64_t(1) << 46)
#define SORT_KEY_GI_PROBES_FLAG (uint64_t(1) << 45)
#define SORT_KEY_VERTEX_LIT_FLAG (uint64_t(1) << 44)
SORT_KEY_SHADING_SHIFT = 44,
SORT_KEY_SHADING_MASK = 63,
//44-28 material index
SORT_KEY_MATERIAL_INDEX_SHIFT = 28,
//28-8 geometry index
SORT_KEY_GEOMETRY_INDEX_SHIFT = 8,
//bits 5-7 geometry type
SORT_KEY_GEOMETRY_TYPE_SHIFT = 5,
//bits 0-5 for flags
SORT_KEY_OPAQUE_PRE_PASS = 8,
SORT_KEY_CULL_DISABLED_FLAG = 4,
SORT_KEY_SKELETON_FLAG = 2,
SORT_KEY_MIRROR_FLAG = 1
};
int max_elements;
int max_lights;
int max_reflections;
struct Element {
RasterizerScene::InstanceBase *instance;
RasterizerStorageGLES3::Geometry *geometry;
RasterizerStorageGLES3::Material *material;
RasterizerStorageGLES3::GeometryOwner *owner;
uint64_t sort_key;
};
Element *base_elements;
Element **elements;
int element_count;
int alpha_element_count;
void clear() {
element_count = 0;
alpha_element_count = 0;
}
//should eventually be replaced by radix
struct SortByKey {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
return A->sort_key < B->sort_key;
}
};
void sort_by_key(bool p_alpha) {
SortArray<Element *, SortByKey> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count);
} else {
sorter.sort(elements, element_count);
}
}
struct SortByDepth {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
return A->instance->depth < B->instance->depth;
}
};
void sort_by_depth(bool p_alpha) { //used for shadows
SortArray<Element *, SortByDepth> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count);
} else {
sorter.sort(elements, element_count);
}
}
struct SortByReverseDepthAndPriority {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
uint32_t layer_A = uint32_t(A->sort_key >> SORT_KEY_PRIORITY_SHIFT);
uint32_t layer_B = uint32_t(B->sort_key >> SORT_KEY_PRIORITY_SHIFT);
if (layer_A == layer_B) {
return A->instance->depth > B->instance->depth;
} else {
return layer_A < layer_B;
}
}
};
void sort_by_reverse_depth_and_priority(bool p_alpha) { //used for alpha
SortArray<Element *, SortByReverseDepthAndPriority> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count);
} else {
sorter.sort(elements, element_count);
}
}
_FORCE_INLINE_ Element *add_element() {
if (element_count + alpha_element_count >= max_elements)
return NULL;
elements[element_count] = &base_elements[element_count];
return elements[element_count++];
}
_FORCE_INLINE_ Element *add_alpha_element() {
if (element_count + alpha_element_count >= max_elements)
return NULL;
int idx = max_elements - alpha_element_count - 1;
elements[idx] = &base_elements[idx];
alpha_element_count++;
return elements[idx];
}
void init() {
element_count = 0;
alpha_element_count = 0;
elements = memnew_arr(Element *, max_elements);
base_elements = memnew_arr(Element, max_elements);
for (int i = 0; i < max_elements; i++)
elements[i] = &base_elements[i]; // assign elements
}
RenderList() {
max_elements = DEFAULT_MAX_ELEMENTS;
max_lights = DEFAULT_MAX_LIGHTS;
max_reflections = DEFAULT_MAX_REFLECTIONS;
}
~RenderList() {
memdelete_arr(elements);
memdelete_arr(base_elements);
}
};
LightInstance *directional_light;
LightInstance *directional_lights[RenderList::MAX_DIRECTIONAL_LIGHTS];
RenderList render_list;
_FORCE_INLINE_ void _set_cull(bool p_front, bool p_disabled, bool p_reverse_cull);
_FORCE_INLINE_ bool _setup_material(RasterizerStorageGLES3::Material *p_material, bool p_depth_pass, bool p_alpha_pass);
_FORCE_INLINE_ void _setup_geometry(RenderList::Element *e, const Transform &p_view_transform);
_FORCE_INLINE_ void _render_geometry(RenderList::Element *e);
_FORCE_INLINE_ void _setup_light(RenderList::Element *e, const Transform &p_view_transform);
void _render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RasterizerStorageGLES3::Sky *p_sky, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow, bool p_directional_add, bool p_directional_shadows);
_FORCE_INLINE_ void _add_geometry(RasterizerStorageGLES3::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass);
_FORCE_INLINE_ void _add_geometry_with_material(RasterizerStorageGLES3::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner, RasterizerStorageGLES3::Material *p_material, bool p_depth_pass, bool p_shadow_pass);
void _draw_sky(RasterizerStorageGLES3::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation);
void _setup_environment(Environment *env, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, bool p_no_fog = false);
void _setup_directional_light(int p_index, const Transform &p_camera_inverse_transform, bool p_use_shadows);
void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, const CameraMatrix &p_camera_projection, RID p_shadow_atlas);
void _setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, const CameraMatrix &p_camera_projection, RID p_reflection_atlas, Environment *p_env);
void _copy_screen(bool p_invalidate_color = false, bool p_invalidate_depth = false);
void _copy_texture_to_front_buffer(GLuint p_texture); //used for debug
void _fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass);
void _blur_effect_buffer();
void _render_mrts(Environment *env, const CameraMatrix &p_cam_projection);
void _post_process(Environment *env, const CameraMatrix &p_cam_projection);
void _prepare_depth_texture();
void _bind_depth_texture();
virtual void render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass);
virtual void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count);
virtual bool free(RID p_rid);
virtual void set_scene_pass(uint64_t p_pass);
virtual void set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw);
void iteration();
void initialize();
void finalize();
RasterizerSceneGLES3();
~RasterizerSceneGLES3();
};
#endif // RASTERIZERSCENEGLES3_H