virtualx-engine/drivers/gles3/rasterizer_storage_gles3.cpp
Omar El Sheikh f0de7ec2b6 Align Vertex Buffer to 4 Bytes
With the octahedral compression, we had attributes of a size of 2 bytes
which potentially caused performance regressions on iOS/Mac

Now add padding to the normal/tangent buffer

For octahedral, normal will always be oct32 encoded
UNLESS tangent exists and is also compressed
then both will be oct16 encoded and packed into a vec4<GL_BYTE>
attribute
2021-08-07 15:42:03 -04:00

8282 lines
261 KiB
C++

/*************************************************************************/
/* rasterizer_storage_gles3.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "rasterizer_storage_gles3.h"
#include "core/engine.h"
#include "core/project_settings.h"
#include "rasterizer_canvas_gles3.h"
#include "rasterizer_scene_gles3.h"
/* TEXTURE API */
#define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54
#define _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57
#define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define _EXT_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
#define _EXT_COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT 0x8C71
#define _EXT_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
#define _EXT_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT 0x8C73
#define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB
#define _EXT_COMPRESSED_RED_RGTC1 0x8DBB
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC
#define _EXT_COMPRESSED_RG_RGTC2 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
#define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE
#define _EXT_ETC1_RGB8_OES 0x8D64
#define _EXT_SLUMINANCE_NV 0x8C46
#define _EXT_SLUMINANCE_ALPHA_NV 0x8C44
#define _EXT_SRGB8_NV 0x8C41
#define _EXT_SLUMINANCE8_NV 0x8C47
#define _EXT_SLUMINANCE8_ALPHA8_NV 0x8C45
#define _EXT_COMPRESSED_SRGB_S3TC_DXT1_NV 0x8C4C
#define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV 0x8C4D
#define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV 0x8C4E
#define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV 0x8C4F
#define _EXT_ATC_RGB_AMD 0x8C92
#define _EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD 0x8C93
#define _EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD 0x87EE
#define _EXT_TEXTURE_CUBE_MAP_SEAMLESS 0x884F
#define _GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE
#define _GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF
#define _EXT_COMPRESSED_R11_EAC 0x9270
#define _EXT_COMPRESSED_SIGNED_R11_EAC 0x9271
#define _EXT_COMPRESSED_RG11_EAC 0x9272
#define _EXT_COMPRESSED_SIGNED_RG11_EAC 0x9273
#define _EXT_COMPRESSED_RGB8_ETC2 0x9274
#define _EXT_COMPRESSED_SRGB8_ETC2 0x9275
#define _EXT_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276
#define _EXT_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277
#define _EXT_COMPRESSED_RGBA8_ETC2_EAC 0x9278
#define _EXT_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279
#define _EXT_COMPRESSED_RGBA_BPTC_UNORM 0x8E8C
#define _EXT_COMPRESSED_SRGB_ALPHA_BPTC_UNORM 0x8E8D
#define _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT 0x8E8E
#define _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT 0x8E8F
#define _GL_TEXTURE_EXTERNAL_OES 0x8D65
#ifndef GLES_OVER_GL
#define glClearDepth glClearDepthf
#endif
#ifdef __EMSCRIPTEN__
#include <emscripten/emscripten.h>
void glGetBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, GLvoid *data) {
/* clang-format off */
EM_ASM({
GLctx.getBufferSubData($0, $1, HEAPU8, $2, $3);
}, target, offset, data, size);
/* clang-format on */
}
#endif
void glTexStorage2DCustom(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type) {
#ifdef GLES_OVER_GL
for (int i = 0; i < levels; i++) {
glTexImage2D(target, i, internalformat, width, height, 0, format, type, nullptr);
width = MAX(1, (width / 2));
height = MAX(1, (height / 2));
}
#else
glTexStorage2D(target, levels, internalformat, width, height);
#endif
}
GLuint RasterizerStorageGLES3::system_fbo = 0;
Ref<Image> RasterizerStorageGLES3::_get_gl_image_and_format(const Ref<Image> &p_image, Image::Format p_format, uint32_t p_flags, Image::Format &r_real_format, GLenum &r_gl_format, GLenum &r_gl_internal_format, GLenum &r_gl_type, bool &r_compressed, bool &r_srgb, bool p_force_decompress) const {
r_compressed = false;
r_gl_format = 0;
r_real_format = p_format;
Ref<Image> image = p_image;
r_srgb = false;
bool need_decompress = false;
switch (p_format) {
case Image::FORMAT_L8: {
#ifdef GLES_OVER_GL
r_gl_internal_format = GL_R8;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
#else
r_gl_internal_format = GL_LUMINANCE;
r_gl_format = GL_LUMINANCE;
r_gl_type = GL_UNSIGNED_BYTE;
#endif
} break;
case Image::FORMAT_LA8: {
#ifdef GLES_OVER_GL
r_gl_internal_format = GL_RG8;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
#else
r_gl_internal_format = GL_LUMINANCE_ALPHA;
r_gl_format = GL_LUMINANCE_ALPHA;
r_gl_type = GL_UNSIGNED_BYTE;
#endif
} break;
case Image::FORMAT_R8: {
r_gl_internal_format = GL_R8;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RG8: {
r_gl_internal_format = GL_RG8;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RGB8: {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? GL_SRGB8 : GL_RGB8;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
r_srgb = true;
} break;
case Image::FORMAT_RGBA8: {
r_gl_format = GL_RGBA;
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? GL_SRGB8_ALPHA8 : GL_RGBA8;
r_gl_type = GL_UNSIGNED_BYTE;
r_srgb = true;
} break;
case Image::FORMAT_RGBA4444: {
r_gl_internal_format = GL_RGBA4;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_SHORT_4_4_4_4;
} break;
case Image::FORMAT_RGBA5551: {
r_gl_internal_format = GL_RGB5_A1;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_SHORT_5_5_5_1;
} break;
case Image::FORMAT_RF: {
r_gl_internal_format = GL_R32F;
r_gl_format = GL_RED;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RGF: {
r_gl_internal_format = GL_RG32F;
r_gl_format = GL_RG;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RGBF: {
r_gl_internal_format = GL_RGB32F;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RGBAF: {
r_gl_internal_format = GL_RGBA32F;
r_gl_format = GL_RGBA;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RH: {
r_gl_internal_format = GL_R16F;
r_gl_format = GL_RED;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGH: {
r_gl_internal_format = GL_RG16F;
r_gl_format = GL_RG;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGBH: {
r_gl_internal_format = GL_RGB16F;
r_gl_format = GL_RGB;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGBAH: {
r_gl_internal_format = GL_RGBA16F;
r_gl_format = GL_RGBA;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGBE9995: {
r_gl_internal_format = GL_RGB9_E5;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_INT_5_9_9_9_REV;
} break;
case Image::FORMAT_DXT1: {
if (config.s3tc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_DXT3: {
if (config.s3tc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_DXT5: {
if (config.s3tc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_RGTC_R: {
if (config.rgtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RED_RGTC1_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_RGTC_RG: {
if (config.rgtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBA: {
if (config.bptc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_BPTC_UNORM : _EXT_COMPRESSED_RGBA_BPTC_UNORM;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBF: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBFU: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC2: {
if (config.pvrtc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC2A: {
if (config.pvrtc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC4: {
if (config.pvrtc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC4A: {
if (config.pvrtc_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC: {
if (config.etc_supported) {
r_gl_internal_format = _EXT_ETC1_RGB8_OES;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_R11: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_R11_EAC;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_R11S: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_SIGNED_R11_EAC;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RG11: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RG11_EAC;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RG11S: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_SIGNED_RG11_EAC;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RGB8: {
if (config.etc2_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB8_ETC2 : _EXT_COMPRESSED_RGB8_ETC2;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RGBA8: {
if (config.etc2_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : _EXT_COMPRESSED_RGBA8_ETC2_EAC;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RGB8A1: {
if (config.etc2_supported) {
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 : _EXT_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
r_srgb = true;
} else {
need_decompress = true;
}
} break;
default: {
ERR_FAIL_V(Ref<Image>());
}
}
if (need_decompress || p_force_decompress) {
if (!image.is_null()) {
image = image->duplicate();
image->decompress();
ERR_FAIL_COND_V(image->is_compressed(), image);
image->convert(Image::FORMAT_RGBA8);
}
r_gl_format = GL_RGBA;
r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? GL_SRGB8_ALPHA8 : GL_RGBA8;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = false;
r_real_format = Image::FORMAT_RGBA8;
r_srgb = true;
return image;
}
return image;
}
static const GLenum _cube_side_enum[6] = {
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
};
RID RasterizerStorageGLES3::texture_create() {
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture, RID());
glGenTextures(1, &texture->tex_id);
texture->active = false;
texture->total_data_size = 0;
return texture_owner.make_rid(texture);
}
void RasterizerStorageGLES3::texture_allocate(RID p_texture, int p_width, int p_height, int p_depth_3d, Image::Format p_format, VisualServer::TextureType p_type, uint32_t p_flags) {
GLenum format;
GLenum internal_format;
GLenum type;
bool compressed;
bool srgb;
if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) {
p_flags &= ~VS::TEXTURE_FLAG_MIPMAPS; // no mipies for video
}
#ifndef GLES_OVER_GL
switch (p_format) {
case Image::FORMAT_RF:
case Image::FORMAT_RGF:
case Image::FORMAT_RGBF:
case Image::FORMAT_RGBAF:
case Image::FORMAT_RH:
case Image::FORMAT_RGH:
case Image::FORMAT_RGBH:
case Image::FORMAT_RGBAH: {
if (!config.texture_float_linear_supported) {
// disable linear texture filtering when not supported for float format on some devices (issue #24295)
p_flags &= ~VS::TEXTURE_FLAG_FILTER;
}
} break;
default: {
}
}
#endif
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->width = p_width;
texture->height = p_height;
texture->depth = p_depth_3d;
texture->format = p_format;
texture->flags = p_flags;
texture->stored_cube_sides = 0;
texture->type = p_type;
switch (p_type) {
case VS::TEXTURE_TYPE_2D: {
texture->target = GL_TEXTURE_2D;
texture->images.resize(1);
} break;
case VS::TEXTURE_TYPE_EXTERNAL: {
#ifdef ANDROID_ENABLED
texture->target = _GL_TEXTURE_EXTERNAL_OES;
#else
texture->target = GL_TEXTURE_2D;
#endif
texture->images.resize(0);
} break;
case VS::TEXTURE_TYPE_CUBEMAP: {
texture->target = GL_TEXTURE_CUBE_MAP;
texture->images.resize(6);
} break;
case VS::TEXTURE_TYPE_2D_ARRAY: {
texture->target = GL_TEXTURE_2D_ARRAY;
texture->images.resize(p_depth_3d);
} break;
case VS::TEXTURE_TYPE_3D: {
texture->target = GL_TEXTURE_3D;
texture->images.resize(p_depth_3d);
} break;
}
if (p_type != VS::TEXTURE_TYPE_EXTERNAL) {
texture->is_npot_repeat_mipmap = false;
#ifdef JAVASCRIPT_ENABLED
// WebGL 2.0 on browsers does not seem to properly support compressed non power-of-two (NPOT)
// textures with repeat/mipmaps, even though NPOT textures should be supported as per the spec.
// Force decompressing them to work it around on WebGL 2.0 at a performance cost (GH-33058).
int po2_width = next_power_of_2(p_width);
int po2_height = next_power_of_2(p_height);
bool is_po2 = p_width == po2_width && p_height == po2_height;
if (!is_po2 && (p_flags & VS::TEXTURE_FLAG_REPEAT || p_flags & VS::TEXTURE_FLAG_MIPMAPS)) {
texture->is_npot_repeat_mipmap = true;
}
#endif // JAVASCRIPT_ENABLED
Image::Format real_format;
_get_gl_image_and_format(Ref<Image>(),
texture->format,
texture->flags,
real_format,
format,
internal_format,
type,
compressed,
srgb,
texture->is_npot_repeat_mipmap);
texture->alloc_width = texture->width;
texture->alloc_height = texture->height;
texture->alloc_depth = texture->depth;
texture->gl_format_cache = format;
texture->gl_type_cache = type;
texture->gl_internal_format_cache = internal_format;
texture->compressed = compressed;
texture->srgb = srgb;
texture->data_size = 0;
texture->mipmaps = 1;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (p_type == VS::TEXTURE_TYPE_EXTERNAL) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
} else if (p_type == VS::TEXTURE_TYPE_3D || p_type == VS::TEXTURE_TYPE_2D_ARRAY) {
int width = p_width;
int height = p_height;
int depth = p_depth_3d;
int mipmaps = 0;
while (width > 0 || height > 0 || (p_type == VS::TEXTURE_TYPE_3D && depth > 0)) {
width = MAX(1, width);
height = MAX(1, height);
depth = MAX(1, depth);
glTexImage3D(texture->target, mipmaps, internal_format, width, height, depth, 0, format, type, nullptr);
width /= 2;
height /= 2;
if (p_type == VS::TEXTURE_TYPE_3D) {
depth /= 2;
}
mipmaps++;
if (!(p_flags & VS::TEXTURE_FLAG_MIPMAPS)) {
break;
}
}
glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, mipmaps - 1);
} else if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) {
//prealloc if video
glTexImage2D(texture->target, 0, internal_format, p_width, p_height, 0, format, type, nullptr);
}
texture->active = true;
}
void RasterizerStorageGLES3::texture_set_data(RID p_texture, const Ref<Image> &p_image, int p_layer) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(texture->format != p_image->get_format());
ERR_FAIL_COND(p_image.is_null());
ERR_FAIL_COND(texture->type == VS::TEXTURE_TYPE_EXTERNAL);
GLenum type;
GLenum format;
GLenum internal_format;
bool compressed;
bool srgb;
if (config.keep_original_textures && !(texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING)) {
texture->images.write[p_layer] = p_image;
}
Image::Format real_format;
Ref<Image> img = _get_gl_image_and_format(p_image, p_image->get_format(), texture->flags, real_format, format, internal_format, type, compressed, srgb, texture->is_npot_repeat_mipmap);
if (config.shrink_textures_x2 && (p_image->has_mipmaps() || !p_image->is_compressed()) && !(texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING)) {
texture->alloc_height = MAX(1, texture->alloc_height / 2);
texture->alloc_width = MAX(1, texture->alloc_width / 2);
if (texture->alloc_width == img->get_width() / 2 && texture->alloc_height == img->get_height() / 2) {
img->shrink_x2();
} else if (img->get_format() <= Image::FORMAT_RGBA8) {
img->resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR);
}
};
GLenum blit_target = GL_TEXTURE_2D;
switch (texture->type) {
case VS::TEXTURE_TYPE_2D:
case VS::TEXTURE_TYPE_EXTERNAL: {
blit_target = GL_TEXTURE_2D;
} break;
case VS::TEXTURE_TYPE_CUBEMAP: {
ERR_FAIL_INDEX(p_layer, 6);
blit_target = _cube_side_enum[p_layer];
} break;
case VS::TEXTURE_TYPE_2D_ARRAY: {
blit_target = GL_TEXTURE_2D_ARRAY;
} break;
case VS::TEXTURE_TYPE_3D: {
blit_target = GL_TEXTURE_3D;
} break;
}
texture->data_size = img->get_data().size();
PoolVector<uint8_t>::Read read = img->get_data().read();
ERR_FAIL_COND(!read.ptr());
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
texture->ignore_mipmaps = compressed && !img->has_mipmaps();
if ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR);
}
} else {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
if (config.srgb_decode_supported && srgb) {
if (texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT);
texture->using_srgb = true;
} else {
glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _SKIP_DECODE_EXT);
texture->using_srgb = false;
}
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering
}
if (((texture->flags & VS::TEXTURE_FLAG_REPEAT) || (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT)) && texture->target != GL_TEXTURE_CUBE_MAP) {
if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
} else {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
//set swizle for older format compatibility
#ifdef GLES_OVER_GL
switch (texture->format) {
case Image::FORMAT_L8: {
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ONE);
} break;
case Image::FORMAT_LA8: {
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_GREEN);
} break;
default: {
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_GREEN);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_BLUE);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ALPHA);
} break;
}
#endif
if (config.use_anisotropic_filter) {
if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, config.anisotropic_level);
} else {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1);
}
}
int mipmaps = ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && img->has_mipmaps()) ? img->get_mipmap_count() + 1 : 1;
int w = img->get_width();
int h = img->get_height();
int tsize = 0;
for (int i = 0; i < mipmaps; i++) {
int size, ofs;
img->get_mipmap_offset_and_size(i, ofs, size);
if (texture->type == VS::TEXTURE_TYPE_2D || texture->type == VS::TEXTURE_TYPE_CUBEMAP) {
if (texture->compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
int bw = w;
int bh = h;
glCompressedTexImage2D(blit_target, i, internal_format, bw, bh, 0, size, &read[ofs]);
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
if (texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) {
glTexSubImage2D(blit_target, i, 0, 0, w, h, format, type, &read[ofs]);
} else {
glTexImage2D(blit_target, i, internal_format, w, h, 0, format, type, &read[ofs]);
}
}
} else {
if (texture->compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
int bw = w;
int bh = h;
glCompressedTexSubImage3D(blit_target, i, 0, 0, p_layer, bw, bh, 1, internal_format, size, &read[ofs]);
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexSubImage3D(blit_target, i, 0, 0, p_layer, w, h, 1, format, type, &read[ofs]);
}
}
tsize += size;
w = MAX(1, w >> 1);
h = MAX(1, h >> 1);
}
// Handle array and 3D textures, as those set their data per layer.
tsize *= MAX(texture->alloc_depth, 1);
info.texture_mem -= texture->total_data_size;
texture->total_data_size = tsize;
info.texture_mem += texture->total_data_size;
//printf("texture: %i x %i - size: %i - total: %i\n",texture->width,texture->height,tsize,_rinfo.texture_mem);
texture->stored_cube_sides |= (1 << p_layer);
if ((texture->type == VS::TEXTURE_TYPE_2D || texture->type == VS::TEXTURE_TYPE_CUBEMAP) && (texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && mipmaps == 1 && !texture->ignore_mipmaps && (texture->type != VS::TEXTURE_TYPE_CUBEMAP || texture->stored_cube_sides == (1 << 6) - 1)) {
//generate mipmaps if they were requested and the image does not contain them
glGenerateMipmap(texture->target);
} else if (mipmaps > 1) {
glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, mipmaps - 1);
} else {
glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, 0);
}
texture->mipmaps = mipmaps;
//texture_set_flags(p_texture,texture->flags);
}
// Uploads pixel data to a sub-region of a texture, for the specified mipmap.
// The texture pixels must have been allocated before, because most features seen in texture_set_data() make no sense in a partial update.
// TODO If we want this to be usable without pre-filling pixels with a full image, we have to call glTexImage2D() with null data.
void RasterizerStorageGLES3::texture_set_data_partial(RID p_texture, const Ref<Image> &p_image, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y, int p_dst_mip, int p_layer) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(texture->format != p_image->get_format());
ERR_FAIL_COND(p_image.is_null());
ERR_FAIL_COND(src_w <= 0 || src_h <= 0);
ERR_FAIL_COND(src_x < 0 || src_y < 0 || src_x + src_w > p_image->get_width() || src_y + src_h > p_image->get_height());
ERR_FAIL_COND(dst_x < 0 || dst_y < 0 || dst_x + src_w > texture->alloc_width || dst_y + src_h > texture->alloc_height);
ERR_FAIL_COND(p_dst_mip < 0 || p_dst_mip >= texture->mipmaps);
ERR_FAIL_COND(texture->type == VS::TEXTURE_TYPE_EXTERNAL);
GLenum type;
GLenum format;
GLenum internal_format;
bool compressed;
bool srgb;
// Because OpenGL wants data as a dense array, we have to extract the sub-image if the source rect isn't the full image
Ref<Image> p_sub_img = p_image;
if (src_x > 0 || src_y > 0 || src_w != p_image->get_width() || src_h != p_image->get_height()) {
p_sub_img = p_image->get_rect(Rect2(src_x, src_y, src_w, src_h));
}
Image::Format real_format;
Ref<Image> img = _get_gl_image_and_format(p_sub_img, p_sub_img->get_format(), texture->flags, real_format, format, internal_format, type, compressed, srgb, texture->is_npot_repeat_mipmap);
GLenum blit_target = GL_TEXTURE_2D;
switch (texture->type) {
case VS::TEXTURE_TYPE_2D:
case VS::TEXTURE_TYPE_EXTERNAL: {
blit_target = GL_TEXTURE_2D;
} break;
case VS::TEXTURE_TYPE_CUBEMAP: {
ERR_FAIL_INDEX(p_layer, 6);
blit_target = _cube_side_enum[p_layer];
} break;
case VS::TEXTURE_TYPE_2D_ARRAY: {
blit_target = GL_TEXTURE_2D_ARRAY;
} break;
case VS::TEXTURE_TYPE_3D: {
blit_target = GL_TEXTURE_3D;
} break;
}
PoolVector<uint8_t>::Read read = img->get_data().read();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
int src_data_size = img->get_data().size();
int src_ofs = 0;
if (texture->type == VS::TEXTURE_TYPE_2D || texture->type == VS::TEXTURE_TYPE_CUBEMAP) {
if (texture->compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glCompressedTexSubImage2D(blit_target, p_dst_mip, dst_x, dst_y, src_w, src_h, internal_format, src_data_size, &read[src_ofs]);
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// `format` has to match the internal_format used when the texture was created
glTexSubImage2D(blit_target, p_dst_mip, dst_x, dst_y, src_w, src_h, format, type, &read[src_ofs]);
}
} else {
if (texture->compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glCompressedTexSubImage3D(blit_target, p_dst_mip, dst_x, dst_y, p_layer, src_w, src_h, 1, format, src_data_size, &read[src_ofs]);
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// `format` has to match the internal_format used when the texture was created
glTexSubImage3D(blit_target, p_dst_mip, dst_x, dst_y, p_layer, src_w, src_h, 1, format, type, &read[src_ofs]);
}
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering
}
}
Ref<Image> RasterizerStorageGLES3::texture_get_data(RID p_texture, int p_layer) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, Ref<Image>());
ERR_FAIL_COND_V(!texture->active, Ref<Image>());
ERR_FAIL_COND_V(texture->data_size == 0 && !texture->render_target, Ref<Image>());
if (texture->type == VS::TEXTURE_TYPE_CUBEMAP && p_layer < 6 && !texture->images[p_layer].is_null()) {
return texture->images[p_layer];
}
// 3D textures and 2D texture arrays need special treatment, as the glGetTexImage reads **the whole**
// texture to host-memory. 3D textures and 2D texture arrays are potentially very big, so reading
// everything just to throw everything but one layer away is A Bad Idea.
//
// Unfortunately, to solve this, the copy shader has to read the data out via a shader and store it
// in a temporary framebuffer. The data from the framebuffer can then be read using glReadPixels.
if (texture->type == VS::TEXTURE_TYPE_2D_ARRAY || texture->type == VS::TEXTURE_TYPE_3D) {
// can't read a layer that doesn't exist
ERR_FAIL_INDEX_V(p_layer, texture->alloc_depth, Ref<Image>());
// get some information about the texture
Image::Format real_format;
GLenum gl_format;
GLenum gl_internal_format;
GLenum gl_type;
bool compressed;
bool srgb;
_get_gl_image_and_format(
Ref<Image>(),
texture->format,
texture->flags,
real_format,
gl_format,
gl_internal_format,
gl_type,
compressed,
srgb,
texture->is_npot_repeat_mipmap);
PoolVector<uint8_t> data;
// TODO need to decide between RgbaUnorm and RgbaFloat32 for output
int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, Image::FORMAT_RGBA8, false);
data.resize(data_size * 2); // add some more memory at the end, just in case for buggy drivers
PoolVector<uint8_t>::Write wb = data.write();
// generate temporary resources
GLuint tmp_fbo;
glGenFramebuffers(1, &tmp_fbo);
GLuint tmp_color_attachment;
glGenTextures(1, &tmp_color_attachment);
// now bring the OpenGL context into the correct state
{
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fbo);
// back color attachment with memory, then set properties
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, tmp_color_attachment);
// TODO support HDR properly
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture->alloc_width, texture->alloc_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// use the color texture as color attachment for this render pass
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_color_attachment, 0);
// more GL state, wheeeey
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glColorMask(1, 1, 1, 1);
// use volume tex for reading
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glViewport(0, 0, texture->alloc_width, texture->alloc_height);
// set up copy shader for proper use
shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, !srgb);
shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE3D, texture->type == VS::TEXTURE_TYPE_3D);
shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE2DARRAY, texture->type == VS::TEXTURE_TYPE_2D_ARRAY);
shaders.copy.bind();
float layer;
if (texture->type == VS::TEXTURE_TYPE_2D_ARRAY) {
layer = (float)p_layer;
} else {
// calculate the normalized z coordinate for the layer
layer = (float)p_layer / (float)texture->alloc_depth;
}
shaders.copy.set_uniform(CopyShaderGLES3::LAYER, layer);
glBindVertexArray(resources.quadie_array);
}
// clear color attachment, then perform copy
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// read the image into the host buffer
glReadPixels(0, 0, texture->alloc_width, texture->alloc_height, GL_RGBA, GL_UNSIGNED_BYTE, &wb[0]);
// remove temp resources and unset some GL state
{
shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE3D, false);
shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE2DARRAY, false);
shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteTextures(1, &tmp_color_attachment);
glDeleteFramebuffers(1, &tmp_fbo);
}
wb.release();
data.resize(data_size);
Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, false, Image::FORMAT_RGBA8, data));
if (!texture->compressed) {
img->convert(real_format);
}
return Ref<Image>(img);
}
#ifdef GLES_OVER_GL
Image::Format real_format;
GLenum gl_format;
GLenum gl_internal_format;
GLenum gl_type;
bool compressed;
bool srgb;
_get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, srgb, false);
PoolVector<uint8_t> data;
int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, real_format, texture->mipmaps > 1);
data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers
PoolVector<uint8_t>::Write wb = data.write();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
for (int i = 0; i < texture->mipmaps; i++) {
int ofs = Image::get_image_mipmap_offset(texture->alloc_width, texture->alloc_height, real_format, i);
if (texture->compressed) {
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glGetCompressedTexImage(texture->target, i, &wb[ofs]);
} else {
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glGetTexImage(texture->target, i, texture->gl_format_cache, texture->gl_type_cache, &wb[ofs]);
}
}
Image::Format img_format;
//convert special case RGB10_A2 to RGBA8 because it's not a supported image format
if (texture->gl_internal_format_cache == GL_RGB10_A2) {
img_format = Image::FORMAT_RGBA8;
uint32_t *ptr = (uint32_t *)wb.ptr();
uint32_t num_pixels = data_size / 4;
for (uint32_t ofs = 0; ofs < num_pixels; ofs++) {
uint32_t px = ptr[ofs];
uint32_t a = px >> 30 & 0xFF;
ptr[ofs] = (px >> 2 & 0xFF) |
(px >> 12 & 0xFF) << 8 |
(px >> 22 & 0xFF) << 16 |
(a | a << 2 | a << 4 | a << 6) << 24;
}
} else {
img_format = real_format;
}
wb.release();
data.resize(data_size);
Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, texture->mipmaps > 1, img_format, data));
return Ref<Image>(img);
#else
Image::Format real_format;
GLenum gl_format;
GLenum gl_internal_format;
GLenum gl_type;
bool compressed;
bool srgb;
_get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, srgb, texture->is_npot_repeat_mipmap);
PoolVector<uint8_t> data;
int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, Image::FORMAT_RGBA8, false);
data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers
PoolVector<uint8_t>::Write wb = data.write();
GLuint temp_framebuffer;
glGenFramebuffers(1, &temp_framebuffer);
GLuint temp_color_texture;
glGenTextures(1, &temp_color_texture);
glBindFramebuffer(GL_FRAMEBUFFER, temp_framebuffer);
glBindTexture(GL_TEXTURE_2D, temp_color_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture->alloc_width, texture->alloc_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temp_color_texture, 0);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glColorMask(1, 1, 1, 1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
glViewport(0, 0, texture->alloc_width, texture->alloc_height);
shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, !srgb);
shaders.copy.bind();
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
glBindVertexArray(resources.quadie_array);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindVertexArray(0);
glReadPixels(0, 0, texture->alloc_width, texture->alloc_height, GL_RGBA, GL_UNSIGNED_BYTE, &wb[0]);
shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false);
glDeleteTextures(1, &temp_color_texture);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &temp_framebuffer);
wb.release();
data.resize(data_size);
Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, false, Image::FORMAT_RGBA8, data));
if (!texture->compressed) {
img->convert(real_format);
}
return Ref<Image>(img);
#endif
}
void RasterizerStorageGLES3::texture_set_flags(RID p_texture, uint32_t p_flags) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
if (texture->render_target) {
// only allow filter and repeat flags for render target (ie. viewport) textures
p_flags &= (VS::TEXTURE_FLAG_FILTER | VS::TEXTURE_FLAG_REPEAT);
}
bool had_mipmaps = texture->flags & VS::TEXTURE_FLAG_MIPMAPS;
texture->flags = p_flags;
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (((texture->flags & VS::TEXTURE_FLAG_REPEAT) || (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT)) && texture->target != GL_TEXTURE_CUBE_MAP) {
if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
} else {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
if (config.use_anisotropic_filter) {
if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, config.anisotropic_level);
} else {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1);
}
}
if ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) {
if (!had_mipmaps && texture->mipmaps == 1) {
glGenerateMipmap(texture->target);
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR);
}
} else {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
if (config.srgb_decode_supported && texture->srgb) {
if (texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT);
texture->using_srgb = true;
} else {
glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _SKIP_DECODE_EXT);
texture->using_srgb = false;
}
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering
}
}
uint32_t RasterizerStorageGLES3::texture_get_flags(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->flags;
}
Image::Format RasterizerStorageGLES3::texture_get_format(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, Image::FORMAT_L8);
return texture->format;
}
VisualServer::TextureType RasterizerStorageGLES3::texture_get_type(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, VS::TEXTURE_TYPE_2D);
return texture->type;
}
uint32_t RasterizerStorageGLES3::texture_get_texid(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->tex_id;
}
void RasterizerStorageGLES3::texture_bind(RID p_texture, uint32_t p_texture_no) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0 + p_texture_no);
glBindTexture(texture->target, texture->tex_id);
}
uint32_t RasterizerStorageGLES3::texture_get_width(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->width;
}
uint32_t RasterizerStorageGLES3::texture_get_height(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->height;
}
uint32_t RasterizerStorageGLES3::texture_get_depth(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->depth;
}
void RasterizerStorageGLES3::texture_set_size_override(RID p_texture, int p_width, int p_height, int p_depth) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(p_width <= 0 || p_width > 16384);
ERR_FAIL_COND(p_height <= 0 || p_height > 16384);
//real texture size is in alloc width and height
texture->width = p_width;
texture->height = p_height;
}
void RasterizerStorageGLES3::texture_set_path(RID p_texture, const String &p_path) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->path = p_path;
}
String RasterizerStorageGLES3::texture_get_path(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, String());
return texture->path;
}
void RasterizerStorageGLES3::texture_debug_usage(List<VS::TextureInfo> *r_info) {
List<RID> textures;
texture_owner.get_owned_list(&textures);
for (List<RID>::Element *E = textures.front(); E; E = E->next()) {
Texture *t = texture_owner.get(E->get());
if (!t) {
continue;
}
VS::TextureInfo tinfo;
tinfo.texture = E->get();
tinfo.path = t->path;
tinfo.format = t->format;
tinfo.width = t->alloc_width;
tinfo.height = t->alloc_height;
tinfo.depth = t->alloc_depth;
tinfo.bytes = t->total_data_size;
r_info->push_back(tinfo);
}
}
void RasterizerStorageGLES3::texture_set_shrink_all_x2_on_set_data(bool p_enable) {
config.shrink_textures_x2 = p_enable;
}
void RasterizerStorageGLES3::textures_keep_original(bool p_enable) {
config.keep_original_textures = p_enable;
}
void RasterizerStorageGLES3::texture_set_detect_3d_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_3d = p_callback;
texture->detect_3d_ud = p_userdata;
}
void RasterizerStorageGLES3::texture_set_detect_srgb_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_srgb = p_callback;
texture->detect_srgb_ud = p_userdata;
}
void RasterizerStorageGLES3::texture_set_detect_normal_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_normal = p_callback;
texture->detect_normal_ud = p_userdata;
}
RID RasterizerStorageGLES3::texture_create_radiance_cubemap(RID p_source, int p_resolution) const {
Texture *texture = texture_owner.get(p_source);
ERR_FAIL_COND_V(!texture, RID());
ERR_FAIL_COND_V(texture->type != VS::TEXTURE_TYPE_CUBEMAP, RID());
bool use_float = config.framebuffer_half_float_supported;
if (p_resolution < 0) {
p_resolution = texture->width;
}
glBindVertexArray(0);
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (config.srgb_decode_supported && texture->srgb && !texture->using_srgb) {
glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT);
texture->using_srgb = true;
#ifdef TOOLS_ENABLED
if (!(texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
texture->flags |= VS::TEXTURE_FLAG_CONVERT_TO_LINEAR;
//notify that texture must be set to linear beforehand, so it works in other platforms when exported
}
#endif
}
glActiveTexture(GL_TEXTURE1);
GLuint new_cubemap;
glGenTextures(1, &new_cubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP, new_cubemap);
GLuint tmp_fb;
glGenFramebuffers(1, &tmp_fb);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb);
int size = p_resolution;
int lod = 0;
shaders.cubemap_filter.bind();
int mipmaps = 6;
int mm_level = mipmaps;
GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2;
GLenum format = GL_RGBA;
GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV;
while (mm_level) {
for (int i = 0; i < 6; i++) {
glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, nullptr);
}
lod++;
mm_level--;
if (size > 1) {
size >>= 1;
}
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, lod - 1);
lod = 0;
mm_level = mipmaps;
size = p_resolution;
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false);
while (mm_level) {
for (int i = 0; i < 6; i++) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], new_cubemap, lod);
glViewport(0, 0, size, size);
glBindVertexArray(resources.quadie_array);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::FACE_ID, i);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, lod / float(mipmaps - 1));
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindVertexArray(0);
#ifdef DEBUG_ENABLED
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
#endif
}
if (size > 1) {
size >>= 1;
}
lod++;
mm_level--;
}
//restore ranges
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, lod - 1);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
glDeleteFramebuffers(1, &tmp_fb);
Texture *ctex = memnew(Texture);
ctex->type = VS::TEXTURE_TYPE_CUBEMAP;
ctex->flags = VS::TEXTURE_FLAG_MIPMAPS | VS::TEXTURE_FLAG_FILTER;
ctex->width = p_resolution;
ctex->height = p_resolution;
ctex->alloc_width = p_resolution;
ctex->alloc_height = p_resolution;
ctex->format = use_float ? Image::FORMAT_RGBAH : Image::FORMAT_RGBA8;
ctex->target = GL_TEXTURE_CUBE_MAP;
ctex->gl_format_cache = format;
ctex->gl_internal_format_cache = internal_format;
ctex->gl_type_cache = type;
ctex->data_size = 0;
ctex->compressed = false;
ctex->srgb = false;
ctex->total_data_size = 0;
ctex->ignore_mipmaps = false;
ctex->mipmaps = mipmaps;
ctex->active = true;
ctex->tex_id = new_cubemap;
ctex->stored_cube_sides = (1 << 6) - 1;
ctex->render_target = nullptr;
return texture_owner.make_rid(ctex);
}
Size2 RasterizerStorageGLES3::texture_size_with_proxy(RID p_texture) const {
const Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, Size2());
if (texture->proxy) {
return Size2(texture->proxy->width, texture->proxy->height);
} else {
return Size2(texture->width, texture->height);
}
}
void RasterizerStorageGLES3::texture_set_proxy(RID p_texture, RID p_proxy) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
if (texture->proxy) {
texture->proxy->proxy_owners.erase(texture);
texture->proxy = nullptr;
}
if (p_proxy.is_valid()) {
Texture *proxy = texture_owner.get(p_proxy);
ERR_FAIL_COND(!proxy);
ERR_FAIL_COND(proxy == texture);
proxy->proxy_owners.insert(texture);
texture->proxy = proxy;
}
}
void RasterizerStorageGLES3::texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->redraw_if_visible = p_enable;
}
RID RasterizerStorageGLES3::sky_create() {
Sky *sky = memnew(Sky);
sky->radiance = 0;
sky->irradiance = 0;
return sky_owner.make_rid(sky);
}
void RasterizerStorageGLES3::sky_set_texture(RID p_sky, RID p_panorama, int p_radiance_size) {
Sky *sky = sky_owner.getornull(p_sky);
ERR_FAIL_COND(!sky);
if (sky->panorama.is_valid()) {
sky->panorama = RID();
glDeleteTextures(1, &sky->radiance);
glDeleteTextures(1, &sky->irradiance);
sky->radiance = 0;
sky->irradiance = 0;
}
sky->panorama = p_panorama;
if (!sky->panorama.is_valid()) {
return; //cleared
}
Texture *texture = texture_owner.getornull(sky->panorama);
if (!texture) {
sky->panorama = RID();
ERR_FAIL_COND(!texture);
}
texture = texture->get_ptr(); //resolve for proxies
glBindVertexArray(0);
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0);
#ifdef GLES_OVER_GL
glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, int(Math::floor(Math::log(float(texture->width)) / Math::log(2.0f))));
glGenerateMipmap(texture->target);
#else
glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, 0);
#endif
// Need Mipmaps regardless of whether they are set in import by user
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_REPEAT);
#ifdef GLES_OVER_GL
glTexParameterf(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
#else
glTexParameterf(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
#endif
glTexParameterf(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (config.srgb_decode_supported && texture->srgb && !texture->using_srgb) {
glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT);
texture->using_srgb = true;
#ifdef TOOLS_ENABLED
if (!(texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
texture->flags |= VS::TEXTURE_FLAG_CONVERT_TO_LINEAR;
//notify that texture must be set to linear beforehand, so it works in other platforms when exported
}
#endif
}
{
//Irradiance map
glActiveTexture(GL_TEXTURE1);
glGenTextures(1, &sky->irradiance);
glBindTexture(GL_TEXTURE_2D, sky->irradiance);
GLuint tmp_fb;
glGenFramebuffers(1, &tmp_fb);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb);
int size = 32;
bool use_float = config.framebuffer_half_float_supported;
GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2;
GLenum format = GL_RGBA;
GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV;
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sky->irradiance, 0);
int irradiance_size = GLOBAL_GET("rendering/quality/reflections/irradiance_max_size");
int upscale_size = MIN(int(previous_power_of_2(irradiance_size)), p_radiance_size);
GLuint tmp_fb2;
GLuint tmp_tex;
{
//generate another one for rendering, as can't read and write from a single texarray it seems
glGenFramebuffers(1, &tmp_fb2);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2);
glGenTextures(1, &tmp_tex);
glBindTexture(GL_TEXTURE_2D, tmp_tex);
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, upscale_size, 2.0 * upscale_size, 0, format, type, nullptr);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#ifdef DEBUG_ENABLED
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
#endif
}
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::COMPUTE_IRRADIANCE, true);
shaders.cubemap_filter.bind();
// Very large Panoramas require way too much effort to compute irradiance so use a mipmap
// level that corresponds to a panorama of 1024x512
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_MIP_LEVEL, MAX(Math::floor(Math::log(float(texture->width)) / Math::log(2.0f)) - 10.0f, 0.0f));
// Compute Irradiance for a large texture, specified by radiance size and then pull out a low mipmap corresponding to 32x32
for (int i = 0; i < 2; i++) {
glViewport(0, i * upscale_size, upscale_size, upscale_size);
glBindVertexArray(resources.quadie_array);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i > 0);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindVertexArray(0);
}
glGenerateMipmap(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, tmp_tex);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::COMPUTE_IRRADIANCE, false);
shaders.copy.set_conditional(CopyShaderGLES3::USE_LOD, true);
shaders.copy.bind();
shaders.copy.set_uniform(CopyShaderGLES3::MIP_LEVEL, MAX(Math::floor(Math::log(float(upscale_size)) / Math::log(2.0f)) - 5.0f, 0.0f)); // Mip level that corresponds to a 32x32 texture
glViewport(0, 0, size, size * 2.0);
glBindVertexArray(resources.quadie_array);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindVertexArray(0);
shaders.copy.set_conditional(CopyShaderGLES3::USE_LOD, false);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glDeleteFramebuffers(1, &tmp_fb);
glDeleteFramebuffers(1, &tmp_fb2);
glDeleteTextures(1, &tmp_tex);
}
// Now compute radiance
glActiveTexture(GL_TEXTURE1);
glGenTextures(1, &sky->radiance);
if (config.use_texture_array_environment) {
//texture3D
glBindTexture(GL_TEXTURE_2D_ARRAY, sky->radiance);
GLuint tmp_fb;
glGenFramebuffers(1, &tmp_fb);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb);
int size = p_radiance_size;
int array_level = 6;
bool use_float = config.framebuffer_half_float_supported;
GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2;
GLenum format = GL_RGBA;
GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV;
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, internal_format, size, size * 2, array_level, 0, format, type, nullptr);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
GLuint tmp_fb2;
GLuint tmp_tex;
{
//generate another one for rendering, as can't read and write from a single texarray it seems
glGenFramebuffers(1, &tmp_fb2);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2);
glGenTextures(1, &tmp_tex);
glBindTexture(GL_TEXTURE_2D, tmp_tex);
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
#ifdef DEBUG_ENABLED
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
#endif
}
for (int j = 0; j < array_level; j++) {
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2);
#ifdef GLES_OVER_GL
if (j < 3) {
#else
if (j == 0) {
#endif
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID_ARRAY, false);
shaders.cubemap_filter.bind();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_RESOLUTION, float(texture->width / 4));
} else {
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID_ARRAY, true);
shaders.cubemap_filter.bind();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D_ARRAY, sky->radiance);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_ARRAY_INDEX, j - 1); //read from previous to ensure better blur
}
for (int i = 0; i < 2; i++) {
glViewport(0, i * size, size, size);
glBindVertexArray(resources.quadie_array);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i > 0);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, j / float(array_level - 1));
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindVertexArray(0);
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tmp_fb);
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, sky->radiance, 0, j);
glBindFramebuffer(GL_READ_FRAMEBUFFER, tmp_fb2);
glReadBuffer(GL_COLOR_ATTACHMENT0);
glBlitFramebuffer(0, 0, size, size * 2, 0, 0, size, size * 2, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
}
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID_ARRAY, false);
//restore ranges
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D_ARRAY, sky->radiance);
glGenerateMipmap(GL_TEXTURE_2D_ARRAY);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//reset flags on Sky Texture that may have changed
texture_set_flags(sky->panorama, texture->flags);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
glDeleteFramebuffers(1, &tmp_fb);
glDeleteFramebuffers(1, &tmp_fb2);
glDeleteTextures(1, &tmp_tex);
} else {
//regular single texture with mipmaps
glBindTexture(GL_TEXTURE_2D, sky->radiance);
GLuint tmp_fb;
glGenFramebuffers(1, &tmp_fb);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb);
int size = p_radiance_size;
int lod = 0;
int mipmaps = 6;
int mm_level = mipmaps;
bool use_float = config.framebuffer_half_float_supported;
GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2;
GLenum format = GL_RGBA;
GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV;
glTexStorage2DCustom(GL_TEXTURE_2D, mipmaps, internal_format, size, size * 2.0, format, type);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmaps - 1);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
GLuint tmp_fb2;
GLuint tmp_tex;
{
// Need a temporary framebuffer for rendering so we can read from previous iterations
glGenFramebuffers(1, &tmp_fb2);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2);
glGenTextures(1, &tmp_tex);
glBindTexture(GL_TEXTURE_2D, tmp_tex);
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#ifdef DEBUG_ENABLED
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
#endif
}
lod = 0;
mm_level = mipmaps;
size = p_radiance_size;
while (mm_level) {
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sky->radiance, lod);
#ifdef DEBUG_ENABLED
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
#endif
glBindTexture(GL_TEXTURE_2D, tmp_tex);
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr);
glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0);
#ifdef GLES_OVER_GL
if (lod < 3) {
#else
if (lod == 0) {
#endif
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID, false);
shaders.cubemap_filter.bind();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_RESOLUTION, float(texture->width / 4));
} else {
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID, true);
shaders.cubemap_filter.bind();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, sky->radiance);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_MIP_LEVEL, float(lod - 1)); //read from previous to ensure better blur
}
for (int i = 0; i < 2; i++) {
glViewport(0, i * size, size, size);
glBindVertexArray(resources.quadie_array);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i > 0);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, lod / float(mipmaps - 1));
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindVertexArray(0);
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tmp_fb);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sky->radiance, lod);
glBindFramebuffer(GL_READ_FRAMEBUFFER, tmp_fb2);
glReadBuffer(GL_COLOR_ATTACHMENT0);
glBlitFramebuffer(0, 0, size, size * 2, 0, 0, size, size * 2, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
if (size > 1) {
size >>= 1;
}
lod++;
mm_level--;
}
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false);
//restore ranges
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, lod - 1);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//reset flags on Sky Texture that may have changed
texture_set_flags(sky->panorama, texture->flags);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
glDeleteFramebuffers(1, &tmp_fb);
glDeleteFramebuffers(1, &tmp_fb2);
glDeleteTextures(1, &tmp_tex);
}
}
/* SHADER API */
RID RasterizerStorageGLES3::shader_create() {
Shader *shader = memnew(Shader);
shader->mode = VS::SHADER_SPATIAL;
shader->shader = &scene->state.scene_shader;
RID rid = shader_owner.make_rid(shader);
_shader_make_dirty(shader);
shader->self = rid;
return rid;
}
void RasterizerStorageGLES3::_shader_make_dirty(Shader *p_shader) {
if (p_shader->dirty_list.in_list()) {
return;
}
_shader_dirty_list.add(&p_shader->dirty_list);
}
void RasterizerStorageGLES3::shader_set_code(RID p_shader, const String &p_code) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
shader->code = p_code;
String mode_string = ShaderLanguage::get_shader_type(p_code);
VS::ShaderMode mode;
if (mode_string == "canvas_item") {
mode = VS::SHADER_CANVAS_ITEM;
} else if (mode_string == "particles") {
mode = VS::SHADER_PARTICLES;
} else {
mode = VS::SHADER_SPATIAL;
}
if (shader->custom_code_id && mode != shader->mode) {
shader->shader->free_custom_shader(shader->custom_code_id);
shader->custom_code_id = 0;
}
shader->mode = mode;
ShaderGLES3 *shaders[VS::SHADER_MAX] = {
&scene->state.scene_shader,
&canvas->state.canvas_shader,
&this->shaders.particles,
};
shader->shader = shaders[mode];
if (shader->custom_code_id == 0) {
shader->custom_code_id = shader->shader->create_custom_shader();
}
_shader_make_dirty(shader);
}
String RasterizerStorageGLES3::shader_get_code(RID p_shader) const {
const Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, String());
return shader->code;
}
void RasterizerStorageGLES3::_update_shader(Shader *p_shader) const {
_shader_dirty_list.remove(&p_shader->dirty_list);
p_shader->valid = false;
p_shader->ubo_size = 0;
p_shader->uniforms.clear();
if (p_shader->code == String()) {
return; //just invalid, but no error
}
ShaderCompilerGLES3::GeneratedCode gen_code;
ShaderCompilerGLES3::IdentifierActions *actions = nullptr;
switch (p_shader->mode) {
case VS::SHADER_CANVAS_ITEM: {
p_shader->canvas_item.light_mode = Shader::CanvasItem::LIGHT_MODE_NORMAL;
p_shader->canvas_item.blend_mode = Shader::CanvasItem::BLEND_MODE_MIX;
p_shader->canvas_item.uses_screen_texture = false;
p_shader->canvas_item.uses_screen_uv = false;
p_shader->canvas_item.uses_time = false;
p_shader->canvas_item.uses_modulate = false;
p_shader->canvas_item.uses_color = false;
p_shader->canvas_item.uses_vertex = false;
p_shader->canvas_item.batch_flags = 0;
p_shader->canvas_item.uses_world_matrix = false;
p_shader->canvas_item.uses_extra_matrix = false;
p_shader->canvas_item.uses_projection_matrix = false;
p_shader->canvas_item.uses_instance_custom = false;
shaders.actions_canvas.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_ADD);
shaders.actions_canvas.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MIX);
shaders.actions_canvas.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_SUB);
shaders.actions_canvas.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MUL);
shaders.actions_canvas.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_PMALPHA);
shaders.actions_canvas.render_mode_values["blend_disabled"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_DISABLED);
shaders.actions_canvas.render_mode_values["unshaded"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_UNSHADED);
shaders.actions_canvas.render_mode_values["light_only"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_LIGHT_ONLY);
shaders.actions_canvas.usage_flag_pointers["SCREEN_UV"] = &p_shader->canvas_item.uses_screen_uv;
shaders.actions_canvas.usage_flag_pointers["SCREEN_PIXEL_SIZE"] = &p_shader->canvas_item.uses_screen_uv;
shaders.actions_canvas.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->canvas_item.uses_screen_texture;
shaders.actions_canvas.usage_flag_pointers["TIME"] = &p_shader->canvas_item.uses_time;
shaders.actions_canvas.usage_flag_pointers["MODULATE"] = &p_shader->canvas_item.uses_modulate;
shaders.actions_canvas.usage_flag_pointers["COLOR"] = &p_shader->canvas_item.uses_color;
shaders.actions_canvas.usage_flag_pointers["VERTEX"] = &p_shader->canvas_item.uses_vertex;
shaders.actions_canvas.usage_flag_pointers["WORLD_MATRIX"] = &p_shader->canvas_item.uses_world_matrix;
shaders.actions_canvas.usage_flag_pointers["EXTRA_MATRIX"] = &p_shader->canvas_item.uses_extra_matrix;
shaders.actions_canvas.usage_flag_pointers["PROJECTION_MATRIX"] = &p_shader->canvas_item.uses_projection_matrix;
shaders.actions_canvas.usage_flag_pointers["INSTANCE_CUSTOM"] = &p_shader->canvas_item.uses_instance_custom;
actions = &shaders.actions_canvas;
actions->uniforms = &p_shader->uniforms;
} break;
case VS::SHADER_SPATIAL: {
p_shader->spatial.blend_mode = Shader::Spatial::BLEND_MODE_MIX;
p_shader->spatial.depth_draw_mode = Shader::Spatial::DEPTH_DRAW_OPAQUE;
p_shader->spatial.cull_mode = Shader::Spatial::CULL_MODE_BACK;
p_shader->spatial.uses_alpha = false;
p_shader->spatial.uses_alpha_scissor = false;
p_shader->spatial.uses_discard = false;
p_shader->spatial.unshaded = false;
p_shader->spatial.no_depth_test = false;
p_shader->spatial.uses_sss = false;
p_shader->spatial.uses_time = false;
p_shader->spatial.uses_vertex_lighting = false;
p_shader->spatial.uses_screen_texture = false;
p_shader->spatial.uses_depth_texture = false;
p_shader->spatial.uses_vertex = false;
p_shader->spatial.uses_tangent = false;
p_shader->spatial.uses_ensure_correct_normals = false;
p_shader->spatial.writes_modelview_or_projection = false;
p_shader->spatial.uses_world_coordinates = false;
shaders.actions_scene.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_ADD);
shaders.actions_scene.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MIX);
shaders.actions_scene.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_SUB);
shaders.actions_scene.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MUL);
shaders.actions_scene.render_mode_values["depth_draw_opaque"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_OPAQUE);
shaders.actions_scene.render_mode_values["depth_draw_always"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALWAYS);
shaders.actions_scene.render_mode_values["depth_draw_never"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_NEVER);
shaders.actions_scene.render_mode_values["depth_draw_alpha_prepass"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS);
shaders.actions_scene.render_mode_values["cull_front"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_FRONT);
shaders.actions_scene.render_mode_values["cull_back"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_BACK);
shaders.actions_scene.render_mode_values["cull_disabled"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_DISABLED);
shaders.actions_scene.render_mode_flags["unshaded"] = &p_shader->spatial.unshaded;
shaders.actions_scene.render_mode_flags["depth_test_disable"] = &p_shader->spatial.no_depth_test;
shaders.actions_scene.render_mode_flags["vertex_lighting"] = &p_shader->spatial.uses_vertex_lighting;
shaders.actions_scene.render_mode_flags["world_vertex_coords"] = &p_shader->spatial.uses_world_coordinates;
shaders.actions_scene.render_mode_flags["ensure_correct_normals"] = &p_shader->spatial.uses_ensure_correct_normals;
shaders.actions_scene.usage_flag_pointers["ALPHA"] = &p_shader->spatial.uses_alpha;
shaders.actions_scene.usage_flag_pointers["ALPHA_SCISSOR"] = &p_shader->spatial.uses_alpha_scissor;
shaders.actions_scene.usage_flag_pointers["SSS_STRENGTH"] = &p_shader->spatial.uses_sss;
shaders.actions_scene.usage_flag_pointers["DISCARD"] = &p_shader->spatial.uses_discard;
shaders.actions_scene.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->spatial.uses_screen_texture;
shaders.actions_scene.usage_flag_pointers["DEPTH_TEXTURE"] = &p_shader->spatial.uses_depth_texture;
shaders.actions_scene.usage_flag_pointers["TIME"] = &p_shader->spatial.uses_time;
// Use of any of these BUILTINS indicate the need for transformed tangents.
// This is needed to know when to transform tangents in software skinning.
shaders.actions_scene.usage_flag_pointers["TANGENT"] = &p_shader->spatial.uses_tangent;
shaders.actions_scene.usage_flag_pointers["NORMALMAP"] = &p_shader->spatial.uses_tangent;
shaders.actions_scene.write_flag_pointers["MODELVIEW_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection;
shaders.actions_scene.write_flag_pointers["PROJECTION_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection;
shaders.actions_scene.write_flag_pointers["VERTEX"] = &p_shader->spatial.uses_vertex;
actions = &shaders.actions_scene;
actions->uniforms = &p_shader->uniforms;
} break;
case VS::SHADER_PARTICLES: {
actions = &shaders.actions_particles;
actions->uniforms = &p_shader->uniforms;
} break;
case VS::SHADER_MAX:
break; // Can't happen, but silences warning
}
Error err = shaders.compiler.compile(p_shader->mode, p_shader->code, actions, p_shader->path, gen_code);
if (err != OK) {
return;
}
p_shader->shader->set_custom_shader_code(p_shader->custom_code_id, gen_code.vertex, gen_code.vertex_global, gen_code.fragment, gen_code.light, gen_code.fragment_global, gen_code.uniforms, gen_code.texture_uniforms, gen_code.defines);
p_shader->ubo_size = gen_code.uniform_total_size;
p_shader->ubo_offsets = gen_code.uniform_offsets;
p_shader->texture_count = gen_code.texture_uniforms.size();
p_shader->texture_hints = gen_code.texture_hints;
p_shader->texture_types = gen_code.texture_types;
p_shader->uses_vertex_time = gen_code.uses_vertex_time;
p_shader->uses_fragment_time = gen_code.uses_fragment_time;
// some logic for batching
if (p_shader->mode == VS::SHADER_CANVAS_ITEM) {
if (p_shader->canvas_item.uses_modulate | p_shader->canvas_item.uses_color) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_COLOR_BAKING;
}
if (p_shader->canvas_item.uses_vertex) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_VERTEX_BAKING;
}
if (p_shader->canvas_item.uses_world_matrix | p_shader->canvas_item.uses_extra_matrix | p_shader->canvas_item.uses_projection_matrix | p_shader->canvas_item.uses_instance_custom) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_ITEM_JOINING;
}
}
//all materials using this shader will have to be invalidated, unfortunately
for (SelfList<Material> *E = p_shader->materials.first(); E; E = E->next()) {
_material_make_dirty(E->self());
}
p_shader->valid = true;
p_shader->version++;
}
void RasterizerStorageGLES3::update_dirty_shaders() {
while (_shader_dirty_list.first()) {
_update_shader(_shader_dirty_list.first()->self());
}
}
void RasterizerStorageGLES3::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
if (shader->dirty_list.in_list()) {
_update_shader(shader); // ok should be not anymore dirty
}
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = shader->uniforms.front(); E; E = E->next()) {
if (E->get().texture_order >= 0) {
order[E->get().texture_order + 100000] = E->key();
} else {
order[E->get().order] = E->key();
}
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi;
ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[E->get()];
pi.name = E->get();
switch (u.type) {
case ShaderLanguage::TYPE_STRUCT:
pi.type = Variant::ARRAY;
break;
case ShaderLanguage::TYPE_VOID:
pi.type = Variant::NIL;
break;
case ShaderLanguage::TYPE_BOOL:
pi.type = Variant::BOOL;
break;
case ShaderLanguage::TYPE_BVEC2:
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y";
break;
case ShaderLanguage::TYPE_BVEC3:
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y,z";
break;
case ShaderLanguage::TYPE_BVEC4:
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y,z,w";
break;
case ShaderLanguage::TYPE_UINT:
case ShaderLanguage::TYPE_INT: {
pi.type = Variant::INT;
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) {
pi.hint = PROPERTY_HINT_RANGE;
pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]);
}
} break;
case ShaderLanguage::TYPE_IVEC2:
case ShaderLanguage::TYPE_IVEC3:
case ShaderLanguage::TYPE_IVEC4:
case ShaderLanguage::TYPE_UVEC2:
case ShaderLanguage::TYPE_UVEC3:
case ShaderLanguage::TYPE_UVEC4: {
pi.type = Variant::POOL_INT_ARRAY;
} break;
case ShaderLanguage::TYPE_FLOAT: {
pi.type = Variant::REAL;
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) {
pi.hint = PROPERTY_HINT_RANGE;
pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]);
}
} break;
case ShaderLanguage::TYPE_VEC2:
pi.type = Variant::VECTOR2;
break;
case ShaderLanguage::TYPE_VEC3:
pi.type = Variant::VECTOR3;
break;
case ShaderLanguage::TYPE_VEC4: {
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) {
pi.type = Variant::COLOR;
} else {
pi.type = Variant::PLANE;
}
} break;
case ShaderLanguage::TYPE_MAT2:
pi.type = Variant::TRANSFORM2D;
break;
case ShaderLanguage::TYPE_MAT3:
pi.type = Variant::BASIS;
break;
case ShaderLanguage::TYPE_MAT4:
pi.type = Variant::TRANSFORM;
break;
case ShaderLanguage::TYPE_SAMPLER2D:
case ShaderLanguage::TYPE_SAMPLEREXT:
case ShaderLanguage::TYPE_ISAMPLER2D:
case ShaderLanguage::TYPE_USAMPLER2D: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "Texture";
} break;
case ShaderLanguage::TYPE_SAMPLER2DARRAY:
case ShaderLanguage::TYPE_ISAMPLER2DARRAY:
case ShaderLanguage::TYPE_USAMPLER2DARRAY: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "TextureArray";
} break;
case ShaderLanguage::TYPE_SAMPLER3D:
case ShaderLanguage::TYPE_ISAMPLER3D:
case ShaderLanguage::TYPE_USAMPLER3D: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "Texture3D";
} break;
case ShaderLanguage::TYPE_SAMPLERCUBE: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "CubeMap";
} break;
};
p_param_list->push_back(pi);
}
}
void RasterizerStorageGLES3::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture));
if (p_texture.is_valid()) {
shader->default_textures[p_name] = p_texture;
} else {
shader->default_textures.erase(p_name);
}
_shader_make_dirty(shader);
}
RID RasterizerStorageGLES3::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const {
const Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, RID());
const Map<StringName, RID>::Element *E = shader->default_textures.find(p_name);
if (!E) {
return RID();
}
return E->get();
}
void RasterizerStorageGLES3::shader_add_custom_define(RID p_shader, const String &p_define) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->add_custom_define(p_define);
_shader_make_dirty(shader);
}
void RasterizerStorageGLES3::shader_get_custom_defines(RID p_shader, Vector<String> *p_defines) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->get_custom_defines(p_defines);
}
void RasterizerStorageGLES3::shader_remove_custom_define(RID p_shader, const String &p_define) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->remove_custom_define(p_define);
_shader_make_dirty(shader);
}
/* COMMON MATERIAL API */
void RasterizerStorageGLES3::_material_make_dirty(Material *p_material) const {
if (p_material->dirty_list.in_list()) {
return;
}
_material_dirty_list.add(&p_material->dirty_list);
}
RID RasterizerStorageGLES3::material_create() {
Material *material = memnew(Material);
return material_owner.make_rid(material);
}
void RasterizerStorageGLES3::material_set_shader(RID p_material, RID p_shader) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
Shader *shader = shader_owner.getornull(p_shader);
if (material->shader) {
//if shader, remove from previous shader material list
material->shader->materials.remove(&material->list);
}
material->shader = shader;
if (shader) {
shader->materials.add(&material->list);
}
_material_make_dirty(material);
}
RID RasterizerStorageGLES3::material_get_shader(RID p_material) const {
const Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, RID());
if (material->shader) {
return material->shader->self;
}
return RID();
}
void RasterizerStorageGLES3::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
if (p_value.get_type() == Variant::NIL) {
material->params.erase(p_param);
} else {
material->params[p_param] = p_value;
}
_material_make_dirty(material);
}
Variant RasterizerStorageGLES3::material_get_param(RID p_material, const StringName &p_param) const {
const Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (material->params.has(p_param)) {
return material->params[p_param];
}
return material_get_param_default(p_material, p_param);
}
Variant RasterizerStorageGLES3::material_get_param_default(RID p_material, const StringName &p_param) const {
const Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (material->shader) {
if (material->shader->uniforms.has(p_param)) {
ShaderLanguage::ShaderNode::Uniform uniform = material->shader->uniforms[p_param];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
}
}
return Variant();
}
void RasterizerStorageGLES3::material_set_line_width(RID p_material, float p_width) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->line_width = p_width;
}
void RasterizerStorageGLES3::material_set_next_pass(RID p_material, RID p_next_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->next_pass = p_next_material;
}
bool RasterizerStorageGLES3::material_is_animated(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->dirty_list.in_list()) {
_update_material(material);
}
bool animated = material->is_animated_cache;
if (!animated && material->next_pass.is_valid()) {
animated = material_is_animated(material->next_pass);
}
return animated;
}
bool RasterizerStorageGLES3::material_casts_shadows(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->dirty_list.in_list()) {
_update_material(material);
}
bool casts_shadows = material->can_cast_shadow_cache;
if (!casts_shadows && material->next_pass.is_valid()) {
casts_shadows = material_casts_shadows(material->next_pass);
}
return casts_shadows;
}
bool RasterizerStorageGLES3::material_uses_tangents(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (!material->shader) {
return false;
}
if (material->shader->dirty_list.in_list()) {
_update_shader(material->shader);
}
return material->shader->spatial.uses_tangent;
}
bool RasterizerStorageGLES3::material_uses_ensure_correct_normals(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (!material->shader) {
return false;
}
if (material->shader->dirty_list.in_list()) {
_update_shader(material->shader);
}
return material->shader->spatial.uses_ensure_correct_normals;
}
void RasterizerStorageGLES3::material_add_instance_owner(RID p_material, RasterizerScene::InstanceBase *p_instance) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
Map<RasterizerScene::InstanceBase *, int>::Element *E = material->instance_owners.find(p_instance);
if (E) {
E->get()++;
} else {
material->instance_owners[p_instance] = 1;
}
}
void RasterizerStorageGLES3::material_remove_instance_owner(RID p_material, RasterizerScene::InstanceBase *p_instance) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
Map<RasterizerScene::InstanceBase *, int>::Element *E = material->instance_owners.find(p_instance);
ERR_FAIL_COND(!E);
E->get()--;
if (E->get() == 0) {
material->instance_owners.erase(E);
}
}
void RasterizerStorageGLES3::material_set_render_priority(RID p_material, int priority) {
ERR_FAIL_COND(priority < VS::MATERIAL_RENDER_PRIORITY_MIN);
ERR_FAIL_COND(priority > VS::MATERIAL_RENDER_PRIORITY_MAX);
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->render_priority = priority;
}
_FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, const Variant &value, uint8_t *data, bool p_linear_color) {
switch (type) {
case ShaderLanguage::TYPE_BOOL: {
bool v = value;
GLuint *gui = (GLuint *)data;
*gui = v ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_BVEC2: {
int v = value;
GLuint *gui = (GLuint *)data;
gui[0] = (v & 1) ? GL_TRUE : GL_FALSE;
gui[1] = (v & 2) ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_BVEC3: {
int v = value;
GLuint *gui = (GLuint *)data;
gui[0] = (v & 1) ? GL_TRUE : GL_FALSE;
gui[1] = (v & 2) ? GL_TRUE : GL_FALSE;
gui[2] = (v & 4) ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_BVEC4: {
int v = value;
GLuint *gui = (GLuint *)data;
gui[0] = (v & 1) ? GL_TRUE : GL_FALSE;
gui[1] = (v & 2) ? GL_TRUE : GL_FALSE;
gui[2] = (v & 4) ? GL_TRUE : GL_FALSE;
gui[3] = (v & 8) ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_INT: {
int v = value;
GLint *gui = (GLint *)data;
gui[0] = v;
} break;
case ShaderLanguage::TYPE_IVEC2: {
PoolVector<int> iv = value;
int s = iv.size();
GLint *gui = (GLint *)data;
PoolVector<int>::Read r = iv.read();
for (int i = 0; i < 2; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_IVEC3: {
PoolVector<int> iv = value;
int s = iv.size();
GLint *gui = (GLint *)data;
PoolVector<int>::Read r = iv.read();
for (int i = 0; i < 3; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_IVEC4: {
PoolVector<int> iv = value;
int s = iv.size();
GLint *gui = (GLint *)data;
PoolVector<int>::Read r = iv.read();
for (int i = 0; i < 4; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_UINT: {
int v = value;
GLuint *gui = (GLuint *)data;
gui[0] = v;
} break;
case ShaderLanguage::TYPE_UVEC2: {
PoolVector<int> iv = value;
int s = iv.size();
GLuint *gui = (GLuint *)data;
PoolVector<int>::Read r = iv.read();
for (int i = 0; i < 2; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_UVEC3: {
PoolVector<int> iv = value;
int s = iv.size();
GLuint *gui = (GLuint *)data;
PoolVector<int>::Read r = iv.read();
for (int i = 0; i < 3; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_UVEC4: {
PoolVector<int> iv = value;
int s = iv.size();
GLuint *gui = (GLuint *)data;
PoolVector<int>::Read r = iv.read();
for (int i = 0; i < 4; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_FLOAT: {
float v = value;
GLfloat *gui = (GLfloat *)data;
gui[0] = v;
} break;
case ShaderLanguage::TYPE_VEC2: {
Vector2 v = value;
GLfloat *gui = (GLfloat *)data;
gui[0] = v.x;
gui[1] = v.y;
} break;
case ShaderLanguage::TYPE_VEC3: {
Vector3 v = value;
GLfloat *gui = (GLfloat *)data;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
} break;
case ShaderLanguage::TYPE_VEC4: {
GLfloat *gui = (GLfloat *)data;
if (value.get_type() == Variant::COLOR) {
Color v = value;
if (p_linear_color) {
v = v.to_linear();
}
gui[0] = v.r;
gui[1] = v.g;
gui[2] = v.b;
gui[3] = v.a;
} else if (value.get_type() == Variant::RECT2) {
Rect2 v = value;
gui[0] = v.position.x;
gui[1] = v.position.y;
gui[2] = v.size.x;
gui[3] = v.size.y;
} else if (value.get_type() == Variant::QUAT) {
Quat v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
gui[3] = v.w;
} else {
Plane v = value;
gui[0] = v.normal.x;
gui[1] = v.normal.y;
gui[2] = v.normal.z;
gui[3] = v.d;
}
} break;
case ShaderLanguage::TYPE_MAT2: {
Transform2D v = value;
GLfloat *gui = (GLfloat *)data;
//in std140 members of mat2 are treated as vec4s
gui[0] = v.elements[0][0];
gui[1] = v.elements[0][1];
gui[2] = 0;
gui[3] = 0;
gui[4] = v.elements[1][0];
gui[5] = v.elements[1][1];
gui[6] = 0;
gui[7] = 0;
} break;
case ShaderLanguage::TYPE_MAT3: {
Basis v = value;
GLfloat *gui = (GLfloat *)data;
gui[0] = v.elements[0][0];
gui[1] = v.elements[1][0];
gui[2] = v.elements[2][0];
gui[3] = 0;
gui[4] = v.elements[0][1];
gui[5] = v.elements[1][1];
gui[6] = v.elements[2][1];
gui[7] = 0;
gui[8] = v.elements[0][2];
gui[9] = v.elements[1][2];
gui[10] = v.elements[2][2];
gui[11] = 0;
} break;
case ShaderLanguage::TYPE_MAT4: {
Transform v = value;
GLfloat *gui = (GLfloat *)data;
gui[0] = v.basis.elements[0][0];
gui[1] = v.basis.elements[1][0];
gui[2] = v.basis.elements[2][0];
gui[3] = 0;
gui[4] = v.basis.elements[0][1];
gui[5] = v.basis.elements[1][1];
gui[6] = v.basis.elements[2][1];
gui[7] = 0;
gui[8] = v.basis.elements[0][2];
gui[9] = v.basis.elements[1][2];
gui[10] = v.basis.elements[2][2];
gui[11] = 0;
gui[12] = v.origin.x;
gui[13] = v.origin.y;
gui[14] = v.origin.z;
gui[15] = 1;
} break;
default: {
}
}
}
_FORCE_INLINE_ static void _fill_std140_ubo_value(ShaderLanguage::DataType type, const Vector<ShaderLanguage::ConstantNode::Value> &value, uint8_t *data) {
switch (type) {
case ShaderLanguage::TYPE_BOOL: {
GLuint *gui = (GLuint *)data;
*gui = value[0].boolean ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_BVEC2: {
GLuint *gui = (GLuint *)data;
gui[0] = value[0].boolean ? GL_TRUE : GL_FALSE;
gui[1] = value[1].boolean ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_BVEC3: {
GLuint *gui = (GLuint *)data;
gui[0] = value[0].boolean ? GL_TRUE : GL_FALSE;
gui[1] = value[1].boolean ? GL_TRUE : GL_FALSE;
gui[2] = value[2].boolean ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_BVEC4: {
GLuint *gui = (GLuint *)data;
gui[0] = value[0].boolean ? GL_TRUE : GL_FALSE;
gui[1] = value[1].boolean ? GL_TRUE : GL_FALSE;
gui[2] = value[2].boolean ? GL_TRUE : GL_FALSE;
gui[3] = value[3].boolean ? GL_TRUE : GL_FALSE;
} break;
case ShaderLanguage::TYPE_INT: {
GLint *gui = (GLint *)data;
gui[0] = value[0].sint;
} break;
case ShaderLanguage::TYPE_IVEC2: {
GLint *gui = (GLint *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_IVEC3: {
GLint *gui = (GLint *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_IVEC4: {
GLint *gui = (GLint *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_UINT: {
GLuint *gui = (GLuint *)data;
gui[0] = value[0].uint;
} break;
case ShaderLanguage::TYPE_UVEC2: {
GLint *gui = (GLint *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_UVEC3: {
GLint *gui = (GLint *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_UVEC4: {
GLint *gui = (GLint *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_FLOAT: {
GLfloat *gui = (GLfloat *)data;
gui[0] = value[0].real;
} break;
case ShaderLanguage::TYPE_VEC2: {
GLfloat *gui = (GLfloat *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_VEC3: {
GLfloat *gui = (GLfloat *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_VEC4: {
GLfloat *gui = (GLfloat *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_MAT2: {
GLfloat *gui = (GLfloat *)data;
//in std140 members of mat2 are treated as vec4s
gui[0] = value[0].real;
gui[1] = value[1].real;
gui[2] = 0;
gui[3] = 0;
gui[4] = value[2].real;
gui[5] = value[3].real;
gui[6] = 0;
gui[7] = 0;
} break;
case ShaderLanguage::TYPE_MAT3: {
GLfloat *gui = (GLfloat *)data;
gui[0] = value[0].real;
gui[1] = value[1].real;
gui[2] = value[2].real;
gui[3] = 0;
gui[4] = value[3].real;
gui[5] = value[4].real;
gui[6] = value[5].real;
gui[7] = 0;
gui[8] = value[6].real;
gui[9] = value[7].real;
gui[10] = value[8].real;
gui[11] = 0;
} break;
case ShaderLanguage::TYPE_MAT4: {
GLfloat *gui = (GLfloat *)data;
for (int i = 0; i < 16; i++) {
gui[i] = value[i].real;
}
} break;
default: {
}
}
}
_FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type, uint8_t *data) {
switch (type) {
case ShaderLanguage::TYPE_BOOL:
case ShaderLanguage::TYPE_INT:
case ShaderLanguage::TYPE_UINT:
case ShaderLanguage::TYPE_FLOAT: {
memset(data, 0, 4);
} break;
case ShaderLanguage::TYPE_BVEC2:
case ShaderLanguage::TYPE_IVEC2:
case ShaderLanguage::TYPE_UVEC2:
case ShaderLanguage::TYPE_VEC2: {
memset(data, 0, 8);
} break;
case ShaderLanguage::TYPE_BVEC3:
case ShaderLanguage::TYPE_IVEC3:
case ShaderLanguage::TYPE_UVEC3:
case ShaderLanguage::TYPE_VEC3: {
memset(data, 0, 12);
} break;
case ShaderLanguage::TYPE_BVEC4:
case ShaderLanguage::TYPE_IVEC4:
case ShaderLanguage::TYPE_UVEC4:
case ShaderLanguage::TYPE_VEC4: {
memset(data, 0, 16);
} break;
case ShaderLanguage::TYPE_MAT2: {
memset(data, 0, 32);
} break;
case ShaderLanguage::TYPE_MAT3: {
memset(data, 0, 48);
} break;
case ShaderLanguage::TYPE_MAT4: {
memset(data, 0, 64);
} break;
default: {
}
}
}
void RasterizerStorageGLES3::_update_material(Material *material) {
if (material->dirty_list.in_list()) {
_material_dirty_list.remove(&material->dirty_list);
}
if (material->shader && material->shader->dirty_list.in_list()) {
_update_shader(material->shader);
}
if (material->shader && !material->shader->valid) {
return;
}
//update caches
{
bool can_cast_shadow = false;
bool is_animated = false;
if (material->shader && material->shader->mode == VS::SHADER_SPATIAL) {
if (material->shader->spatial.blend_mode == Shader::Spatial::BLEND_MODE_MIX &&
(!material->shader->spatial.uses_alpha || material->shader->spatial.depth_draw_mode == Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) {
can_cast_shadow = true;
}
if (material->shader->spatial.uses_discard && material->shader->uses_fragment_time) {
is_animated = true;
}
if (material->shader->spatial.uses_vertex && material->shader->uses_vertex_time) {
is_animated = true;
}
if (can_cast_shadow != material->can_cast_shadow_cache || is_animated != material->is_animated_cache) {
material->can_cast_shadow_cache = can_cast_shadow;
material->is_animated_cache = is_animated;
for (Map<Geometry *, int>::Element *E = material->geometry_owners.front(); E; E = E->next()) {
E->key()->material_changed_notify();
}
for (Map<RasterizerScene::InstanceBase *, int>::Element *E = material->instance_owners.front(); E; E = E->next()) {
E->key()->base_changed(false, true);
}
}
}
}
//clear ubo if it needs to be cleared
if (material->ubo_size) {
if (!material->shader || material->shader->ubo_size != material->ubo_size) {
//by by ubo
glDeleteBuffers(1, &material->ubo_id);
material->ubo_id = 0;
material->ubo_size = 0;
}
}
//create ubo if it needs to be created
if (material->ubo_size == 0 && material->shader && material->shader->ubo_size) {
glGenBuffers(1, &material->ubo_id);
glBindBuffer(GL_UNIFORM_BUFFER, material->ubo_id);
glBufferData(GL_UNIFORM_BUFFER, material->shader->ubo_size, nullptr, GL_STATIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
material->ubo_size = material->shader->ubo_size;
}
//fill up the UBO if it needs to be filled
if (material->shader && material->ubo_size) {
uint8_t *local_ubo = (uint8_t *)alloca(material->ubo_size);
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = material->shader->uniforms.front(); E; E = E->next()) {
if (E->get().order < 0) {
continue; // texture, does not go here
}
//regular uniform
uint8_t *data = &local_ubo[material->shader->ubo_offsets[E->get().order]];
Map<StringName, Variant>::Element *V = material->params.find(E->key());
if (V) {
//user provided
_fill_std140_variant_ubo_value(E->get().type, V->get(), data, material->shader->mode == VS::SHADER_SPATIAL);
} else if (E->get().default_value.size()) {
//default value
_fill_std140_ubo_value(E->get().type, E->get().default_value, data);
//value=E->get().default_value;
} else {
//zero because it was not provided
if (E->get().type == ShaderLanguage::TYPE_VEC4 && E->get().hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) {
//colors must be set as black, with alpha as 1.0
_fill_std140_variant_ubo_value(E->get().type, Color(0, 0, 0, 1), data, material->shader->mode == VS::SHADER_SPATIAL);
} else {
//else just zero it out
_fill_std140_ubo_empty(E->get().type, data);
}
}
}
glBindBuffer(GL_UNIFORM_BUFFER, material->ubo_id);
glBufferData(GL_UNIFORM_BUFFER, material->ubo_size, local_ubo, GL_STATIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
//set up the texture array, for easy access when it needs to be drawn
if (material->shader && material->shader->texture_count) {
material->texture_is_3d.resize(material->shader->texture_count);
material->textures.resize(material->shader->texture_count);
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = material->shader->uniforms.front(); E; E = E->next()) {
if (E->get().texture_order < 0) {
continue; // not a texture, does not go here
}
RID texture;
switch (E->get().type) {
case ShaderLanguage::TYPE_SAMPLER3D:
case ShaderLanguage::TYPE_SAMPLER2DARRAY: {
material->texture_is_3d.write[E->get().texture_order] = true;
} break;
default: {
material->texture_is_3d.write[E->get().texture_order] = false;
} break;
}
Map<StringName, Variant>::Element *V = material->params.find(E->key());
if (V) {
texture = V->get();
}
if (!texture.is_valid()) {
Map<StringName, RID>::Element *W = material->shader->default_textures.find(E->key());
if (W) {
texture = W->get();
}
}
material->textures.write[E->get().texture_order] = texture;
}
} else {
material->textures.clear();
material->texture_is_3d.clear();
}
}
void RasterizerStorageGLES3::_material_add_geometry(RID p_material, Geometry *p_geometry) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry);
if (I) {
I->get()++;
} else {
material->geometry_owners[p_geometry] = 1;
}
}
void RasterizerStorageGLES3::_material_remove_geometry(RID p_material, Geometry *p_geometry) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry);
ERR_FAIL_COND(!I);
I->get()--;
if (I->get() == 0) {
material->geometry_owners.erase(I);
}
}
void RasterizerStorageGLES3::update_dirty_materials() {
while (_material_dirty_list.first()) {
Material *material = _material_dirty_list.first()->self();
_update_material(material);
}
}
/* MESH API */
RID RasterizerStorageGLES3::mesh_create() {
Mesh *mesh = memnew(Mesh);
return mesh_owner.make_rid(mesh);
}
void RasterizerStorageGLES3::mesh_add_surface(RID p_mesh, uint32_t p_format, VS::PrimitiveType p_primitive, const PoolVector<uint8_t> &p_array, int p_vertex_count, const PoolVector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<PoolVector<uint8_t>> &p_blend_shapes, const Vector<AABB> &p_bone_aabbs) {
PoolVector<uint8_t> array = p_array;
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND(!(p_format & VS::ARRAY_FORMAT_VERTEX));
//must have index and bones, both.
{
uint32_t bones_weight = VS::ARRAY_FORMAT_BONES | VS::ARRAY_FORMAT_WEIGHTS;
ERR_FAIL_COND_MSG((p_format & bones_weight) && (p_format & bones_weight) != bones_weight, "Array must have both bones and weights in format or none.");
}
//bool has_morph = p_blend_shapes.size();
bool use_split_stream = GLOBAL_GET("rendering/mesh_storage/split_stream");
Surface::Attrib attribs[VS::ARRAY_MAX];
int attributes_base_offset = 0;
int attributes_stride = 0;
int positions_stride = 0;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
attribs[i].index = i;
if (!(p_format & (1 << i))) {
attribs[i].enabled = false;
attribs[i].integer = false;
continue;
}
attribs[i].enabled = true;
attribs[i].offset = attributes_base_offset + attributes_stride;
attribs[i].integer = false;
switch (i) {
case VS::ARRAY_VERTEX: {
if (p_format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
attribs[i].size = 2;
} else {
attribs[i].size = (p_format & VS::ARRAY_COMPRESS_VERTEX) ? 4 : 3;
}
if (p_format & VS::ARRAY_COMPRESS_VERTEX) {
attribs[i].type = GL_HALF_FLOAT;
positions_stride += attribs[i].size * 2;
} else {
attribs[i].type = GL_FLOAT;
positions_stride += attribs[i].size * 4;
}
attribs[i].normalized = GL_FALSE;
if (use_split_stream) {
attributes_base_offset = positions_stride * p_vertex_count;
} else {
attributes_base_offset = positions_stride;
}
} break;
case VS::ARRAY_NORMAL: {
if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
// Always pack normal and tangent into vec4
// normal will be xy tangent will be zw
// normal will always be oct32 (4 byte) encoded
// UNLESS tangent exists and is also compressed
// then it will be oct16 encoded along with tangent
attribs[i].normalized = GL_TRUE;
attribs[i].size = 4;
attribs[i].type = GL_SHORT;
attributes_stride += 4;
} else {
attribs[i].size = 3;
if (p_format & VS::ARRAY_COMPRESS_NORMAL) {
attribs[i].type = GL_BYTE;
attributes_stride += 4; //pad extra byte
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 12;
attribs[i].normalized = GL_FALSE;
}
}
} break;
case VS::ARRAY_TANGENT: {
if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
attribs[i].enabled = false;
if (p_format & VS::ARRAY_COMPRESS_TANGENT) {
// normal and tangent will each be oct16 (2 bytes each)
// pack into single vec4<GL_BYTE> for memory bandwidth
// savings while keeping 4 byte alignment
attribs[VS::ARRAY_NORMAL].type = GL_BYTE;
} else {
// normal and tangent will each be oct32 (4 bytes each)
attributes_stride += 4;
}
} else {
attribs[i].size = 4;
if (p_format & VS::ARRAY_COMPRESS_TANGENT) {
attribs[i].type = GL_BYTE;
attributes_stride += 4;
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 16;
attribs[i].normalized = GL_FALSE;
}
}
} break;
case VS::ARRAY_COLOR: {
attribs[i].size = 4;
if (p_format & VS::ARRAY_COMPRESS_COLOR) {
attribs[i].type = GL_UNSIGNED_BYTE;
attributes_stride += 4;
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 16;
attribs[i].normalized = GL_FALSE;
}
} break;
case VS::ARRAY_TEX_UV: {
attribs[i].size = 2;
if (p_format & VS::ARRAY_COMPRESS_TEX_UV) {
attribs[i].type = GL_HALF_FLOAT;
attributes_stride += 4;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 8;
}
attribs[i].normalized = GL_FALSE;
} break;
case VS::ARRAY_TEX_UV2: {
attribs[i].size = 2;
if (p_format & VS::ARRAY_COMPRESS_TEX_UV2) {
attribs[i].type = GL_HALF_FLOAT;
attributes_stride += 4;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 8;
}
attribs[i].normalized = GL_FALSE;
} break;
case VS::ARRAY_BONES: {
attribs[i].size = 4;
if (p_format & VS::ARRAY_FLAG_USE_16_BIT_BONES) {
attribs[i].type = GL_UNSIGNED_SHORT;
attributes_stride += 8;
} else {
attribs[i].type = GL_UNSIGNED_BYTE;
attributes_stride += 4;
}
attribs[i].normalized = GL_FALSE;
attribs[i].integer = true;
} break;
case VS::ARRAY_WEIGHTS: {
attribs[i].size = 4;
if (p_format & VS::ARRAY_COMPRESS_WEIGHTS) {
attribs[i].type = GL_UNSIGNED_SHORT;
attributes_stride += 8;
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 16;
attribs[i].normalized = GL_FALSE;
}
} break;
case VS::ARRAY_INDEX: {
attribs[i].size = 1;
if (p_vertex_count >= (1 << 16)) {
attribs[i].type = GL_UNSIGNED_INT;
attribs[i].stride = 4;
} else {
attribs[i].type = GL_UNSIGNED_SHORT;
attribs[i].stride = 2;
}
attribs[i].normalized = GL_FALSE;
} break;
}
}
if (use_split_stream) {
attribs[VS::ARRAY_VERTEX].stride = positions_stride;
for (int i = 1; i < VS::ARRAY_MAX - 1; i++) {
attribs[i].stride = attributes_stride;
}
} else {
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
attribs[i].stride = positions_stride + attributes_stride;
}
}
//validate sizes
int stride = positions_stride + attributes_stride;
int array_size = stride * p_vertex_count;
int index_array_size = 0;
if (array.size() != array_size && array.size() + p_vertex_count * 2 == array_size) {
//old format, convert
array = PoolVector<uint8_t>();
array.resize(p_array.size() + p_vertex_count * 2);
PoolVector<uint8_t>::Write w = array.write();
PoolVector<uint8_t>::Read r = p_array.read();
uint16_t *w16 = (uint16_t *)w.ptr();
const uint16_t *r16 = (uint16_t *)r.ptr();
uint16_t one = Math::make_half_float(1);
for (int i = 0; i < p_vertex_count; i++) {
*w16++ = *r16++;
*w16++ = *r16++;
*w16++ = *r16++;
*w16++ = one;
for (int j = 0; j < (stride / 2) - 4; j++) {
*w16++ = *r16++;
}
}
}
ERR_FAIL_COND(array.size() != array_size);
if (p_format & VS::ARRAY_FORMAT_INDEX) {
index_array_size = attribs[VS::ARRAY_INDEX].stride * p_index_count;
}
ERR_FAIL_COND(p_index_array.size() != index_array_size);
ERR_FAIL_COND(p_blend_shapes.size() != mesh->blend_shape_count);
for (int i = 0; i < p_blend_shapes.size(); i++) {
ERR_FAIL_COND(p_blend_shapes[i].size() != array_size);
}
//ok all valid, create stuff
Surface *surface = memnew(Surface);
surface->active = true;
surface->array_len = p_vertex_count;
surface->index_array_len = p_index_count;
surface->array_byte_size = array.size();
surface->index_array_byte_size = p_index_array.size();
surface->primitive = p_primitive;
surface->mesh = mesh;
surface->format = p_format;
surface->skeleton_bone_aabb = p_bone_aabbs;
surface->skeleton_bone_used.resize(surface->skeleton_bone_aabb.size());
surface->aabb = p_aabb;
surface->max_bone = p_bone_aabbs.size();
surface->total_data_size += surface->array_byte_size + surface->index_array_byte_size;
for (int i = 0; i < surface->skeleton_bone_used.size(); i++) {
if (surface->skeleton_bone_aabb[i].size.x < 0 || surface->skeleton_bone_aabb[i].size.y < 0 || surface->skeleton_bone_aabb[i].size.z < 0) {
surface->skeleton_bone_used.write[i] = false;
} else {
surface->skeleton_bone_used.write[i] = true;
}
}
for (int i = 0; i < VS::ARRAY_MAX; i++) {
surface->attribs[i] = attribs[i];
}
{
PoolVector<uint8_t>::Read vr = array.read();
glGenBuffers(1, &surface->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
glBufferData(GL_ARRAY_BUFFER, array_size, vr.ptr(), (p_format & VS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (p_format & VS::ARRAY_FORMAT_INDEX) {
PoolVector<uint8_t>::Read ir = p_index_array.read();
glGenBuffers(1, &surface->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_array_size, ir.ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
}
//generate arrays for faster state switching
for (int ai = 0; ai < 2; ai++) {
if (ai == 0) {
//for normal draw
glGenVertexArrays(1, &surface->array_id);
glBindVertexArray(surface->array_id);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
} else if (ai == 1) {
//for instancing draw (can be changed and no one cares)
glGenVertexArrays(1, &surface->instancing_array_id);
glBindVertexArray(surface->instancing_array_id);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
}
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
if (!attribs[i].enabled) {
continue;
}
if (attribs[i].integer) {
glVertexAttribIPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
} else {
glVertexAttribPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
}
glEnableVertexAttribArray(attribs[i].index);
}
if (surface->index_id) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id);
}
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
#ifdef DEBUG_ENABLED
if (config.generate_wireframes && p_primitive == VS::PRIMITIVE_TRIANGLES) {
//generate wireframes, this is used mostly by editor
PoolVector<uint32_t> wf_indices;
int index_count;
if (p_format & VS::ARRAY_FORMAT_INDEX) {
index_count = p_index_count * 2;
wf_indices.resize(index_count);
PoolVector<uint8_t>::Read ir = p_index_array.read();
PoolVector<uint32_t>::Write wr = wf_indices.write();
if (p_vertex_count < (1 << 16)) {
//read 16 bit indices
const uint16_t *src_idx = (const uint16_t *)ir.ptr();
for (int i = 0; i + 5 < index_count; i += 6) {
wr[i + 0] = src_idx[i / 2];
wr[i + 1] = src_idx[i / 2 + 1];
wr[i + 2] = src_idx[i / 2 + 1];
wr[i + 3] = src_idx[i / 2 + 2];
wr[i + 4] = src_idx[i / 2 + 2];
wr[i + 5] = src_idx[i / 2];
}
} else {
//read 16 bit indices
const uint32_t *src_idx = (const uint32_t *)ir.ptr();
for (int i = 0; i + 5 < index_count; i += 6) {
wr[i + 0] = src_idx[i / 2];
wr[i + 1] = src_idx[i / 2 + 1];
wr[i + 2] = src_idx[i / 2 + 1];
wr[i + 3] = src_idx[i / 2 + 2];
wr[i + 4] = src_idx[i / 2 + 2];
wr[i + 5] = src_idx[i / 2];
}
}
} else {
index_count = p_vertex_count * 2;
wf_indices.resize(index_count);
PoolVector<uint32_t>::Write wr = wf_indices.write();
for (int i = 0; i + 5 < index_count; i += 6) {
wr[i + 0] = i / 2;
wr[i + 1] = i / 2 + 1;
wr[i + 2] = i / 2 + 1;
wr[i + 3] = i / 2 + 2;
wr[i + 4] = i / 2 + 2;
wr[i + 5] = i / 2;
}
}
{
PoolVector<uint32_t>::Read ir = wf_indices.read();
glGenBuffers(1, &surface->index_wireframe_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_wireframe_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_count * sizeof(uint32_t), ir.ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
surface->index_wireframe_len = index_count;
}
for (int ai = 0; ai < 2; ai++) {
if (ai == 0) {
//for normal draw
glGenVertexArrays(1, &surface->array_wireframe_id);
glBindVertexArray(surface->array_wireframe_id);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
} else if (ai == 1) {
//for instancing draw (can be changed and no one cares)
glGenVertexArrays(1, &surface->instancing_array_wireframe_id);
glBindVertexArray(surface->instancing_array_wireframe_id);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
}
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
if (!attribs[i].enabled) {
continue;
}
if (attribs[i].integer) {
glVertexAttribIPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
} else {
glVertexAttribPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
}
glEnableVertexAttribArray(attribs[i].index);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_wireframe_id);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
}
#endif
}
{
//blend shapes
for (int i = 0; i < p_blend_shapes.size(); i++) {
Surface::BlendShape mt;
PoolVector<uint8_t>::Read vr = p_blend_shapes[i].read();
surface->total_data_size += array_size;
glGenBuffers(1, &mt.vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, mt.vertex_id);
glBufferData(GL_ARRAY_BUFFER, array_size, vr.ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
glGenVertexArrays(1, &mt.array_id);
glBindVertexArray(mt.array_id);
glBindBuffer(GL_ARRAY_BUFFER, mt.vertex_id);
for (int j = 0; j < VS::ARRAY_MAX - 1; j++) {
if (!attribs[j].enabled) {
continue;
}
if (attribs[j].integer) {
glVertexAttribIPointer(attribs[j].index, attribs[j].size, attribs[j].type, attribs[j].stride, CAST_INT_TO_UCHAR_PTR(attribs[j].offset));
} else {
glVertexAttribPointer(attribs[j].index, attribs[j].size, attribs[j].type, attribs[j].normalized, attribs[j].stride, CAST_INT_TO_UCHAR_PTR(attribs[j].offset));
}
glEnableVertexAttribArray(attribs[j].index);
}
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
surface->blend_shapes.push_back(mt);
}
}
mesh->surfaces.push_back(surface);
mesh->instance_change_notify(true, true);
info.vertex_mem += surface->total_data_size;
}
void RasterizerStorageGLES3::mesh_set_blend_shape_count(RID p_mesh, int p_amount) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND(mesh->surfaces.size() != 0);
ERR_FAIL_COND(p_amount < 0);
mesh->blend_shape_count = p_amount;
mesh->instance_change_notify(true, false);
}
int RasterizerStorageGLES3::mesh_get_blend_shape_count(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
return mesh->blend_shape_count;
}
void RasterizerStorageGLES3::mesh_set_blend_shape_mode(RID p_mesh, VS::BlendShapeMode p_mode) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->blend_shape_mode = p_mode;
}
VS::BlendShapeMode RasterizerStorageGLES3::mesh_get_blend_shape_mode(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, VS::BLEND_SHAPE_MODE_NORMALIZED);
return mesh->blend_shape_mode;
}
void RasterizerStorageGLES3::mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const PoolVector<uint8_t> &p_data) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
int total_size = p_data.size();
ERR_FAIL_COND(p_offset + total_size > mesh->surfaces[p_surface]->array_byte_size);
PoolVector<uint8_t>::Read r = p_data.read();
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, p_offset, total_size, r.ptr());
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
}
void RasterizerStorageGLES3::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
if (mesh->surfaces[p_surface]->material == p_material) {
return;
}
if (mesh->surfaces[p_surface]->material.is_valid()) {
_material_remove_geometry(mesh->surfaces[p_surface]->material, mesh->surfaces[p_surface]);
}
mesh->surfaces[p_surface]->material = p_material;
if (mesh->surfaces[p_surface]->material.is_valid()) {
_material_add_geometry(mesh->surfaces[p_surface]->material, mesh->surfaces[p_surface]);
}
mesh->instance_change_notify(false, true);
}
RID RasterizerStorageGLES3::mesh_surface_get_material(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RID());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID());
return mesh->surfaces[p_surface]->material;
}
int RasterizerStorageGLES3::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
return mesh->surfaces[p_surface]->array_len;
}
int RasterizerStorageGLES3::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
return mesh->surfaces[p_surface]->index_array_len;
}
PoolVector<uint8_t> RasterizerStorageGLES3::mesh_surface_get_array(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, PoolVector<uint8_t>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), PoolVector<uint8_t>());
Surface *surface = mesh->surfaces[p_surface];
PoolVector<uint8_t> ret;
ret.resize(surface->array_byte_size);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
#if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__)
{
PoolVector<uint8_t>::Write w = ret.write();
glGetBufferSubData(GL_ARRAY_BUFFER, 0, surface->array_byte_size, w.ptr());
}
#else
void *data = glMapBufferRange(GL_ARRAY_BUFFER, 0, surface->array_byte_size, GL_MAP_READ_BIT);
ERR_FAIL_NULL_V(data, PoolVector<uint8_t>());
{
PoolVector<uint8_t>::Write w = ret.write();
memcpy(w.ptr(), data, surface->array_byte_size);
}
glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
glBindBuffer(GL_ARRAY_BUFFER, 0);
return ret;
}
PoolVector<uint8_t> RasterizerStorageGLES3::mesh_surface_get_index_array(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, PoolVector<uint8_t>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), PoolVector<uint8_t>());
Surface *surface = mesh->surfaces[p_surface];
PoolVector<uint8_t> ret;
ret.resize(surface->index_array_byte_size);
if (surface->index_array_byte_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id);
#if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__)
{
PoolVector<uint8_t>::Write w = ret.write();
glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, surface->index_array_byte_size, w.ptr());
}
#else
void *data = glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER, 0, surface->index_array_byte_size, GL_MAP_READ_BIT);
ERR_FAIL_NULL_V(data, PoolVector<uint8_t>());
{
PoolVector<uint8_t>::Write w = ret.write();
memcpy(w.ptr(), data, surface->index_array_byte_size);
}
glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
#endif
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
return ret;
}
uint32_t RasterizerStorageGLES3::mesh_surface_get_format(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
return mesh->surfaces[p_surface]->format;
}
VS::PrimitiveType RasterizerStorageGLES3::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, VS::PRIMITIVE_MAX);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_MAX);
return mesh->surfaces[p_surface]->primitive;
}
AABB RasterizerStorageGLES3::mesh_surface_get_aabb(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), AABB());
return mesh->surfaces[p_surface]->aabb;
}
Vector<PoolVector<uint8_t>> RasterizerStorageGLES3::mesh_surface_get_blend_shapes(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, Vector<PoolVector<uint8_t>>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Vector<PoolVector<uint8_t>>());
Vector<PoolVector<uint8_t>> bsarr;
for (int i = 0; i < mesh->surfaces[p_surface]->blend_shapes.size(); i++) {
PoolVector<uint8_t> ret;
ret.resize(mesh->surfaces[p_surface]->array_byte_size);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh->surfaces[p_surface]->blend_shapes[i].vertex_id);
#if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__)
{
PoolVector<uint8_t>::Write w = ret.write();
glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, mesh->surfaces[p_surface]->array_byte_size, w.ptr());
}
#else
void *data = glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER, 0, mesh->surfaces[p_surface]->array_byte_size, GL_MAP_READ_BIT);
ERR_FAIL_COND_V(!data, Vector<PoolVector<uint8_t>>());
{
PoolVector<uint8_t>::Write w = ret.write();
memcpy(w.ptr(), data, mesh->surfaces[p_surface]->array_byte_size);
}
glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
#endif
bsarr.push_back(ret);
}
return bsarr;
}
Vector<AABB> RasterizerStorageGLES3::mesh_surface_get_skeleton_aabb(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, Vector<AABB>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Vector<AABB>());
return mesh->surfaces[p_surface]->skeleton_bone_aabb;
}
void RasterizerStorageGLES3::mesh_remove_surface(RID p_mesh, int p_surface) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
Surface *surface = mesh->surfaces[p_surface];
if (surface->material.is_valid()) {
_material_remove_geometry(surface->material, mesh->surfaces[p_surface]);
}
glDeleteBuffers(1, &surface->vertex_id);
if (surface->index_id) {
glDeleteBuffers(1, &surface->index_id);
}
glDeleteVertexArrays(1, &surface->array_id);
glDeleteVertexArrays(1, &surface->instancing_array_id);
for (int i = 0; i < surface->blend_shapes.size(); i++) {
glDeleteBuffers(1, &surface->blend_shapes[i].vertex_id);
glDeleteVertexArrays(1, &surface->blend_shapes[i].array_id);
}
if (surface->index_wireframe_id) {
glDeleteBuffers(1, &surface->index_wireframe_id);
glDeleteVertexArrays(1, &surface->array_wireframe_id);
glDeleteVertexArrays(1, &surface->instancing_array_wireframe_id);
}
info.vertex_mem -= surface->total_data_size;
memdelete(surface);
mesh->surfaces.remove(p_surface);
mesh->instance_change_notify(true, true);
}
int RasterizerStorageGLES3::mesh_get_surface_count(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
return mesh->surfaces.size();
}
void RasterizerStorageGLES3::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->custom_aabb = p_aabb;
mesh->instance_change_notify(true, false);
}
AABB RasterizerStorageGLES3::mesh_get_custom_aabb(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
return mesh->custom_aabb;
}
AABB RasterizerStorageGLES3::mesh_get_aabb(RID p_mesh, RID p_skeleton) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
if (mesh->custom_aabb != AABB()) {
return mesh->custom_aabb;
}
Skeleton *sk = nullptr;
if (p_skeleton.is_valid()) {
sk = skeleton_owner.get(p_skeleton);
}
AABB aabb;
if (sk && sk->size != 0) {
for (int i = 0; i < mesh->surfaces.size(); i++) {
AABB laabb;
if ((mesh->surfaces[i]->format & VS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->skeleton_bone_aabb.size()) {
int bs = mesh->surfaces[i]->skeleton_bone_aabb.size();
const AABB *skbones = mesh->surfaces[i]->skeleton_bone_aabb.ptr();
const bool *skused = mesh->surfaces[i]->skeleton_bone_used.ptr();
int sbs = sk->size;
ERR_CONTINUE(bs > sbs);
const float *texture = sk->skel_texture.ptr();
bool first = true;
if (sk->use_2d) {
for (int j = 0; j < bs; j++) {
if (!skused[j]) {
continue;
}
int base_ofs = ((j / 256) * 256) * 2 * 4 + (j % 256) * 4;
Transform mtx;
mtx.basis[0].x = texture[base_ofs + 0];
mtx.basis[0].y = texture[base_ofs + 1];
mtx.origin.x = texture[base_ofs + 3];
base_ofs += 256 * 4;
mtx.basis[1].x = texture[base_ofs + 0];
mtx.basis[1].y = texture[base_ofs + 1];
mtx.origin.y = texture[base_ofs + 3];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
} else {
for (int j = 0; j < bs; j++) {
if (!skused[j]) {
continue;
}
int base_ofs = ((j / 256) * 256) * 3 * 4 + (j % 256) * 4;
Transform mtx;
mtx.basis[0].x = texture[base_ofs + 0];
mtx.basis[0].y = texture[base_ofs + 1];
mtx.basis[0].z = texture[base_ofs + 2];
mtx.origin.x = texture[base_ofs + 3];
base_ofs += 256 * 4;
mtx.basis[1].x = texture[base_ofs + 0];
mtx.basis[1].y = texture[base_ofs + 1];
mtx.basis[1].z = texture[base_ofs + 2];
mtx.origin.y = texture[base_ofs + 3];
base_ofs += 256 * 4;
mtx.basis[2].x = texture[base_ofs + 0];
mtx.basis[2].y = texture[base_ofs + 1];
mtx.basis[2].z = texture[base_ofs + 2];
mtx.origin.z = texture[base_ofs + 3];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
}
} else {
laabb = mesh->surfaces[i]->aabb;
}
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
} else {
for (int i = 0; i < mesh->surfaces.size(); i++) {
if (i == 0) {
aabb = mesh->surfaces[i]->aabb;
} else {
aabb.merge_with(mesh->surfaces[i]->aabb);
}
}
}
return aabb;
}
void RasterizerStorageGLES3::mesh_clear(RID p_mesh) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
while (mesh->surfaces.size()) {
mesh_remove_surface(p_mesh, 0);
}
}
void RasterizerStorageGLES3::mesh_render_blend_shapes(Surface *s, const float *p_weights) {
glBindVertexArray(s->array_id);
BlendShapeShaderGLES3::Conditionals cond[VS::ARRAY_MAX - 1] = {
BlendShapeShaderGLES3::ENABLE_NORMAL, //will be ignored
BlendShapeShaderGLES3::ENABLE_NORMAL,
BlendShapeShaderGLES3::ENABLE_TANGENT,
BlendShapeShaderGLES3::ENABLE_COLOR,
BlendShapeShaderGLES3::ENABLE_UV,
BlendShapeShaderGLES3::ENABLE_UV2,
BlendShapeShaderGLES3::ENABLE_SKELETON,
BlendShapeShaderGLES3::ENABLE_SKELETON,
};
int stride = 0;
if (s->format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
stride = 2 * 4;
} else {
stride = 3 * 4;
}
static const int sizes[VS::ARRAY_MAX - 1] = {
3 * 4,
3 * 4,
4 * 4,
4 * 4,
2 * 4,
2 * 4,
4 * 4,
4 * 4
};
for (int i = 1; i < VS::ARRAY_MAX - 1; i++) {
shaders.blend_shapes.set_conditional(cond[i], s->format & (1 << i)); //enable conditional for format
if (s->format & (1 << i)) {
stride += sizes[i];
}
}
//copy all first
float base_weight = 1.0;
int mtc = s->blend_shapes.size();
if (s->mesh->blend_shape_mode == VS::BLEND_SHAPE_MODE_NORMALIZED) {
for (int i = 0; i < mtc; i++) {
base_weight -= p_weights[i];
}
}
shaders.blend_shapes.set_conditional(BlendShapeShaderGLES3::ENABLE_BLEND, false); //first pass does not blend
shaders.blend_shapes.set_conditional(BlendShapeShaderGLES3::USE_2D_VERTEX, s->format & VS::ARRAY_FLAG_USE_2D_VERTICES); //use 2D vertices if needed
shaders.blend_shapes.bind();
shaders.blend_shapes.set_uniform(BlendShapeShaderGLES3::BLEND_AMOUNT, base_weight);
glEnable(GL_RASTERIZER_DISCARD);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, resources.transform_feedback_buffers[0]);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, s->array_len);
glEndTransformFeedback();
shaders.blend_shapes.set_conditional(BlendShapeShaderGLES3::ENABLE_BLEND, true); //first pass does not blend
shaders.blend_shapes.bind();
for (int ti = 0; ti < mtc; ti++) {
float weight = p_weights[ti];
if (Math::is_zero_approx(weight)) {
//not bother with this one
continue;
}
glBindVertexArray(s->blend_shapes[ti].array_id);
glBindBuffer(GL_ARRAY_BUFFER, resources.transform_feedback_buffers[0]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, resources.transform_feedback_buffers[1]);
shaders.blend_shapes.set_uniform(BlendShapeShaderGLES3::BLEND_AMOUNT, weight);
int ofs = 0;
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
if (s->format & (1 << i)) {
glEnableVertexAttribArray(i + 8);
switch (i) {
case VS::ARRAY_VERTEX: {
if (s->format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
glVertexAttribPointer(i + 8, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 2 * 4;
} else {
glVertexAttribPointer(i + 8, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 3 * 4;
}
} break;
case VS::ARRAY_NORMAL: {
glVertexAttribPointer(i + 8, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 3 * 4;
} break;
case VS::ARRAY_TANGENT: {
glVertexAttribPointer(i + 8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
case VS::ARRAY_COLOR: {
glVertexAttribPointer(i + 8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
case VS::ARRAY_TEX_UV: {
glVertexAttribPointer(i + 8, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 2 * 4;
} break;
case VS::ARRAY_TEX_UV2: {
glVertexAttribPointer(i + 8, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 2 * 4;
} break;
case VS::ARRAY_BONES: {
glVertexAttribIPointer(i + 8, 4, GL_UNSIGNED_INT, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
case VS::ARRAY_WEIGHTS: {
glVertexAttribPointer(i + 8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
}
} else {
glDisableVertexAttribArray(i + 8);
}
}
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, s->array_len);
glEndTransformFeedback();
SWAP(resources.transform_feedback_buffers[0], resources.transform_feedback_buffers[1]);
}
glDisable(GL_RASTERIZER_DISCARD);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
glBindVertexArray(resources.transform_feedback_array);
glBindBuffer(GL_ARRAY_BUFFER, resources.transform_feedback_buffers[0]);
int ofs = 0;
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
if (s->format & (1 << i)) {
glEnableVertexAttribArray(i);
switch (i) {
case VS::ARRAY_VERTEX: {
if (s->format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
glVertexAttribPointer(i, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 2 * 4;
} else {
glVertexAttribPointer(i, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 3 * 4;
}
} break;
case VS::ARRAY_NORMAL: {
glVertexAttribPointer(i, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 3 * 4;
} break;
case VS::ARRAY_TANGENT: {
glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
case VS::ARRAY_COLOR: {
glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
case VS::ARRAY_TEX_UV: {
glVertexAttribPointer(i, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 2 * 4;
} break;
case VS::ARRAY_TEX_UV2: {
glVertexAttribPointer(i, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 2 * 4;
} break;
case VS::ARRAY_BONES: {
glVertexAttribIPointer(i, 4, GL_UNSIGNED_INT, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
case VS::ARRAY_WEIGHTS: {
glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs));
ofs += 4 * 4;
} break;
}
} else {
glDisableVertexAttribArray(i);
}
}
if (s->index_array_len) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
}
}
/* MULTIMESH API */
RID RasterizerStorageGLES3::multimesh_create() {
MultiMesh *multimesh = memnew(MultiMesh);
return multimesh_owner.make_rid(multimesh);
}
void RasterizerStorageGLES3::multimesh_allocate(RID p_multimesh, int p_instances, VS::MultimeshTransformFormat p_transform_format, VS::MultimeshColorFormat p_color_format, VS::MultimeshCustomDataFormat p_data_format) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (multimesh->size == p_instances && multimesh->transform_format == p_transform_format && multimesh->color_format == p_color_format && multimesh->custom_data_format == p_data_format) {
return;
}
if (multimesh->buffer) {
glDeleteBuffers(1, &multimesh->buffer);
multimesh->data.resize(0);
multimesh->buffer = 0;
}
multimesh->size = p_instances;
multimesh->transform_format = p_transform_format;
multimesh->color_format = p_color_format;
multimesh->custom_data_format = p_data_format;
if (multimesh->size) {
if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) {
multimesh->xform_floats = 8;
} else {
multimesh->xform_floats = 12;
}
if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
multimesh->color_floats = 1;
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
multimesh->color_floats = 4;
} else {
multimesh->color_floats = 0;
}
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
multimesh->custom_data_floats = 1;
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
multimesh->custom_data_floats = 4;
} else {
multimesh->custom_data_floats = 0;
}
int format_floats = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
multimesh->data.resize(format_floats * p_instances);
float *dataptr = multimesh->data.ptrw();
for (int i = 0; i < p_instances * format_floats; i += format_floats) {
int color_from = 0;
int custom_data_from = 0;
if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) {
dataptr[i + 0] = 1.0;
dataptr[i + 1] = 0.0;
dataptr[i + 2] = 0.0;
dataptr[i + 3] = 0.0;
dataptr[i + 4] = 0.0;
dataptr[i + 5] = 1.0;
dataptr[i + 6] = 0.0;
dataptr[i + 7] = 0.0;
color_from = 8;
custom_data_from = 8;
} else {
dataptr[i + 0] = 1.0;
dataptr[i + 1] = 0.0;
dataptr[i + 2] = 0.0;
dataptr[i + 3] = 0.0;
dataptr[i + 4] = 0.0;
dataptr[i + 5] = 1.0;
dataptr[i + 6] = 0.0;
dataptr[i + 7] = 0.0;
dataptr[i + 8] = 0.0;
dataptr[i + 9] = 0.0;
dataptr[i + 10] = 1.0;
dataptr[i + 11] = 0.0;
color_from = 12;
custom_data_from = 12;
}
if (multimesh->color_format == VS::MULTIMESH_COLOR_NONE) {
//none
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colu = 0xFFFFFFFF;
dataptr[i + color_from + 0] = cu.colf;
custom_data_from = color_from + 1;
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
dataptr[i + color_from + 0] = 1.0;
dataptr[i + color_from + 1] = 1.0;
dataptr[i + color_from + 2] = 1.0;
dataptr[i + color_from + 3] = 1.0;
custom_data_from = color_from + 4;
}
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE) {
//none
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colu = 0;
dataptr[i + custom_data_from + 0] = cu.colf;
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
dataptr[i + custom_data_from + 0] = 0.0;
dataptr[i + custom_data_from + 1] = 0.0;
dataptr[i + custom_data_from + 2] = 0.0;
dataptr[i + custom_data_from + 3] = 0.0;
}
}
glGenBuffers(1, &multimesh->buffer);
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
glBufferData(GL_ARRAY_BUFFER, multimesh->data.size() * sizeof(float), nullptr, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
int RasterizerStorageGLES3::multimesh_get_instance_count(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, 0);
return multimesh->size;
}
void RasterizerStorageGLES3::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.getornull(multimesh->mesh);
if (mesh) {
mesh->multimeshes.remove(&multimesh->mesh_list);
}
}
multimesh->mesh = p_mesh;
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.getornull(multimesh->mesh);
if (mesh) {
mesh->multimeshes.add(&multimesh->mesh_list);
}
}
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES3::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D);
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
dataptr[0] = p_transform.basis.elements[0][0];
dataptr[1] = p_transform.basis.elements[0][1];
dataptr[2] = p_transform.basis.elements[0][2];
dataptr[3] = p_transform.origin.x;
dataptr[4] = p_transform.basis.elements[1][0];
dataptr[5] = p_transform.basis.elements[1][1];
dataptr[6] = p_transform.basis.elements[1][2];
dataptr[7] = p_transform.origin.y;
dataptr[8] = p_transform.basis.elements[2][0];
dataptr[9] = p_transform.basis.elements[2][1];
dataptr[10] = p_transform.basis.elements[2][2];
dataptr[11] = p_transform.origin.z;
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES3::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_3D);
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
dataptr[0] = p_transform.elements[0][0];
dataptr[1] = p_transform.elements[1][0];
dataptr[2] = 0;
dataptr[3] = p_transform.elements[2][0];
dataptr[4] = p_transform.elements[0][1];
dataptr[5] = p_transform.elements[1][1];
dataptr[6] = 0;
dataptr[7] = p_transform.elements[2][1];
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES3::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->color_format == VS::MULTIMESH_COLOR_NONE);
ERR_FAIL_INDEX(multimesh->color_format, VS::MULTIMESH_COLOR_MAX);
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats];
if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
uint8_t *data8 = (uint8_t *)dataptr;
data8[0] = CLAMP(p_color.r * 255.0, 0, 255);
data8[1] = CLAMP(p_color.g * 255.0, 0, 255);
data8[2] = CLAMP(p_color.b * 255.0, 0, 255);
data8[3] = CLAMP(p_color.a * 255.0, 0, 255);
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
dataptr[0] = p_color.r;
dataptr[1] = p_color.g;
dataptr[2] = p_color.b;
dataptr[3] = p_color.a;
}
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES3::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_custom_data) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE);
ERR_FAIL_INDEX(multimesh->custom_data_format, VS::MULTIMESH_CUSTOM_DATA_MAX);
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats + multimesh->color_floats];
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
uint8_t *data8 = (uint8_t *)dataptr;
data8[0] = CLAMP(p_custom_data.r * 255.0, 0, 255);
data8[1] = CLAMP(p_custom_data.g * 255.0, 0, 255);
data8[2] = CLAMP(p_custom_data.b * 255.0, 0, 255);
data8[3] = CLAMP(p_custom_data.a * 255.0, 0, 255);
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
dataptr[0] = p_custom_data.r;
dataptr[1] = p_custom_data.g;
dataptr[2] = p_custom_data.b;
dataptr[3] = p_custom_data.a;
}
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
RID RasterizerStorageGLES3::multimesh_get_mesh(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, RID());
return multimesh->mesh;
}
Transform RasterizerStorageGLES3::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Transform());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Transform());
ERR_FAIL_COND_V(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D, Transform());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
Transform xform;
xform.basis.elements[0][0] = dataptr[0];
xform.basis.elements[0][1] = dataptr[1];
xform.basis.elements[0][2] = dataptr[2];
xform.origin.x = dataptr[3];
xform.basis.elements[1][0] = dataptr[4];
xform.basis.elements[1][1] = dataptr[5];
xform.basis.elements[1][2] = dataptr[6];
xform.origin.y = dataptr[7];
xform.basis.elements[2][0] = dataptr[8];
xform.basis.elements[2][1] = dataptr[9];
xform.basis.elements[2][2] = dataptr[10];
xform.origin.z = dataptr[11];
return xform;
}
Transform2D RasterizerStorageGLES3::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Transform2D());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Transform2D());
ERR_FAIL_COND_V(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_3D, Transform2D());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
Transform2D xform;
xform.elements[0][0] = dataptr[0];
xform.elements[1][0] = dataptr[1];
xform.elements[2][0] = dataptr[3];
xform.elements[0][1] = dataptr[4];
xform.elements[1][1] = dataptr[5];
xform.elements[2][1] = dataptr[7];
return xform;
}
Color RasterizerStorageGLES3::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Color());
ERR_FAIL_COND_V(multimesh->color_format == VS::MULTIMESH_COLOR_NONE, Color());
ERR_FAIL_INDEX_V(multimesh->color_format, VS::MULTIMESH_COLOR_MAX, Color());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats];
if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colf = dataptr[0];
return Color::hex(BSWAP32(cu.colu));
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
Color c;
c.r = dataptr[0];
c.g = dataptr[1];
c.b = dataptr[2];
c.a = dataptr[3];
return c;
}
return Color();
}
Color RasterizerStorageGLES3::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Color());
ERR_FAIL_COND_V(multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE, Color());
ERR_FAIL_INDEX_V(multimesh->custom_data_format, VS::MULTIMESH_CUSTOM_DATA_MAX, Color());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats + multimesh->color_floats];
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colf = dataptr[0];
return Color::hex(BSWAP32(cu.colu));
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
Color c;
c.r = dataptr[0];
c.g = dataptr[1];
c.b = dataptr[2];
c.a = dataptr[3];
return c;
}
return Color();
}
void RasterizerStorageGLES3::multimesh_set_as_bulk_array(RID p_multimesh, const PoolVector<float> &p_array) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_COND(!multimesh->data.ptr());
int dsize = multimesh->data.size();
ERR_FAIL_COND(dsize != p_array.size());
PoolVector<float>::Read r = p_array.read();
memcpy(multimesh->data.ptrw(), r.ptr(), dsize * sizeof(float));
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES3::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->visible_instances = p_visible;
}
int RasterizerStorageGLES3::multimesh_get_visible_instances(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, -1);
return multimesh->visible_instances;
}
AABB RasterizerStorageGLES3::multimesh_get_aabb(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, AABB());
const_cast<RasterizerStorageGLES3 *>(this)->update_dirty_multimeshes(); //update pending AABBs
return multimesh->aabb;
}
void RasterizerStorageGLES3::update_dirty_multimeshes() {
while (multimesh_update_list.first()) {
MultiMesh *multimesh = multimesh_update_list.first()->self();
if (multimesh->size && multimesh->dirty_data) {
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
uint32_t buffer_size = multimesh->data.size() * sizeof(float);
// this could potentially have a project setting for API options as with 2d
// if (config.should_orphan) {
glBufferData(GL_ARRAY_BUFFER, buffer_size, multimesh->data.ptr(), GL_DYNAMIC_DRAW);
// } else {
// glBufferSubData(GL_ARRAY_BUFFER, 0, buffer_size, multimesh->data.ptr());
// }
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if (multimesh->size && multimesh->dirty_aabb) {
AABB mesh_aabb;
if (multimesh->mesh.is_valid()) {
mesh_aabb = mesh_get_aabb(multimesh->mesh, RID());
} else {
mesh_aabb.size += Vector3(0.001, 0.001, 0.001);
}
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
int count = multimesh->data.size();
float *data = multimesh->data.ptrw();
AABB aabb;
if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) {
for (int i = 0; i < count; i += stride) {
float *dataptr = &data[i];
Transform xform;
xform.basis[0][0] = dataptr[0];
xform.basis[0][1] = dataptr[1];
xform.origin[0] = dataptr[3];
xform.basis[1][0] = dataptr[4];
xform.basis[1][1] = dataptr[5];
xform.origin[1] = dataptr[7];
AABB laabb = xform.xform(mesh_aabb);
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
} else {
for (int i = 0; i < count; i += stride) {
float *dataptr = &data[i];
Transform xform;
xform.basis.elements[0][0] = dataptr[0];
xform.basis.elements[0][1] = dataptr[1];
xform.basis.elements[0][2] = dataptr[2];
xform.origin.x = dataptr[3];
xform.basis.elements[1][0] = dataptr[4];
xform.basis.elements[1][1] = dataptr[5];
xform.basis.elements[1][2] = dataptr[6];
xform.origin.y = dataptr[7];
xform.basis.elements[2][0] = dataptr[8];
xform.basis.elements[2][1] = dataptr[9];
xform.basis.elements[2][2] = dataptr[10];
xform.origin.z = dataptr[11];
AABB laabb = xform.xform(mesh_aabb);
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
}
multimesh->aabb = aabb;
}
multimesh->dirty_aabb = false;
multimesh->dirty_data = false;
multimesh->instance_change_notify(true, false);
multimesh_update_list.remove(multimesh_update_list.first());
}
}
/* IMMEDIATE API */
RID RasterizerStorageGLES3::immediate_create() {
Immediate *im = memnew(Immediate);
return immediate_owner.make_rid(im);
}
void RasterizerStorageGLES3::immediate_begin(RID p_immediate, VS::PrimitiveType p_primitive, RID p_texture) {
ERR_FAIL_INDEX(p_primitive, (int)VS::PRIMITIVE_MAX);
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
Immediate::Chunk ic;
ic.texture = p_texture;
ic.primitive = p_primitive;
im->chunks.push_back(ic);
im->mask = 0;
im->building = true;
}
void RasterizerStorageGLES3::immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
Immediate::Chunk *c = &im->chunks.back()->get();
if (c->vertices.empty() && im->chunks.size() == 1) {
im->aabb.position = p_vertex;
im->aabb.size = Vector3();
} else {
im->aabb.expand_to(p_vertex);
}
if (im->mask & VS::ARRAY_FORMAT_NORMAL) {
c->normals.push_back(chunk_normal);
}
if (im->mask & VS::ARRAY_FORMAT_TANGENT) {
c->tangents.push_back(chunk_tangent);
}
if (im->mask & VS::ARRAY_FORMAT_COLOR) {
c->colors.push_back(chunk_color);
}
if (im->mask & VS::ARRAY_FORMAT_TEX_UV) {
c->uvs.push_back(chunk_uv);
}
if (im->mask & VS::ARRAY_FORMAT_TEX_UV2) {
c->uvs2.push_back(chunk_uv2);
}
im->mask |= VS::ARRAY_FORMAT_VERTEX;
c->vertices.push_back(p_vertex);
}
void RasterizerStorageGLES3::immediate_normal(RID p_immediate, const Vector3 &p_normal) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_NORMAL;
chunk_normal = p_normal;
}
void RasterizerStorageGLES3::immediate_tangent(RID p_immediate, const Plane &p_tangent) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TANGENT;
chunk_tangent = p_tangent;
}
void RasterizerStorageGLES3::immediate_color(RID p_immediate, const Color &p_color) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_COLOR;
chunk_color = p_color;
}
void RasterizerStorageGLES3::immediate_uv(RID p_immediate, const Vector2 &tex_uv) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TEX_UV;
chunk_uv = tex_uv;
}
void RasterizerStorageGLES3::immediate_uv2(RID p_immediate, const Vector2 &tex_uv) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TEX_UV2;
chunk_uv2 = tex_uv;
}
void RasterizerStorageGLES3::immediate_end(RID p_immediate) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->building = false;
im->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::immediate_clear(RID p_immediate) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
im->chunks.clear();
im->instance_change_notify(true, false);
}
AABB RasterizerStorageGLES3::immediate_get_aabb(RID p_immediate) const {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im, AABB());
return im->aabb;
}
void RasterizerStorageGLES3::immediate_set_material(RID p_immediate, RID p_material) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
im->material = p_material;
im->instance_change_notify(false, true);
}
RID RasterizerStorageGLES3::immediate_get_material(RID p_immediate) const {
const Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im, RID());
return im->material;
}
/* SKELETON API */
RID RasterizerStorageGLES3::skeleton_create() {
Skeleton *skeleton = memnew(Skeleton);
glGenTextures(1, &skeleton->texture);
return skeleton_owner.make_rid(skeleton);
}
void RasterizerStorageGLES3::skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_COND(p_bones < 0);
if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
return;
}
skeleton->size = p_bones;
skeleton->use_2d = p_2d_skeleton;
int height = p_bones / 256;
if (p_bones % 256) {
height++;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, skeleton->texture);
if (skeleton->use_2d) {
skeleton->skel_texture.resize(256 * height * 2 * 4);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, height * 2, 0, GL_RGBA, GL_FLOAT, nullptr);
} else {
skeleton->skel_texture.resize(256 * height * 3 * 4);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, height * 3, 0, GL_RGBA, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
if (!skeleton->update_list.in_list()) {
skeleton_update_list.add(&skeleton->update_list);
}
}
int RasterizerStorageGLES3::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, 0);
return skeleton->size;
}
void RasterizerStorageGLES3::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(skeleton->use_2d);
float *texture = skeleton->skel_texture.ptrw();
int base_ofs = ((p_bone / 256) * 256) * 3 * 4 + (p_bone % 256) * 4;
texture[base_ofs + 0] = p_transform.basis[0].x;
texture[base_ofs + 1] = p_transform.basis[0].y;
texture[base_ofs + 2] = p_transform.basis[0].z;
texture[base_ofs + 3] = p_transform.origin.x;
base_ofs += 256 * 4;
texture[base_ofs + 0] = p_transform.basis[1].x;
texture[base_ofs + 1] = p_transform.basis[1].y;
texture[base_ofs + 2] = p_transform.basis[1].z;
texture[base_ofs + 3] = p_transform.origin.y;
base_ofs += 256 * 4;
texture[base_ofs + 0] = p_transform.basis[2].x;
texture[base_ofs + 1] = p_transform.basis[2].y;
texture[base_ofs + 2] = p_transform.basis[2].z;
texture[base_ofs + 3] = p_transform.origin.z;
if (!skeleton->update_list.in_list()) {
skeleton_update_list.add(&skeleton->update_list);
}
}
Transform RasterizerStorageGLES3::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform());
ERR_FAIL_COND_V(skeleton->use_2d, Transform());
const float *texture = skeleton->skel_texture.ptr();
Transform ret;
int base_ofs = ((p_bone / 256) * 256) * 3 * 4 + (p_bone % 256) * 4;
ret.basis[0].x = texture[base_ofs + 0];
ret.basis[0].y = texture[base_ofs + 1];
ret.basis[0].z = texture[base_ofs + 2];
ret.origin.x = texture[base_ofs + 3];
base_ofs += 256 * 4;
ret.basis[1].x = texture[base_ofs + 0];
ret.basis[1].y = texture[base_ofs + 1];
ret.basis[1].z = texture[base_ofs + 2];
ret.origin.y = texture[base_ofs + 3];
base_ofs += 256 * 4;
ret.basis[2].x = texture[base_ofs + 0];
ret.basis[2].y = texture[base_ofs + 1];
ret.basis[2].z = texture[base_ofs + 2];
ret.origin.z = texture[base_ofs + 3];
return ret;
}
void RasterizerStorageGLES3::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(!skeleton->use_2d);
float *texture = skeleton->skel_texture.ptrw();
int base_ofs = ((p_bone / 256) * 256) * 2 * 4 + (p_bone % 256) * 4;
texture[base_ofs + 0] = p_transform[0][0];
texture[base_ofs + 1] = p_transform[1][0];
texture[base_ofs + 2] = 0;
texture[base_ofs + 3] = p_transform[2][0];
base_ofs += 256 * 4;
texture[base_ofs + 0] = p_transform[0][1];
texture[base_ofs + 1] = p_transform[1][1];
texture[base_ofs + 2] = 0;
texture[base_ofs + 3] = p_transform[2][1];
if (!skeleton->update_list.in_list()) {
skeleton_update_list.add(&skeleton->update_list);
}
}
Transform2D RasterizerStorageGLES3::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform2D());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
const float *texture = skeleton->skel_texture.ptr();
Transform2D ret;
int base_ofs = ((p_bone / 256) * 256) * 2 * 4 + (p_bone % 256) * 4;
ret[0][0] = texture[base_ofs + 0];
ret[1][0] = texture[base_ofs + 1];
ret[2][0] = texture[base_ofs + 3];
base_ofs += 256 * 4;
ret[0][1] = texture[base_ofs + 0];
ret[1][1] = texture[base_ofs + 1];
ret[2][1] = texture[base_ofs + 3];
return ret;
}
void RasterizerStorageGLES3::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton->use_2d);
skeleton->base_transform_2d = p_base_transform;
}
void RasterizerStorageGLES3::update_dirty_skeletons() {
glActiveTexture(GL_TEXTURE0);
while (skeleton_update_list.first()) {
Skeleton *skeleton = skeleton_update_list.first()->self();
if (skeleton->size) {
int height = skeleton->size / 256;
if (skeleton->size % 256) {
height++;
}
glBindTexture(GL_TEXTURE_2D, skeleton->texture);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 256, height * (skeleton->use_2d ? 2 : 3), GL_RGBA, GL_FLOAT, skeleton->skel_texture.ptr());
}
for (Set<RasterizerScene::InstanceBase *>::Element *E = skeleton->instances.front(); E; E = E->next()) {
E->get()->base_changed(true, false);
}
skeleton_update_list.remove(skeleton_update_list.first());
}
}
/* Light API */
RID RasterizerStorageGLES3::light_create(VS::LightType p_type) {
Light *light = memnew(Light);
light->type = p_type;
light->param[VS::LIGHT_PARAM_ENERGY] = 1.0;
light->param[VS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0;
light->param[VS::LIGHT_PARAM_SIZE] = 0.0;
light->param[VS::LIGHT_PARAM_SPECULAR] = 0.5;
light->param[VS::LIGHT_PARAM_RANGE] = 1.0;
light->param[VS::LIGHT_PARAM_SPOT_ANGLE] = 45;
light->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE] = 45;
light->param[VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0;
light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1;
light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3;
light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6;
light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 0.1;
light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE] = 0.1;
light->color = Color(1, 1, 1, 1);
light->shadow = false;
light->negative = false;
light->cull_mask = 0xFFFFFFFF;
light->directional_shadow_mode = VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
light->omni_shadow_mode = VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
light->omni_shadow_detail = VS::LIGHT_OMNI_SHADOW_DETAIL_VERTICAL;
light->directional_blend_splits = false;
light->directional_range_mode = VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE;
light->reverse_cull = false;
light->bake_mode = VS::LIGHT_BAKE_INDIRECT;
light->version = 0;
return light_owner.make_rid(light);
}
void RasterizerStorageGLES3::light_set_color(RID p_light, const Color &p_color) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->color = p_color;
}
void RasterizerStorageGLES3::light_set_param(RID p_light, VS::LightParam p_param, float p_value) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_param, VS::LIGHT_PARAM_MAX);
switch (p_param) {
case VS::LIGHT_PARAM_RANGE:
case VS::LIGHT_PARAM_SPOT_ANGLE:
case VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE:
case VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET:
case VS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET:
case VS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET:
case VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS:
case VS::LIGHT_PARAM_SHADOW_BIAS: {
light->version++;
light->instance_change_notify(true, false);
} break;
default: {
}
}
light->param[p_param] = p_value;
}
void RasterizerStorageGLES3::light_set_shadow(RID p_light, bool p_enabled) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->shadow = p_enabled;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::light_set_shadow_color(RID p_light, const Color &p_color) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->shadow_color = p_color;
}
void RasterizerStorageGLES3::light_set_projector(RID p_light, RID p_texture) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->projector = p_texture;
}
void RasterizerStorageGLES3::light_set_negative(RID p_light, bool p_enable) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->negative = p_enable;
}
void RasterizerStorageGLES3::light_set_cull_mask(RID p_light, uint32_t p_mask) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->cull_mask = p_mask;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->reverse_cull = p_enabled;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::light_set_use_gi(RID p_light, bool p_enabled) {
WARN_DEPRECATED_MSG("'VisualServer.light_set_use_gi' is deprecated and will be removed in a future version. Use 'VisualServer.light_set_bake_mode' instead.");
light_set_bake_mode(p_light, p_enabled ? VS::LightBakeMode::LIGHT_BAKE_INDIRECT : VS::LightBakeMode::LIGHT_BAKE_DISABLED);
}
void RasterizerStorageGLES3::light_set_bake_mode(RID p_light, VS::LightBakeMode p_bake_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->bake_mode = p_bake_mode;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::light_omni_set_shadow_mode(RID p_light, VS::LightOmniShadowMode p_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_mode = p_mode;
light->version++;
light->instance_change_notify(true, false);
}
VS::LightOmniShadowMode RasterizerStorageGLES3::light_omni_get_shadow_mode(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI_SHADOW_CUBE);
return light->omni_shadow_mode;
}
void RasterizerStorageGLES3::light_omni_set_shadow_detail(RID p_light, VS::LightOmniShadowDetail p_detail) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_detail = p_detail;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::light_directional_set_shadow_mode(RID p_light, VS::LightDirectionalShadowMode p_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_shadow_mode = p_mode;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::light_directional_set_blend_splits(RID p_light, bool p_enable) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_blend_splits = p_enable;
light->version++;
light->instance_change_notify(true, false);
}
bool RasterizerStorageGLES3::light_directional_get_blend_splits(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, false);
return light->directional_blend_splits;
}
VS::LightDirectionalShadowMode RasterizerStorageGLES3::light_directional_get_shadow_mode(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
return light->directional_shadow_mode;
}
void RasterizerStorageGLES3::light_directional_set_shadow_depth_range_mode(RID p_light, VS::LightDirectionalShadowDepthRangeMode p_range_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_range_mode = p_range_mode;
}
VS::LightDirectionalShadowDepthRangeMode RasterizerStorageGLES3::light_directional_get_shadow_depth_range_mode(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE);
return light->directional_range_mode;
}
VS::LightType RasterizerStorageGLES3::light_get_type(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL);
return light->type;
}
float RasterizerStorageGLES3::light_get_param(RID p_light, VS::LightParam p_param) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL);
return light->param[p_param];
}
Color RasterizerStorageGLES3::light_get_color(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->color;
}
bool RasterizerStorageGLES3::light_get_use_gi(RID p_light) {
return light_get_bake_mode(p_light) != VS::LightBakeMode::LIGHT_BAKE_DISABLED;
}
VS::LightBakeMode RasterizerStorageGLES3::light_get_bake_mode(RID p_light) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LightBakeMode::LIGHT_BAKE_DISABLED);
return light->bake_mode;
}
bool RasterizerStorageGLES3::light_has_shadow(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL);
return light->shadow;
}
uint64_t RasterizerStorageGLES3::light_get_version(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->version;
}
AABB RasterizerStorageGLES3::light_get_aabb(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, AABB());
switch (light->type) {
case VS::LIGHT_SPOT: {
float len = light->param[VS::LIGHT_PARAM_RANGE];
float size = Math::tan(Math::deg2rad(light->param[VS::LIGHT_PARAM_SPOT_ANGLE])) * len;
return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
};
case VS::LIGHT_OMNI: {
float r = light->param[VS::LIGHT_PARAM_RANGE];
return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
};
case VS::LIGHT_DIRECTIONAL: {
return AABB();
};
}
ERR_FAIL_V(AABB());
}
/* PROBE API */
RID RasterizerStorageGLES3::reflection_probe_create() {
ReflectionProbe *reflection_probe = memnew(ReflectionProbe);
reflection_probe->intensity = 1.0;
reflection_probe->interior_ambient = Color();
reflection_probe->interior_ambient_energy = 1.0;
reflection_probe->interior_ambient_probe_contrib = 0.0;
reflection_probe->max_distance = 0;
reflection_probe->extents = Vector3(1, 1, 1);
reflection_probe->origin_offset = Vector3(0, 0, 0);
reflection_probe->interior = false;
reflection_probe->box_projection = false;
reflection_probe->enable_shadows = false;
reflection_probe->cull_mask = (1 << 20) - 1;
reflection_probe->update_mode = VS::REFLECTION_PROBE_UPDATE_ONCE;
return reflection_probe_owner.make_rid(reflection_probe);
}
void RasterizerStorageGLES3::reflection_probe_set_update_mode(RID p_probe, VS::ReflectionProbeUpdateMode p_mode) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->update_mode = p_mode;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::reflection_probe_set_intensity(RID p_probe, float p_intensity) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->intensity = p_intensity;
}
void RasterizerStorageGLES3::reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior_ambient = p_ambient;
}
void RasterizerStorageGLES3::reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior_ambient_energy = p_energy;
}
void RasterizerStorageGLES3::reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior_ambient_probe_contrib = p_contrib;
}
void RasterizerStorageGLES3::reflection_probe_set_max_distance(RID p_probe, float p_distance) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->max_distance = p_distance;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->extents = p_extents;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->origin_offset = p_offset;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::reflection_probe_set_as_interior(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior = p_enable;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->box_projection = p_enable;
}
void RasterizerStorageGLES3::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->enable_shadows = p_enable;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->cull_mask = p_layers;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::reflection_probe_set_resolution(RID p_probe, int p_resolution) {
}
AABB RasterizerStorageGLES3::reflection_probe_get_aabb(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, AABB());
AABB aabb;
aabb.position = -reflection_probe->extents;
aabb.size = reflection_probe->extents * 2.0;
return aabb;
}
VS::ReflectionProbeUpdateMode RasterizerStorageGLES3::reflection_probe_get_update_mode(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, VS::REFLECTION_PROBE_UPDATE_ALWAYS);
return reflection_probe->update_mode;
}
uint32_t RasterizerStorageGLES3::reflection_probe_get_cull_mask(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->cull_mask;
}
Vector3 RasterizerStorageGLES3::reflection_probe_get_extents(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, Vector3());
return reflection_probe->extents;
}
Vector3 RasterizerStorageGLES3::reflection_probe_get_origin_offset(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, Vector3());
return reflection_probe->origin_offset;
}
bool RasterizerStorageGLES3::reflection_probe_renders_shadows(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, false);
return reflection_probe->enable_shadows;
}
float RasterizerStorageGLES3::reflection_probe_get_origin_max_distance(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->max_distance;
}
RID RasterizerStorageGLES3::gi_probe_create() {
GIProbe *gip = memnew(GIProbe);
gip->bounds = AABB(Vector3(), Vector3(1, 1, 1));
gip->dynamic_range = 1.0;
gip->energy = 1.0;
gip->propagation = 1.0;
gip->bias = 0.4;
gip->normal_bias = 0.4;
gip->interior = false;
gip->compress = false;
gip->version = 1;
gip->cell_size = 1.0;
return gi_probe_owner.make_rid(gip);
}
void RasterizerStorageGLES3::gi_probe_set_bounds(RID p_probe, const AABB &p_bounds) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->bounds = p_bounds;
gip->version++;
gip->instance_change_notify(true, false);
}
AABB RasterizerStorageGLES3::gi_probe_get_bounds(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, AABB());
return gip->bounds;
}
void RasterizerStorageGLES3::gi_probe_set_cell_size(RID p_probe, float p_size) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->cell_size = p_size;
gip->version++;
gip->instance_change_notify(true, false);
}
float RasterizerStorageGLES3::gi_probe_get_cell_size(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, 0);
return gip->cell_size;
}
void RasterizerStorageGLES3::gi_probe_set_to_cell_xform(RID p_probe, const Transform &p_xform) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->to_cell = p_xform;
}
Transform RasterizerStorageGLES3::gi_probe_get_to_cell_xform(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, Transform());
return gip->to_cell;
}
void RasterizerStorageGLES3::gi_probe_set_dynamic_data(RID p_probe, const PoolVector<int> &p_data) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->dynamic_data = p_data;
gip->version++;
gip->instance_change_notify(true, false);
}
PoolVector<int> RasterizerStorageGLES3::gi_probe_get_dynamic_data(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, PoolVector<int>());
return gip->dynamic_data;
}
void RasterizerStorageGLES3::gi_probe_set_dynamic_range(RID p_probe, int p_range) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->dynamic_range = p_range;
}
int RasterizerStorageGLES3::gi_probe_get_dynamic_range(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, 0);
return gip->dynamic_range;
}
void RasterizerStorageGLES3::gi_probe_set_energy(RID p_probe, float p_range) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->energy = p_range;
}
void RasterizerStorageGLES3::gi_probe_set_bias(RID p_probe, float p_range) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->bias = p_range;
}
void RasterizerStorageGLES3::gi_probe_set_normal_bias(RID p_probe, float p_range) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->normal_bias = p_range;
}
void RasterizerStorageGLES3::gi_probe_set_propagation(RID p_probe, float p_range) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->propagation = p_range;
}
void RasterizerStorageGLES3::gi_probe_set_interior(RID p_probe, bool p_enable) {
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->interior = p_enable;
}
bool RasterizerStorageGLES3::gi_probe_is_interior(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, false);
return gip->interior;
}
void RasterizerStorageGLES3::gi_probe_set_compress(RID p_probe, bool p_enable) {
if (p_enable) {
WARN_DEPRECATED_MSG("GIProbe's Compress property has been deprecated due to known bugs and will be removed in Godot 4.0.");
}
GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!gip);
gip->compress = p_enable;
}
bool RasterizerStorageGLES3::gi_probe_is_compressed(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, false);
return gip->compress;
}
float RasterizerStorageGLES3::gi_probe_get_energy(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, 0);
return gip->energy;
}
float RasterizerStorageGLES3::gi_probe_get_bias(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, 0);
return gip->bias;
}
float RasterizerStorageGLES3::gi_probe_get_normal_bias(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, 0);
return gip->normal_bias;
}
float RasterizerStorageGLES3::gi_probe_get_propagation(RID p_probe) const {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, 0);
return gip->propagation;
}
uint32_t RasterizerStorageGLES3::gi_probe_get_version(RID p_probe) {
const GIProbe *gip = gi_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gip, 0);
return gip->version;
}
RID RasterizerStorageGLES3::gi_probe_dynamic_data_create(int p_width, int p_height, int p_depth, GIProbeCompression p_compression) {
GIProbeData *gipd = memnew(GIProbeData);
gipd->width = p_width;
gipd->height = p_height;
gipd->depth = p_depth;
gipd->compression = GI_PROBE_UNCOMPRESSED;
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &gipd->tex_id);
glBindTexture(GL_TEXTURE_3D, gipd->tex_id);
int level = 0;
int min_size = 1;
if (gipd->compression == GI_PROBE_S3TC) {
min_size = 4;
}
while (true) {
glTexImage3D(GL_TEXTURE_3D, level, GL_RGBA8, p_width, p_height, p_depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
if (p_width <= min_size || p_height <= min_size || p_depth <= min_size) {
break;
}
p_width >>= 1;
p_height >>= 1;
p_depth >>= 1;
level++;
}
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, level);
gipd->levels = level + 1;
return gi_probe_data_owner.make_rid(gipd);
}
void RasterizerStorageGLES3::gi_probe_dynamic_data_update(RID p_gi_probe_data, int p_depth_slice, int p_slice_count, int p_mipmap, const void *p_data) {
GIProbeData *gipd = gi_probe_data_owner.getornull(p_gi_probe_data);
ERR_FAIL_COND(!gipd);
/*
Vector<uint8_t> data;
data.resize((gipd->width>>p_mipmap)*(gipd->height>>p_mipmap)*(gipd->depth>>p_mipmap)*4);
for(int i=0;i<(gipd->width>>p_mipmap);i++) {
for(int j=0;j<(gipd->height>>p_mipmap);j++) {
for(int k=0;k<(gipd->depth>>p_mipmap);k++) {
int ofs = (k*(gipd->height>>p_mipmap)*(gipd->width>>p_mipmap)) + j *(gipd->width>>p_mipmap) + i;
ofs*=4;
data[ofs+0]=i*0xFF/(gipd->width>>p_mipmap);
data[ofs+1]=j*0xFF/(gipd->height>>p_mipmap);
data[ofs+2]=k*0xFF/(gipd->depth>>p_mipmap);
data[ofs+3]=0xFF;
}
}
}
*/
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_3D, gipd->tex_id);
glTexSubImage3D(GL_TEXTURE_3D, p_mipmap, 0, 0, p_depth_slice, gipd->width >> p_mipmap, gipd->height >> p_mipmap, p_slice_count, GL_RGBA, GL_UNSIGNED_BYTE, p_data);
//glTexImage3D(GL_TEXTURE_3D,p_mipmap,GL_RGBA8,gipd->width>>p_mipmap,gipd->height>>p_mipmap,gipd->depth>>p_mipmap,0,GL_RGBA,GL_UNSIGNED_BYTE,p_data);
//glTexImage3D(GL_TEXTURE_3D,p_mipmap,GL_RGBA8,gipd->width>>p_mipmap,gipd->height>>p_mipmap,gipd->depth>>p_mipmap,0,GL_RGBA,GL_UNSIGNED_BYTE,data.ptr());
}
/////////////////////////////
RID RasterizerStorageGLES3::lightmap_capture_create() {
LightmapCapture *capture = memnew(LightmapCapture);
return lightmap_capture_data_owner.make_rid(capture);
}
void RasterizerStorageGLES3::lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->bounds = p_bounds;
capture->instance_change_notify(true, false);
}
AABB RasterizerStorageGLES3::lightmap_capture_get_bounds(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, AABB());
return capture->bounds;
}
void RasterizerStorageGLES3::lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
ERR_FAIL_COND(p_octree.size() == 0 || (p_octree.size() % sizeof(LightmapCaptureOctree)) != 0);
capture->octree.resize(p_octree.size() / sizeof(LightmapCaptureOctree));
if (p_octree.size()) {
PoolVector<LightmapCaptureOctree>::Write w = capture->octree.write();
PoolVector<uint8_t>::Read r = p_octree.read();
memcpy(w.ptr(), r.ptr(), p_octree.size());
}
capture->instance_change_notify(true, false);
}
PoolVector<uint8_t> RasterizerStorageGLES3::lightmap_capture_get_octree(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, PoolVector<uint8_t>());
if (capture->octree.size() == 0) {
return PoolVector<uint8_t>();
}
PoolVector<uint8_t> ret;
ret.resize(capture->octree.size() * sizeof(LightmapCaptureOctree));
{
PoolVector<LightmapCaptureOctree>::Read r = capture->octree.read();
PoolVector<uint8_t>::Write w = ret.write();
memcpy(w.ptr(), r.ptr(), ret.size());
}
return ret;
}
void RasterizerStorageGLES3::lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->cell_xform = p_xform;
}
Transform RasterizerStorageGLES3::lightmap_capture_get_octree_cell_transform(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, Transform());
return capture->cell_xform;
}
void RasterizerStorageGLES3::lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->cell_subdiv = p_subdiv;
}
int RasterizerStorageGLES3::lightmap_capture_get_octree_cell_subdiv(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, 0);
return capture->cell_subdiv;
}
void RasterizerStorageGLES3::lightmap_capture_set_energy(RID p_capture, float p_energy) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->energy = p_energy;
if (!capture->update_list.in_list()) {
capture_update_list.add(&capture->update_list);
}
}
float RasterizerStorageGLES3::lightmap_capture_get_energy(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, 0);
return capture->energy;
}
void RasterizerStorageGLES3::lightmap_capture_set_interior(RID p_capture, bool p_interior) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->interior = p_interior;
if (!capture->update_list.in_list()) {
capture_update_list.add(&capture->update_list);
}
}
bool RasterizerStorageGLES3::lightmap_capture_is_interior(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, false);
return capture->interior;
}
const PoolVector<RasterizerStorage::LightmapCaptureOctree> *RasterizerStorageGLES3::lightmap_capture_get_octree_ptr(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, nullptr);
return &capture->octree;
}
void RasterizerStorageGLES3::update_dirty_captures() {
while (capture_update_list.first()) {
LightmapCapture *capture = capture_update_list.first()->self();
capture->instance_change_notify(false, true);
capture_update_list.remove(capture_update_list.first());
}
}
///////
RID RasterizerStorageGLES3::particles_create() {
Particles *particles = memnew(Particles);
return particles_owner.make_rid(particles);
}
void RasterizerStorageGLES3::particles_set_emitting(RID p_particles, bool p_emitting) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->emitting = p_emitting;
}
bool RasterizerStorageGLES3::particles_get_emitting(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->emitting;
}
void RasterizerStorageGLES3::particles_set_amount(RID p_particles, int p_amount) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->amount = p_amount;
int floats = p_amount * 24;
float *data = memnew_arr(float, floats);
for (int i = 0; i < floats; i++) {
data[i] = 0;
}
for (int i = 0; i < 2; i++) {
glBindVertexArray(particles->particle_vaos[i]);
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[i]);
glBufferData(GL_ARRAY_BUFFER, floats * sizeof(float), data, GL_STATIC_DRAW);
for (int j = 0; j < 6; j++) {
glEnableVertexAttribArray(j);
glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4 * 6, CAST_INT_TO_UCHAR_PTR(j * 16));
}
}
if (particles->histories_enabled) {
for (int i = 0; i < 2; i++) {
glBindVertexArray(particles->particle_vao_histories[i]);
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[i]);
glBufferData(GL_ARRAY_BUFFER, floats * sizeof(float), data, GL_DYNAMIC_COPY);
for (int j = 0; j < 6; j++) {
glEnableVertexAttribArray(j);
glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4 * 6, CAST_INT_TO_UCHAR_PTR(j * 16));
}
particles->particle_valid_histories[i] = false;
}
}
glBindVertexArray(0);
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
memdelete_arr(data);
}
void RasterizerStorageGLES3::particles_set_lifetime(RID p_particles, float p_lifetime) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->lifetime = p_lifetime;
}
void RasterizerStorageGLES3::particles_set_one_shot(RID p_particles, bool p_one_shot) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->one_shot = p_one_shot;
}
void RasterizerStorageGLES3::particles_set_pre_process_time(RID p_particles, float p_time) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->pre_process_time = p_time;
}
void RasterizerStorageGLES3::particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->explosiveness = p_ratio;
}
void RasterizerStorageGLES3::particles_set_randomness_ratio(RID p_particles, float p_ratio) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->randomness = p_ratio;
}
void RasterizerStorageGLES3::_particles_update_histories(Particles *particles) {
bool needs_histories = particles->draw_order == VS::PARTICLES_DRAW_ORDER_VIEW_DEPTH;
if (needs_histories == particles->histories_enabled) {
return;
}
particles->histories_enabled = needs_histories;
int floats = particles->amount * 24;
if (!needs_histories) {
glDeleteBuffers(2, particles->particle_buffer_histories);
glDeleteVertexArrays(2, particles->particle_vao_histories);
} else {
glGenBuffers(2, particles->particle_buffer_histories);
glGenVertexArrays(2, particles->particle_vao_histories);
for (int i = 0; i < 2; i++) {
glBindVertexArray(particles->particle_vao_histories[i]);
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[i]);
glBufferData(GL_ARRAY_BUFFER, floats * sizeof(float), nullptr, GL_DYNAMIC_COPY);
for (int j = 0; j < 6; j++) {
glEnableVertexAttribArray(j);
glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4 * 6, CAST_INT_TO_UCHAR_PTR(j * 16));
}
particles->particle_valid_histories[i] = false;
}
}
particles->clear = true;
}
void RasterizerStorageGLES3::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->custom_aabb = p_aabb;
_particles_update_histories(particles);
particles->instance_change_notify(true, false);
}
void RasterizerStorageGLES3::particles_set_speed_scale(RID p_particles, float p_scale) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->speed_scale = p_scale;
}
void RasterizerStorageGLES3::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->use_local_coords = p_enable;
}
void RasterizerStorageGLES3::particles_set_fixed_fps(RID p_particles, int p_fps) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->fixed_fps = p_fps;
}
void RasterizerStorageGLES3::particles_set_fractional_delta(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->fractional_delta = p_enable;
}
void RasterizerStorageGLES3::particles_set_process_material(RID p_particles, RID p_material) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->process_material = p_material;
}
void RasterizerStorageGLES3::particles_set_draw_order(RID p_particles, VS::ParticlesDrawOrder p_order) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_order = p_order;
_particles_update_histories(particles);
}
void RasterizerStorageGLES3::particles_set_draw_passes(RID p_particles, int p_passes) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_passes.resize(p_passes);
}
void RasterizerStorageGLES3::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_pass, particles->draw_passes.size());
particles->draw_passes.write[p_pass] = p_mesh;
}
void RasterizerStorageGLES3::particles_restart(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->restart_request = true;
}
void RasterizerStorageGLES3::particles_request_process(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
if (!particles->particle_element.in_list()) {
particle_update_list.add(&particles->particle_element);
}
}
AABB RasterizerStorageGLES3::particles_get_current_aabb(RID p_particles) {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
const float *data;
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[0]);
#if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__)
PoolVector<uint8_t> vector;
vector.resize(particles->amount * 16 * 6);
{
PoolVector<uint8_t>::Write w = vector.write();
glGetBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * 16 * 6, w.ptr());
}
PoolVector<uint8_t>::Read r = vector.read();
data = reinterpret_cast<const float *>(r.ptr());
#else
data = (float *)glMapBufferRange(GL_ARRAY_BUFFER, 0, particles->amount * 16 * 6, GL_MAP_READ_BIT);
#endif
AABB aabb;
Transform inv = particles->emission_transform.affine_inverse();
for (int i = 0; i < particles->amount; i++) {
int ofs = i * 24;
Vector3 pos = Vector3(data[ofs + 15], data[ofs + 19], data[ofs + 23]);
if (!particles->use_local_coords) {
pos = inv.xform(pos);
}
if (i == 0) {
aabb.position = pos;
} else {
aabb.expand_to(pos);
}
}
#if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__)
r.release();
vector = PoolVector<uint8_t>();
#else
glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
glBindBuffer(GL_ARRAY_BUFFER, 0);
float longest_axis = 0;
for (int i = 0; i < particles->draw_passes.size(); i++) {
if (particles->draw_passes[i].is_valid()) {
AABB maabb = mesh_get_aabb(particles->draw_passes[i], RID());
longest_axis = MAX(maabb.get_longest_axis_size(), longest_axis);
}
}
aabb.grow_by(longest_axis);
return aabb;
}
AABB RasterizerStorageGLES3::particles_get_aabb(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
return particles->custom_aabb;
}
void RasterizerStorageGLES3::particles_set_emission_transform(RID p_particles, const Transform &p_transform) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->emission_transform = p_transform;
}
int RasterizerStorageGLES3::particles_get_draw_passes(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, 0);
return particles->draw_passes.size();
}
RID RasterizerStorageGLES3::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, RID());
ERR_FAIL_INDEX_V(p_pass, particles->draw_passes.size(), RID());
return particles->draw_passes[p_pass];
}
void RasterizerStorageGLES3::_particles_process(Particles *p_particles, float p_delta) {
float new_phase = Math::fmod((float)p_particles->phase + (p_delta / p_particles->lifetime) * p_particles->speed_scale, (float)1.0);
if (p_particles->clear) {
p_particles->cycle_number = 0;
p_particles->random_seed = Math::rand();
} else if (new_phase < p_particles->phase) {
if (p_particles->one_shot) {
p_particles->emitting = false;
shaders.particles.set_uniform(ParticlesShaderGLES3::EMITTING, false);
}
p_particles->cycle_number++;
}
shaders.particles.set_uniform(ParticlesShaderGLES3::SYSTEM_PHASE, new_phase);
shaders.particles.set_uniform(ParticlesShaderGLES3::PREV_SYSTEM_PHASE, p_particles->phase);
p_particles->phase = new_phase;
shaders.particles.set_uniform(ParticlesShaderGLES3::DELTA, p_delta * p_particles->speed_scale);
shaders.particles.set_uniform(ParticlesShaderGLES3::CLEAR, p_particles->clear);
glUniform1ui(shaders.particles.get_uniform_location(ParticlesShaderGLES3::RANDOM_SEED), p_particles->random_seed);
if (p_particles->use_local_coords) {
shaders.particles.set_uniform(ParticlesShaderGLES3::EMISSION_TRANSFORM, Transform());
} else {
shaders.particles.set_uniform(ParticlesShaderGLES3::EMISSION_TRANSFORM, p_particles->emission_transform);
}
glUniform1ui(shaders.particles.get_uniform(ParticlesShaderGLES3::CYCLE), p_particles->cycle_number);
p_particles->clear = false;
glBindVertexArray(p_particles->particle_vaos[0]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_particles->particle_buffers[1]);
// GLint size = 0;
// glGetBufferParameteriv(GL_ARRAY_BUFFER, GL_BUFFER_SIZE, &size);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, p_particles->amount);
glEndTransformFeedback();
SWAP(p_particles->particle_buffers[0], p_particles->particle_buffers[1]);
SWAP(p_particles->particle_vaos[0], p_particles->particle_vaos[1]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
glBindVertexArray(0);
/* //debug particles :D
glBindBuffer(GL_ARRAY_BUFFER, p_particles->particle_buffers[0]);
float *data = (float *)glMapBufferRange(GL_ARRAY_BUFFER, 0, p_particles->amount * 16 * 6, GL_MAP_READ_BIT);
for (int i = 0; i < p_particles->amount; i++) {
int ofs = i * 24;
print_line(itos(i) + ":");
print_line("\tColor: " + Color(data[ofs + 0], data[ofs + 1], data[ofs + 2], data[ofs + 3]));
print_line("\tVelocity: " + Vector3(data[ofs + 4], data[ofs + 5], data[ofs + 6]));
print_line("\tActive: " + itos(data[ofs + 7]));
print_line("\tCustom: " + Color(data[ofs + 8], data[ofs + 9], data[ofs + 10], data[ofs + 11]));
print_line("\tXF X: " + Color(data[ofs + 12], data[ofs + 13], data[ofs + 14], data[ofs + 15]));
print_line("\tXF Y: " + Color(data[ofs + 16], data[ofs + 17], data[ofs + 18], data[ofs + 19]));
print_line("\tXF Z: " + Color(data[ofs + 20], data[ofs + 21], data[ofs + 22], data[ofs + 23]));
}
glUnmapBuffer(GL_ARRAY_BUFFER);
glBindBuffer(GL_ARRAY_BUFFER, 0);
//*/
}
void RasterizerStorageGLES3::update_particles() {
glEnable(GL_RASTERIZER_DISCARD);
while (particle_update_list.first()) {
//use transform feedback to process particles
Particles *particles = particle_update_list.first()->self();
if (particles->restart_request) {
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
particles->particle_valid_histories[0] = false;
particles->particle_valid_histories[1] = false;
particles->restart_request = false;
}
if (particles->inactive && !particles->emitting) {
particle_update_list.remove(particle_update_list.first());
continue;
}
if (particles->emitting) {
if (particles->inactive) {
//restart system from scratch
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
particles->particle_valid_histories[0] = false;
particles->particle_valid_histories[1] = false;
}
particles->inactive = false;
particles->inactive_time = 0;
} else {
particles->inactive_time += particles->speed_scale * frame.delta;
if (particles->inactive_time > particles->lifetime * 1.2) {
particles->inactive = true;
particle_update_list.remove(particle_update_list.first());
continue;
}
}
Material *material = material_owner.getornull(particles->process_material);
if (!material || !material->shader || material->shader->mode != VS::SHADER_PARTICLES) {
shaders.particles.set_custom_shader(0);
} else {
shaders.particles.set_custom_shader(material->shader->custom_code_id);
if (material->ubo_id) {
glBindBufferBase(GL_UNIFORM_BUFFER, 0, material->ubo_id);
}
int tc = material->textures.size();
RID *textures = material->textures.ptrw();
ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = material->shader->texture_hints.ptrw();
for (int i = 0; i < tc; i++) {
glActiveTexture(GL_TEXTURE0 + i);
GLenum target;
GLuint tex;
RasterizerStorageGLES3::Texture *t = texture_owner.getornull(textures[i]);
if (!t) {
//check hints
target = GL_TEXTURE_2D;
switch (texture_hints[i]) {
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
tex = resources.black_tex;
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
tex = resources.aniso_tex;
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
tex = resources.normal_tex;
} break;
default: {
tex = resources.white_tex;
} break;
}
} else {
t = t->get_ptr(); //resolve for proxies
target = t->target;
tex = t->tex_id;
}
glBindTexture(target, tex);
}
}
shaders.particles.set_conditional(ParticlesShaderGLES3::USE_FRACTIONAL_DELTA, particles->fractional_delta);
shaders.particles.bind();
shaders.particles.set_uniform(ParticlesShaderGLES3::TOTAL_PARTICLES, particles->amount);
shaders.particles.set_uniform(ParticlesShaderGLES3::TIME, frame.time[0]);
shaders.particles.set_uniform(ParticlesShaderGLES3::EXPLOSIVENESS, particles->explosiveness);
shaders.particles.set_uniform(ParticlesShaderGLES3::LIFETIME, particles->lifetime);
shaders.particles.set_uniform(ParticlesShaderGLES3::ATTRACTOR_COUNT, 0);
shaders.particles.set_uniform(ParticlesShaderGLES3::EMITTING, particles->emitting);
shaders.particles.set_uniform(ParticlesShaderGLES3::RANDOMNESS, particles->randomness);
bool zero_time_scale = Engine::get_singleton()->get_time_scale() <= 0.0;
if (particles->clear && particles->pre_process_time > 0.0) {
float frame_time;
if (particles->fixed_fps > 0) {
frame_time = 1.0 / particles->fixed_fps;
} else {
frame_time = 1.0 / 30.0;
}
float todo = particles->pre_process_time;
while (todo >= 0) {
_particles_process(particles, frame_time);
todo -= frame_time;
}
}
if (particles->fixed_fps > 0) {
float frame_time;
float decr;
if (zero_time_scale) {
frame_time = 0.0;
decr = 1.0 / particles->fixed_fps;
} else {
frame_time = 1.0 / particles->fixed_fps;
decr = frame_time;
}
float delta = frame.delta;
if (delta > 0.1) { //avoid recursive stalls if fps goes below 10
delta = 0.1;
} else if (delta <= 0.0) { //unlikely but..
delta = 0.001;
}
float todo = particles->frame_remainder + delta;
while (todo >= frame_time) {
_particles_process(particles, frame_time);
todo -= decr;
}
particles->frame_remainder = todo;
} else {
if (zero_time_scale) {
_particles_process(particles, 0.0);
} else {
_particles_process(particles, frame.delta);
}
}
particle_update_list.remove(particle_update_list.first());
if (particles->histories_enabled) {
SWAP(particles->particle_buffer_histories[0], particles->particle_buffer_histories[1]);
SWAP(particles->particle_vao_histories[0], particles->particle_vao_histories[1]);
SWAP(particles->particle_valid_histories[0], particles->particle_valid_histories[1]);
//copy
glBindBuffer(GL_COPY_READ_BUFFER, particles->particle_buffers[0]);
glBindBuffer(GL_COPY_WRITE_BUFFER, particles->particle_buffer_histories[0]);
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 0, 0, particles->amount * 24 * sizeof(float));
particles->particle_valid_histories[0] = true;
}
particles->instance_change_notify(true, false); //make sure shadows are updated
}
glDisable(GL_RASTERIZER_DISCARD);
}
bool RasterizerStorageGLES3::particles_is_inactive(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return !particles->emitting && particles->inactive;
}
////////
void RasterizerStorageGLES3::instance_add_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
skeleton->instances.insert(p_instance);
}
void RasterizerStorageGLES3::instance_remove_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
skeleton->instances.erase(p_instance);
}
void RasterizerStorageGLES3::instance_add_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {
Instantiable *inst = nullptr;
switch (p_instance->base_type) {
case VS::INSTANCE_MESH: {
inst = mesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_MULTIMESH: {
inst = multimesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_IMMEDIATE: {
inst = immediate_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_PARTICLES: {
inst = particles_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_REFLECTION_PROBE: {
inst = reflection_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_LIGHT: {
inst = light_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_GI_PROBE: {
inst = gi_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_LIGHTMAP_CAPTURE: {
inst = lightmap_capture_data_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
default: {
ERR_FAIL();
}
}
inst->instance_list.add(&p_instance->dependency_item);
}
void RasterizerStorageGLES3::instance_remove_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {
Instantiable *inst = nullptr;
switch (p_instance->base_type) {
case VS::INSTANCE_MESH: {
inst = mesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_MULTIMESH: {
inst = multimesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_IMMEDIATE: {
inst = immediate_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_PARTICLES: {
inst = particles_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_REFLECTION_PROBE: {
inst = reflection_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_LIGHT: {
inst = light_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_GI_PROBE: {
inst = gi_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_LIGHTMAP_CAPTURE: {
inst = lightmap_capture_data_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
default: {
ERR_FAIL();
}
}
inst->instance_list.remove(&p_instance->dependency_item);
}
/* RENDER TARGET */
void RasterizerStorageGLES3::_render_target_clear(RenderTarget *rt) {
if (rt->fbo) {
glDeleteFramebuffers(1, &rt->fbo);
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
}
if (rt->buffers.active) {
glDeleteFramebuffers(1, &rt->buffers.fbo);
glDeleteRenderbuffers(1, &rt->buffers.depth);
glDeleteRenderbuffers(1, &rt->buffers.diffuse);
if (rt->buffers.effects_active) {
glDeleteRenderbuffers(1, &rt->buffers.specular);
glDeleteRenderbuffers(1, &rt->buffers.normal_rough);
glDeleteRenderbuffers(1, &rt->buffers.sss);
glDeleteFramebuffers(1, &rt->buffers.effect_fbo);
glDeleteTextures(1, &rt->buffers.effect);
}
rt->buffers.effects_active = false;
rt->buffers.active = false;
}
if (rt->depth) {
glDeleteTextures(1, &rt->depth);
rt->depth = 0;
}
if (rt->effects.ssao.blur_fbo[0]) {
glDeleteFramebuffers(1, &rt->effects.ssao.blur_fbo[0]);
glDeleteTextures(1, &rt->effects.ssao.blur_red[0]);
glDeleteFramebuffers(1, &rt->effects.ssao.blur_fbo[1]);
glDeleteTextures(1, &rt->effects.ssao.blur_red[1]);
for (int i = 0; i < rt->effects.ssao.depth_mipmap_fbos.size(); i++) {
glDeleteFramebuffers(1, &rt->effects.ssao.depth_mipmap_fbos[i]);
}
rt->effects.ssao.depth_mipmap_fbos.clear();
glDeleteTextures(1, &rt->effects.ssao.linear_depth);
rt->effects.ssao.blur_fbo[0] = 0;
rt->effects.ssao.blur_fbo[1] = 0;
}
if (rt->exposure.fbo) {
glDeleteFramebuffers(1, &rt->exposure.fbo);
glDeleteTextures(1, &rt->exposure.color);
rt->exposure.fbo = 0;
}
if (rt->external.fbo != 0) {
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// clean up our texture
Texture *t = texture_owner.get(rt->external.texture);
t->alloc_height = 0;
t->alloc_width = 0;
t->width = 0;
t->height = 0;
t->active = false;
texture_owner.free(rt->external.texture);
memdelete(t);
rt->external.fbo = 0;
rt->external.color = 0;
rt->external.depth = 0;
}
Texture *tex = texture_owner.get(rt->texture);
tex->alloc_height = 0;
tex->alloc_width = 0;
tex->width = 0;
tex->height = 0;
tex->active = false;
for (int i = 0; i < 2; i++) {
if (rt->effects.mip_maps[i].color) {
for (int j = 0; j < rt->effects.mip_maps[i].sizes.size(); j++) {
glDeleteFramebuffers(1, &rt->effects.mip_maps[i].sizes[j].fbo);
}
glDeleteTextures(1, &rt->effects.mip_maps[i].color);
rt->effects.mip_maps[i].sizes.clear();
rt->effects.mip_maps[i].levels = 0;
rt->effects.mip_maps[i].color = 0;
}
}
/*
if (rt->effects.screen_space_depth) {
glDeleteTextures(1,&rt->effects.screen_space_depth);
rt->effects.screen_space_depth=0;
}
*/
}
void RasterizerStorageGLES3::_render_target_allocate(RenderTarget *rt) {
if (rt->width <= 0 || rt->height <= 0) {
return;
}
GLuint color_internal_format;
GLuint color_format;
GLuint color_type;
Image::Format image_format;
bool hdr = rt->flags[RENDER_TARGET_HDR] && config.framebuffer_half_float_supported;
//hdr = false;
if (!hdr || rt->flags[RENDER_TARGET_NO_3D]) {
if (rt->flags[RENDER_TARGET_NO_3D_EFFECTS] && !rt->flags[RENDER_TARGET_TRANSPARENT]) {
//if this is not used, linear colorspace looks pretty bad
//this is the default mode used for mobile
color_internal_format = GL_RGB10_A2;
color_format = GL_RGBA;
color_type = GL_UNSIGNED_INT_2_10_10_10_REV;
image_format = Image::FORMAT_RGBA8;
} else {
color_internal_format = GL_RGBA8;
color_format = GL_RGBA;
color_type = GL_UNSIGNED_BYTE;
image_format = Image::FORMAT_RGBA8;
}
} else {
color_internal_format = GL_RGBA16F;
color_format = GL_RGBA;
color_type = GL_HALF_FLOAT;
image_format = Image::FORMAT_RGBAH;
}
{
/* FRONT FBO */
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &rt->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
glGenTextures(1, &rt->depth);
glBindTexture(GL_TEXTURE_2D, rt->depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, rt->width, rt->height, 0,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
if (rt->external.depth == 0) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, rt->depth, 0);
} else {
// Use our external depth texture instead.
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, rt->external.depth, 0);
}
glGenTextures(1, &rt->color);
glBindTexture(GL_TEXTURE_2D, rt->color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("framebuffer fail, status: %x\n", status);
}
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
Texture *tex = texture_owner.get(rt->texture);
tex->format = image_format;
tex->gl_format_cache = color_format;
tex->gl_type_cache = color_type;
tex->gl_internal_format_cache = color_internal_format;
tex->tex_id = rt->color;
tex->width = rt->width;
tex->alloc_width = rt->width;
tex->height = rt->height;
tex->alloc_height = rt->height;
tex->active = true;
texture_set_flags(rt->texture, tex->flags);
}
/* BACK FBO */
if (!rt->flags[RENDER_TARGET_NO_3D] && (!rt->flags[RENDER_TARGET_NO_3D_EFFECTS] || rt->msaa != VS::VIEWPORT_MSAA_DISABLED)) {
rt->buffers.active = true;
static const int msaa_value[] = { 0, 2, 4, 8, 16, 4, 16 }; // MSAA_EXT_nX is a GLES2 temporary hack ignored in GLES3 for now...
int msaa = msaa_value[rt->msaa];
int max_samples = 0;
glGetIntegerv(GL_MAX_SAMPLES, &max_samples);
if (msaa > max_samples) {
WARN_PRINT("MSAA must be <= GL_MAX_SAMPLES, falling-back to GL_MAX_SAMPLES = " + itos(max_samples));
msaa = max_samples;
}
//regular fbo
glGenFramebuffers(1, &rt->buffers.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->buffers.fbo);
glGenRenderbuffers(1, &rt->buffers.depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.depth);
if (msaa == 0) {
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, rt->width, rt->height);
} else {
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, GL_DEPTH_COMPONENT24, rt->width, rt->height);
}
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->buffers.depth);
glGenRenderbuffers(1, &rt->buffers.diffuse);
glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.diffuse);
if (msaa == 0) {
glRenderbufferStorage(GL_RENDERBUFFER, color_internal_format, rt->width, rt->height);
} else {
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height);
}
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, rt->buffers.diffuse);
if (!rt->flags[RENDER_TARGET_NO_3D_EFFECTS]) {
rt->buffers.effects_active = true;
glGenRenderbuffers(1, &rt->buffers.specular);
glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.specular);
if (msaa == 0) {
glRenderbufferStorage(GL_RENDERBUFFER, color_internal_format, rt->width, rt->height);
} else {
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height);
}
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_RENDERBUFFER, rt->buffers.specular);
glGenRenderbuffers(1, &rt->buffers.normal_rough);
glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.normal_rough);
if (msaa == 0) {
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, rt->width, rt->height);
} else {
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, GL_RGBA8, rt->width, rt->height);
}
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2, GL_RENDERBUFFER, rt->buffers.normal_rough);
glGenRenderbuffers(1, &rt->buffers.sss);
glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.sss);
if (msaa == 0) {
glRenderbufferStorage(GL_RENDERBUFFER, GL_R8, rt->width, rt->height);
} else {
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, GL_R8, rt->width, rt->height);
}
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3, GL_RENDERBUFFER, rt->buffers.sss);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("err status: %x\n", status);
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
glBindRenderbuffer(GL_RENDERBUFFER, 0);
// effect resolver
glGenFramebuffers(1, &rt->buffers.effect_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->buffers.effect_fbo);
glGenTextures(1, &rt->buffers.effect);
glBindTexture(GL_TEXTURE_2D, rt->buffers.effect);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0,
color_format, color_type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, rt->buffers.effect, 0);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("err status: %x\n", status);
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
///////////////// ssao
//AO strength textures
for (int i = 0; i < 2; i++) {
glGenFramebuffers(1, &rt->effects.ssao.blur_fbo[i]);
glBindFramebuffer(GL_FRAMEBUFFER, rt->effects.ssao.blur_fbo[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, rt->depth, 0);
glGenTextures(1, &rt->effects.ssao.blur_red[i]);
glBindTexture(GL_TEXTURE_2D, rt->effects.ssao.blur_red[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, rt->width, rt->height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->effects.ssao.blur_red[i], 0);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
//5 mip levels for depth texture, but base is read separately
glGenTextures(1, &rt->effects.ssao.linear_depth);
glBindTexture(GL_TEXTURE_2D, rt->effects.ssao.linear_depth);
int ssao_w = rt->width / 2;
int ssao_h = rt->height / 2;
for (int i = 0; i < 4; i++) { //5, but 4 mips, base is read directly to save bw
glTexImage2D(GL_TEXTURE_2D, i, GL_R16UI, ssao_w, ssao_h, 0, GL_RED_INTEGER, GL_UNSIGNED_SHORT, nullptr);
ssao_w >>= 1;
ssao_h >>= 1;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 3);
for (int i = 0; i < 4; i++) { //5, but 4 mips, base is read directly to save bw
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->effects.ssao.linear_depth, i);
rt->effects.ssao.depth_mipmap_fbos.push_back(fbo);
}
//////Exposure
glGenFramebuffers(1, &rt->exposure.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->exposure.fbo);
glGenTextures(1, &rt->exposure.color);
glBindTexture(GL_TEXTURE_2D, rt->exposure.color);
if (config.framebuffer_float_supported) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, 1, 1, 0, GL_RED, GL_FLOAT, nullptr);
} else if (config.framebuffer_half_float_supported) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_R16F, 1, 1, 0, GL_RED, GL_HALF_FLOAT, nullptr);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, 1, 1, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->exposure.color, 0);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
} else {
rt->buffers.effects_active = false;
}
} else {
rt->buffers.active = false;
rt->buffers.effects_active = true;
}
if (!rt->flags[RENDER_TARGET_NO_SAMPLING] && rt->width >= 2 && rt->height >= 2) {
for (int i = 0; i < 2; i++) {
ERR_FAIL_COND(rt->effects.mip_maps[i].sizes.size());
int w = rt->width;
int h = rt->height;
if (i > 0) {
w >>= 1;
h >>= 1;
}
glGenTextures(1, &rt->effects.mip_maps[i].color);
glBindTexture(GL_TEXTURE_2D, rt->effects.mip_maps[i].color);
int level = 0;
int fb_w = w;
int fb_h = h;
while (true) {
RenderTarget::Effects::MipMaps::Size mm;
mm.width = w;
mm.height = h;
rt->effects.mip_maps[i].sizes.push_back(mm);
w >>= 1;
h >>= 1;
if (w < 2 || h < 2) {
break;
}
level++;
}
glTexStorage2DCustom(GL_TEXTURE_2D, level + 1, color_internal_format, fb_w, fb_h, color_format, color_type);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level);
glDisable(GL_SCISSOR_TEST);
glColorMask(1, 1, 1, 1);
if (!rt->buffers.active) {
glDepthMask(GL_TRUE);
}
for (int j = 0; j < rt->effects.mip_maps[i].sizes.size(); j++) {
RenderTarget::Effects::MipMaps::Size &mm = rt->effects.mip_maps[i].sizes.write[j];
glGenFramebuffers(1, &mm.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, mm.fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->effects.mip_maps[i].color, j);
bool used_depth = false;
if (j == 0 && i == 0) { //use always
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
used_depth = true;
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
float zero[4] = { 1, 0, 1, 0 };
glViewport(0, 0, rt->effects.mip_maps[i].sizes[j].width, rt->effects.mip_maps[i].sizes[j].height);
glClearBufferfv(GL_COLOR, 0, zero);
if (used_depth) {
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
}
}
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
rt->effects.mip_maps[i].levels = level;
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
}
RID RasterizerStorageGLES3::render_target_create() {
RenderTarget *rt = memnew(RenderTarget);
Texture *t = memnew(Texture);
t->type = VS::TEXTURE_TYPE_2D;
t->flags = 0;
t->width = 0;
t->height = 0;
t->alloc_height = 0;
t->alloc_width = 0;
t->format = Image::FORMAT_R8;
t->target = GL_TEXTURE_2D;
t->gl_format_cache = 0;
t->gl_internal_format_cache = 0;
t->gl_type_cache = 0;
t->data_size = 0;
t->compressed = false;
t->srgb = false;
t->total_data_size = 0;
t->ignore_mipmaps = false;
t->mipmaps = 1;
t->active = true;
t->tex_id = 0;
t->render_target = rt;
rt->texture = texture_owner.make_rid(t);
return render_target_owner.make_rid(rt);
}
void RasterizerStorageGLES3::render_target_set_position(RID p_render_target, int p_x, int p_y) {
//only used in GLES2
}
void RasterizerStorageGLES3::render_target_set_size(RID p_render_target, int p_width, int p_height) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (rt->width == p_width && rt->height == p_height) {
return;
}
_render_target_clear(rt);
rt->width = p_width;
rt->height = p_height;
_render_target_allocate(rt);
}
RID RasterizerStorageGLES3::render_target_get_texture(RID p_render_target) const {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
if (rt->external.fbo == 0) {
return rt->texture;
} else {
return rt->external.texture;
}
}
uint32_t RasterizerStorageGLES3::render_target_get_depth_texture_id(RID p_render_target) const {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, 0);
if (rt->external.depth == 0) {
return rt->depth;
} else {
return rt->external.depth;
}
}
void RasterizerStorageGLES3::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id, unsigned int p_depth_id) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (p_texture_id == 0) {
if (rt->external.fbo != 0) {
// return to our original depth buffer
if (rt->external.depth != 0 && rt->fbo != 0) {
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
}
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// clean up our texture
Texture *t = texture_owner.get(rt->external.texture);
t->alloc_height = 0;
t->alloc_width = 0;
t->width = 0;
t->height = 0;
t->active = false;
texture_owner.free(rt->external.texture);
memdelete(t);
rt->external.fbo = 0;
rt->external.color = 0;
rt->external.depth = 0;
}
} else {
Texture *t;
if (rt->external.fbo == 0) {
// create our fbo
glGenFramebuffers(1, &rt->external.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->external.fbo);
// allocate a texture
t = memnew(Texture);
t->type = VS::TEXTURE_TYPE_2D;
t->flags = 0;
t->width = 0;
t->height = 0;
t->alloc_height = 0;
t->alloc_width = 0;
t->format = Image::FORMAT_RGBA8;
t->target = GL_TEXTURE_2D;
t->gl_format_cache = 0;
t->gl_internal_format_cache = 0;
t->gl_type_cache = 0;
t->data_size = 0;
t->compressed = false;
t->srgb = false;
t->total_data_size = 0;
t->ignore_mipmaps = false;
t->mipmaps = 1;
t->active = true;
t->tex_id = 0;
t->render_target = rt;
rt->external.texture = texture_owner.make_rid(t);
} else {
// bind our frame buffer
glBindFramebuffer(GL_FRAMEBUFFER, rt->external.fbo);
// find our texture
t = texture_owner.get(rt->external.texture);
}
// set our texture
t->tex_id = p_texture_id;
rt->external.color = p_texture_id;
// size shouldn't be different
t->width = rt->width;
t->height = rt->height;
t->alloc_height = rt->width;
t->alloc_width = rt->height;
// is there a point to setting the internal formats? we don't know them..
// set our texture as the destination for our framebuffer
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, p_texture_id, 0);
// check status
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("framebuffer fail, status: %x\n", status);
}
// Copy our depth texture id,
// if it's 0 then we don't use it,
// else we use it instead of our normal depth buffer
rt->external.depth = p_depth_id;
if (rt->external.depth != 0 && rt->fbo != 0) {
// Use our external depth texture instead.
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->external.depth, 0);
// check status
GLenum status2 = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status2 != GL_FRAMEBUFFER_COMPLETE) {
printf("framebuffer fail, status: %x\n", status2);
}
}
// and unbind
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
void RasterizerStorageGLES3::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->flags[p_flag] = p_value;
switch (p_flag) {
case RENDER_TARGET_HDR:
case RENDER_TARGET_NO_3D:
case RENDER_TARGET_NO_SAMPLING:
case RENDER_TARGET_NO_3D_EFFECTS: {
//must reset for these formats
_render_target_clear(rt);
_render_target_allocate(rt);
} break;
default: {
}
}
}
bool RasterizerStorageGLES3::render_target_was_used(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->used_in_frame;
}
void RasterizerStorageGLES3::render_target_clear_used(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->used_in_frame = false;
}
void RasterizerStorageGLES3::render_target_set_msaa(RID p_render_target, VS::ViewportMSAA p_msaa) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (rt->msaa == p_msaa) {
return;
}
_render_target_clear(rt);
rt->msaa = p_msaa;
_render_target_allocate(rt);
}
void RasterizerStorageGLES3::render_target_set_use_fxaa(RID p_render_target, bool p_fxaa) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->use_fxaa = p_fxaa;
}
void RasterizerStorageGLES3::render_target_set_use_debanding(RID p_render_target, bool p_debanding) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->use_debanding = p_debanding;
}
/* CANVAS SHADOW */
RID RasterizerStorageGLES3::canvas_light_shadow_buffer_create(int p_width) {
CanvasLightShadow *cls = memnew(CanvasLightShadow);
if (p_width > config.max_texture_size) {
p_width = config.max_texture_size;
}
cls->size = p_width;
cls->height = 16;
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &cls->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo);
glGenRenderbuffers(1, &cls->depth);
glBindRenderbuffer(GL_RENDERBUFFER, cls->depth);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, cls->size, cls->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->depth);
glBindRenderbuffer(GL_RENDERBUFFER, 0);
glGenTextures(1, &cls->distance);
glBindTexture(GL_TEXTURE_2D, cls->distance);
if (config.use_rgba_2d_shadows) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, cls->size, cls->height, 0, GL_RED, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->distance, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
//printf("errnum: %x\n",status);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo);
if (status != GL_FRAMEBUFFER_COMPLETE) {
memdelete(cls);
ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID());
}
return canvas_light_shadow_owner.make_rid(cls);
}
/* LIGHT SHADOW MAPPING */
RID RasterizerStorageGLES3::canvas_light_occluder_create() {
CanvasOccluder *co = memnew(CanvasOccluder);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
glGenVertexArrays(1, &co->array_id);
return canvas_occluder_owner.make_rid(co);
}
void RasterizerStorageGLES3::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
CanvasOccluder *co = canvas_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!co);
co->lines = p_lines;
if (p_lines.size() != co->len) {
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
}
if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
}
if (p_lines.size()) {
PoolVector<float> geometry;
PoolVector<uint16_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6);
indices.resize(lc * 3);
PoolVector<float>::Write vw = geometry.write();
PoolVector<uint16_t>::Write iw = indices.write();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vw[i * 12 + 0] = lr[i * 2 + 0].x;
vw[i * 12 + 1] = lr[i * 2 + 0].y;
vw[i * 12 + 2] = POLY_HEIGHT;
vw[i * 12 + 3] = lr[i * 2 + 1].x;
vw[i * 12 + 4] = lr[i * 2 + 1].y;
vw[i * 12 + 5] = POLY_HEIGHT;
vw[i * 12 + 6] = lr[i * 2 + 1].x;
vw[i * 12 + 7] = lr[i * 2 + 1].y;
vw[i * 12 + 8] = -POLY_HEIGHT;
vw[i * 12 + 9] = lr[i * 2 + 0].x;
vw[i * 12 + 10] = lr[i * 2 + 0].y;
vw[i * 12 + 11] = -POLY_HEIGHT;
iw[i * 6 + 0] = i * 4 + 0;
iw[i * 6 + 1] = i * 4 + 1;
iw[i * 6 + 2] = i * 4 + 2;
iw[i * 6 + 3] = i * 4 + 2;
iw[i * 6 + 4] = i * 4 + 3;
iw[i * 6 + 5] = i * 4 + 0;
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (!co->vertex_id) {
glGenBuffers(1, &co->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr());
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (!co->index_id) {
glGenBuffers(1, &co->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr());
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
co->len = lc;
glBindVertexArray(co->array_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, 0, nullptr);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBindVertexArray(0);
}
}
VS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const {
if (mesh_owner.owns(p_rid)) {
return VS::INSTANCE_MESH;
}
if (multimesh_owner.owns(p_rid)) {
return VS::INSTANCE_MULTIMESH;
}
if (immediate_owner.owns(p_rid)) {
return VS::INSTANCE_IMMEDIATE;
}
if (particles_owner.owns(p_rid)) {
return VS::INSTANCE_PARTICLES;
}
if (light_owner.owns(p_rid)) {
return VS::INSTANCE_LIGHT;
}
if (reflection_probe_owner.owns(p_rid)) {
return VS::INSTANCE_REFLECTION_PROBE;
}
if (gi_probe_owner.owns(p_rid)) {
return VS::INSTANCE_GI_PROBE;
}
if (lightmap_capture_data_owner.owns(p_rid)) {
return VS::INSTANCE_LIGHTMAP_CAPTURE;
}
return VS::INSTANCE_NONE;
}
bool RasterizerStorageGLES3::free(RID p_rid) {
if (render_target_owner.owns(p_rid)) {
RenderTarget *rt = render_target_owner.getornull(p_rid);
_render_target_clear(rt);
Texture *t = texture_owner.get(rt->texture);
texture_owner.free(rt->texture);
memdelete(t);
render_target_owner.free(p_rid);
memdelete(rt);
} else if (texture_owner.owns(p_rid)) {
// delete the texture
Texture *texture = texture_owner.get(p_rid);
ERR_FAIL_COND_V(texture->render_target, true); //can't free the render target texture, dude
info.texture_mem -= texture->total_data_size;
texture_owner.free(p_rid);
memdelete(texture);
} else if (sky_owner.owns(p_rid)) {
// delete the sky
Sky *sky = sky_owner.get(p_rid);
sky_set_texture(p_rid, RID(), 256);
sky_owner.free(p_rid);
memdelete(sky);
} else if (shader_owner.owns(p_rid)) {
// delete the texture
Shader *shader = shader_owner.get(p_rid);
if (shader->shader && shader->custom_code_id) {
shader->shader->free_custom_shader(shader->custom_code_id);
}
if (shader->dirty_list.in_list()) {
_shader_dirty_list.remove(&shader->dirty_list);
}
while (shader->materials.first()) {
Material *mat = shader->materials.first()->self();
mat->shader = nullptr;
_material_make_dirty(mat);
shader->materials.remove(shader->materials.first());
}
//material_shader.free_custom_shader(shader->custom_code_id);
shader_owner.free(p_rid);
memdelete(shader);
} else if (material_owner.owns(p_rid)) {
// delete the texture
Material *material = material_owner.get(p_rid);
if (material->shader) {
material->shader->materials.remove(&material->list);
}
if (material->ubo_id) {
glDeleteBuffers(1, &material->ubo_id);
}
//remove from owners
for (Map<Geometry *, int>::Element *E = material->geometry_owners.front(); E; E = E->next()) {
Geometry *g = E->key();
g->material = RID();
}
for (Map<RasterizerScene::InstanceBase *, int>::Element *E = material->instance_owners.front(); E; E = E->next()) {
RasterizerScene::InstanceBase *ins = E->key();
if (ins->material_override == p_rid) {
ins->material_override = RID();
}
for (int i = 0; i < ins->materials.size(); i++) {
if (ins->materials[i] == p_rid) {
ins->materials.write[i] = RID();
}
}
}
material_owner.free(p_rid);
memdelete(material);
} else if (skeleton_owner.owns(p_rid)) {
// delete the texture
Skeleton *skeleton = skeleton_owner.get(p_rid);
if (skeleton->update_list.in_list()) {
skeleton_update_list.remove(&skeleton->update_list);
}
for (Set<RasterizerScene::InstanceBase *>::Element *E = skeleton->instances.front(); E; E = E->next()) {
E->get()->skeleton = RID();
}
skeleton_allocate(p_rid, 0, false);
glDeleteTextures(1, &skeleton->texture);
skeleton_owner.free(p_rid);
memdelete(skeleton);
} else if (mesh_owner.owns(p_rid)) {
// delete the texture
Mesh *mesh = mesh_owner.get(p_rid);
mesh->instance_remove_deps();
mesh_clear(p_rid);
while (mesh->multimeshes.first()) {
MultiMesh *multimesh = mesh->multimeshes.first()->self();
multimesh->mesh = RID();
multimesh->dirty_aabb = true;
mesh->multimeshes.remove(mesh->multimeshes.first());
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
mesh_owner.free(p_rid);
memdelete(mesh);
} else if (multimesh_owner.owns(p_rid)) {
// delete the texture
MultiMesh *multimesh = multimesh_owner.get(p_rid);
multimesh->instance_remove_deps();
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.getornull(multimesh->mesh);
if (mesh) {
mesh->multimeshes.remove(&multimesh->mesh_list);
}
}
multimesh_allocate(p_rid, 0, VS::MULTIMESH_TRANSFORM_2D, VS::MULTIMESH_COLOR_NONE); //frees multimesh
update_dirty_multimeshes();
multimesh_owner.free(p_rid);
memdelete(multimesh);
} else if (immediate_owner.owns(p_rid)) {
Immediate *immediate = immediate_owner.get(p_rid);
immediate->instance_remove_deps();
immediate_owner.free(p_rid);
memdelete(immediate);
} else if (light_owner.owns(p_rid)) {
// delete the texture
Light *light = light_owner.get(p_rid);
light->instance_remove_deps();
light_owner.free(p_rid);
memdelete(light);
} else if (reflection_probe_owner.owns(p_rid)) {
// delete the texture
ReflectionProbe *reflection_probe = reflection_probe_owner.get(p_rid);
reflection_probe->instance_remove_deps();
reflection_probe_owner.free(p_rid);
memdelete(reflection_probe);
} else if (gi_probe_owner.owns(p_rid)) {
// delete the texture
GIProbe *gi_probe = gi_probe_owner.get(p_rid);
gi_probe->instance_remove_deps();
gi_probe_owner.free(p_rid);
memdelete(gi_probe);
} else if (gi_probe_data_owner.owns(p_rid)) {
// delete the texture
GIProbeData *gi_probe_data = gi_probe_data_owner.get(p_rid);
glDeleteTextures(1, &gi_probe_data->tex_id);
gi_probe_data_owner.free(p_rid);
memdelete(gi_probe_data);
} else if (lightmap_capture_data_owner.owns(p_rid)) {
// delete the texture
LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get(p_rid);
lightmap_capture->instance_remove_deps();
lightmap_capture_data_owner.free(p_rid);
memdelete(lightmap_capture);
} else if (canvas_occluder_owner.owns(p_rid)) {
CanvasOccluder *co = canvas_occluder_owner.get(p_rid);
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
}
if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
glDeleteVertexArrays(1, &co->array_id);
canvas_occluder_owner.free(p_rid);
memdelete(co);
} else if (canvas_light_shadow_owner.owns(p_rid)) {
CanvasLightShadow *cls = canvas_light_shadow_owner.get(p_rid);
glDeleteFramebuffers(1, &cls->fbo);
glDeleteRenderbuffers(1, &cls->depth);
glDeleteTextures(1, &cls->distance);
canvas_light_shadow_owner.free(p_rid);
memdelete(cls);
} else if (particles_owner.owns(p_rid)) {
Particles *particles = particles_owner.get(p_rid);
particles->instance_remove_deps();
particles_owner.free(p_rid);
memdelete(particles);
} else {
return false;
}
return true;
}
bool RasterizerStorageGLES3::has_os_feature(const String &p_feature) const {
if (p_feature == "bptc") {
return config.bptc_supported;
}
if (p_feature == "s3tc") {
return config.s3tc_supported;
}
if (p_feature == "etc") {
return config.etc_supported;
}
if (p_feature == "etc2") {
return config.etc2_supported;
}
if (p_feature == "pvrtc") {
return config.pvrtc_supported;
}
return false;
}
////////////////////////////////////////////
void RasterizerStorageGLES3::set_debug_generate_wireframes(bool p_generate) {
config.generate_wireframes = p_generate;
}
void RasterizerStorageGLES3::render_info_begin_capture() {
info.snap = info.render;
}
void RasterizerStorageGLES3::render_info_end_capture() {
info.snap.object_count = info.render.object_count - info.snap.object_count;
info.snap.draw_call_count = info.render.draw_call_count - info.snap.draw_call_count;
info.snap.material_switch_count = info.render.material_switch_count - info.snap.material_switch_count;
info.snap.surface_switch_count = info.render.surface_switch_count - info.snap.surface_switch_count;
info.snap.shader_rebind_count = info.render.shader_rebind_count - info.snap.shader_rebind_count;
info.snap.vertices_count = info.render.vertices_count - info.snap.vertices_count;
info.snap._2d_item_count = info.render._2d_item_count - info.snap._2d_item_count;
info.snap._2d_draw_call_count = info.render._2d_draw_call_count - info.snap._2d_draw_call_count;
}
int RasterizerStorageGLES3::get_captured_render_info(VS::RenderInfo p_info) {
switch (p_info) {
case VS::INFO_OBJECTS_IN_FRAME: {
return info.snap.object_count;
} break;
case VS::INFO_VERTICES_IN_FRAME: {
return info.snap.vertices_count;
} break;
case VS::INFO_MATERIAL_CHANGES_IN_FRAME: {
return info.snap.material_switch_count;
} break;
case VS::INFO_SHADER_CHANGES_IN_FRAME: {
return info.snap.shader_rebind_count;
} break;
case VS::INFO_SURFACE_CHANGES_IN_FRAME: {
return info.snap.surface_switch_count;
} break;
case VS::INFO_DRAW_CALLS_IN_FRAME: {
return info.snap.draw_call_count;
} break;
case VS::INFO_2D_ITEMS_IN_FRAME: {
return info.snap._2d_item_count;
} break;
case VS::INFO_2D_DRAW_CALLS_IN_FRAME: {
return info.snap._2d_draw_call_count;
} break;
default: {
return get_render_info(p_info);
}
}
}
uint64_t RasterizerStorageGLES3::get_render_info(VS::RenderInfo p_info) {
switch (p_info) {
case VS::INFO_OBJECTS_IN_FRAME:
return info.render_final.object_count;
case VS::INFO_VERTICES_IN_FRAME:
return info.render_final.vertices_count;
case VS::INFO_MATERIAL_CHANGES_IN_FRAME:
return info.render_final.material_switch_count;
case VS::INFO_SHADER_CHANGES_IN_FRAME:
return info.render_final.shader_rebind_count;
case VS::INFO_SURFACE_CHANGES_IN_FRAME:
return info.render_final.surface_switch_count;
case VS::INFO_DRAW_CALLS_IN_FRAME:
return info.render_final.draw_call_count;
case VS::INFO_2D_ITEMS_IN_FRAME:
return info.render_final._2d_item_count;
case VS::INFO_2D_DRAW_CALLS_IN_FRAME:
return info.render_final._2d_draw_call_count;
case VS::INFO_USAGE_VIDEO_MEM_TOTAL:
return 0; //no idea
case VS::INFO_VIDEO_MEM_USED:
return info.vertex_mem + info.texture_mem;
case VS::INFO_TEXTURE_MEM_USED:
return info.texture_mem;
case VS::INFO_VERTEX_MEM_USED:
return info.vertex_mem;
default:
return 0; //no idea either
}
}
String RasterizerStorageGLES3::get_video_adapter_name() const {
return (const char *)glGetString(GL_RENDERER);
}
String RasterizerStorageGLES3::get_video_adapter_vendor() const {
return (const char *)glGetString(GL_VENDOR);
}
void RasterizerStorageGLES3::initialize() {
RasterizerStorageGLES3::system_fbo = 0;
//// extensions config
///
{
int max_extensions = 0;
glGetIntegerv(GL_NUM_EXTENSIONS, &max_extensions);
for (int i = 0; i < max_extensions; i++) {
const GLubyte *s = glGetStringi(GL_EXTENSIONS, i);
if (!s) {
break;
}
config.extensions.insert((const char *)s);
}
}
config.shrink_textures_x2 = false;
config.use_fast_texture_filter = int(ProjectSettings::get_singleton()->get("rendering/quality/filters/use_nearest_mipmap_filter"));
config.etc_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture");
config.latc_supported = config.extensions.has("GL_EXT_texture_compression_latc");
config.bptc_supported = config.extensions.has("GL_ARB_texture_compression_bptc");
#ifdef GLES_OVER_GL
config.etc2_supported = false;
config.s3tc_supported = true;
config.rgtc_supported = true; //RGTC - core since OpenGL version 3.0
config.texture_float_linear_supported = true;
config.framebuffer_float_supported = true;
config.framebuffer_half_float_supported = true;
#else
config.etc2_supported = true;
config.s3tc_supported = config.extensions.has("GL_EXT_texture_compression_dxt1") || config.extensions.has("GL_EXT_texture_compression_s3tc") || config.extensions.has("WEBGL_compressed_texture_s3tc");
config.rgtc_supported = config.extensions.has("GL_EXT_texture_compression_rgtc") || config.extensions.has("GL_ARB_texture_compression_rgtc") || config.extensions.has("EXT_texture_compression_rgtc");
config.texture_float_linear_supported = config.extensions.has("GL_OES_texture_float_linear");
config.framebuffer_float_supported = config.extensions.has("GL_EXT_color_buffer_float");
config.framebuffer_half_float_supported = config.extensions.has("GL_EXT_color_buffer_half_float") || config.framebuffer_float_supported;
#endif
// not yet detected on GLES3 (is this mandated?)
config.support_npot_repeat_mipmap = true;
config.pvrtc_supported = config.extensions.has("GL_IMG_texture_compression_pvrtc");
config.srgb_decode_supported = config.extensions.has("GL_EXT_texture_sRGB_decode");
config.anisotropic_level = 1.0;
config.use_anisotropic_filter = config.extensions.has("GL_EXT_texture_filter_anisotropic");
if (config.use_anisotropic_filter) {
glGetFloatv(_GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &config.anisotropic_level);
config.anisotropic_level = MIN(int(ProjectSettings::get_singleton()->get("rendering/quality/filters/anisotropic_filter_level")), config.anisotropic_level);
}
frame.clear_request = false;
shaders.copy.init();
{
//default textures
glGenTextures(1, &resources.white_tex);
unsigned char whitetexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
whitetexdata[i] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.black_tex);
unsigned char blacktexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
blacktexdata[i] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.black_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, blacktexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.normal_tex);
unsigned char normaltexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
normaltexdata[i + 0] = 128;
normaltexdata[i + 1] = 128;
normaltexdata[i + 2] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.normal_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, normaltexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.aniso_tex);
unsigned char anisotexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
anisotexdata[i + 0] = 255;
anisotexdata[i + 1] = 128;
anisotexdata[i + 2] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.aniso_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, anisotexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.white_tex_3d);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_3D, resources.white_tex_3d);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB, 2, 2, 2, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, 0);
glGenTextures(1, &resources.white_tex_array);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D_ARRAY, resources.white_tex_array);
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGB, 8, 8, 1, 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr);
glTexSubImage3D(GL_TEXTURE_2D_ARRAY, 0, 0, 0, 0, 8, 8, 1, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D_ARRAY);
glBindTexture(GL_TEXTURE_2D, 0);
}
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &config.max_texture_image_units);
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &config.max_texture_size);
glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, &config.max_cubemap_texture_size);
config.use_rgba_2d_shadows = !config.framebuffer_float_supported;
//generic quadie for copying
{
//quad buffers
glGenBuffers(1, &resources.quadie);
glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
{
const float qv[16] = {
-1,
-1,
0,
0,
-1,
1,
0,
1,
1,
1,
1,
1,
1,
-1,
1,
0,
};
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
glGenVertexArrays(1, &resources.quadie_array);
glBindVertexArray(resources.quadie_array);
glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr);
glEnableVertexAttribArray(0);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8));
glEnableVertexAttribArray(4);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
}
//generic quadie for copying without touching sky
{
//transform feedback buffers
uint32_t xf_feedback_size = GLOBAL_DEF_RST("rendering/limits/buffers/blend_shape_max_buffer_size_kb", 4096);
ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/blend_shape_max_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/blend_shape_max_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater"));
for (int i = 0; i < 2; i++) {
glGenBuffers(1, &resources.transform_feedback_buffers[i]);
glBindBuffer(GL_ARRAY_BUFFER, resources.transform_feedback_buffers[i]);
glBufferData(GL_ARRAY_BUFFER, xf_feedback_size * 1024, nullptr, GL_STREAM_DRAW);
}
shaders.blend_shapes.init();
glGenVertexArrays(1, &resources.transform_feedback_array);
}
shaders.cubemap_filter.init();
bool ggx_hq = GLOBAL_GET("rendering/quality/reflections/high_quality_ggx");
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, !ggx_hq);
shaders.particles.init();
#ifdef GLES_OVER_GL
glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS);
#endif
frame.count = 0;
frame.delta = 0;
frame.current_rt = nullptr;
config.keep_original_textures = false;
config.generate_wireframes = false;
config.use_texture_array_environment = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections");
config.force_vertex_shading = GLOBAL_GET("rendering/quality/shading/force_vertex_shading");
String renderer = (const char *)glGetString(GL_RENDERER);
GLOBAL_DEF("rendering/quality/lightmapping/use_bicubic_sampling", true);
GLOBAL_DEF("rendering/quality/lightmapping/use_bicubic_sampling.mobile", false);
config.use_lightmap_filter_bicubic = GLOBAL_GET("rendering/quality/lightmapping/use_bicubic_sampling");
config.use_depth_prepass = bool(GLOBAL_GET("rendering/quality/depth_prepass/enable"));
if (config.use_depth_prepass) {
String vendors = GLOBAL_GET("rendering/quality/depth_prepass/disable_for_vendors");
Vector<String> vendor_match = vendors.split(",");
for (int i = 0; i < vendor_match.size(); i++) {
String v = vendor_match[i].strip_edges();
if (v == String()) {
continue;
}
if (renderer.findn(v) != -1) {
config.use_depth_prepass = false;
}
}
}
int orphan_mode = GLOBAL_GET("rendering/2d/opengl/legacy_orphan_buffers");
switch (orphan_mode) {
default: {
config.should_orphan = true;
} break;
case 1: {
config.should_orphan = false;
} break;
case 2: {
config.should_orphan = true;
} break;
}
}
void RasterizerStorageGLES3::finalize() {
glDeleteTextures(1, &resources.white_tex);
glDeleteTextures(1, &resources.black_tex);
glDeleteTextures(1, &resources.normal_tex);
}
void RasterizerStorageGLES3::update_dirty_resources() {
update_dirty_multimeshes();
update_dirty_skeletons();
update_dirty_shaders();
update_dirty_materials();
update_particles();
update_dirty_captures();
}
RasterizerStorageGLES3::RasterizerStorageGLES3() {
config.should_orphan = true;
}