8cab401d08
-=-=-=-=-=-=-=-=-=-=-=-=-=- 3D Physics: -Fixed "Bounce" parameter in 3D -Fixed bug affecting Area (sometims it would not detect properly) -Vehicle Body has seen heavy work -Added Query API for doing space queries in 3D. Needs some docs though. -Added JOINTS! Adapted Bullet Joints: and created easy gizmos for setting them up: -PinJoint -HingeJoint (with motor) -SliderJoint -ConeTwistJoint -Generic6DOFJoint -Added OBJECT PICKING! based on the new query API. Any physics object now (Area or Body) has the following signals and virtual functions: -input_event (mouse or multitouch input over the body) -mouse_enter (mouse entered the body area) -mouse_exit (mouse exited body area) For Area it needs to be activated manually, as it isn't by default (ray goes thru). Other: -Begun working on Windows 8 (RT) port. Compiles but does not work yet. -Added TheoraPlayer library for improved to-texture and portable video support. -Fixed a few bugs in the renderer, collada importer, collada exporter, etc.
691 lines
17 KiB
C++
691 lines
17 KiB
C++
#include "generic_6dof_joint_sw.h"
|
|
|
|
|
|
|
|
#define GENERIC_D6_DISABLE_WARMSTARTING 1
|
|
|
|
real_t btGetMatrixElem(const Matrix3& mat, int index);
|
|
real_t btGetMatrixElem(const Matrix3& mat, int index)
|
|
{
|
|
int i = index%3;
|
|
int j = index/3;
|
|
return mat[i][j];
|
|
}
|
|
|
|
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
|
|
bool matrixToEulerXYZ(const Matrix3& mat,Vector3& xyz);
|
|
bool matrixToEulerXYZ(const Matrix3& mat,Vector3& xyz)
|
|
{
|
|
// // rot = cy*cz -cy*sz sy
|
|
// // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
|
// // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
|
//
|
|
|
|
if (btGetMatrixElem(mat,2) < real_t(1.0))
|
|
{
|
|
if (btGetMatrixElem(mat,2) > real_t(-1.0))
|
|
{
|
|
xyz[0] = Math::atan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
|
|
xyz[1] = Math::asin(btGetMatrixElem(mat,2));
|
|
xyz[2] = Math::atan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
|
|
xyz[0] = -Math::atan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
|
|
xyz[1] = -Math_PI*0.5;
|
|
xyz[2] = real_t(0.0);
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
|
|
xyz[0] = Math::atan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
|
|
xyz[1] = Math_PI*0.5;
|
|
xyz[2] = 0.0;
|
|
|
|
}
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////// G6DOFRotationalLimitMotorSW ////////////////////////////////////
|
|
|
|
|
|
int G6DOFRotationalLimitMotorSW::testLimitValue(real_t test_value)
|
|
{
|
|
if(m_loLimit>m_hiLimit)
|
|
{
|
|
m_currentLimit = 0;//Free from violation
|
|
return 0;
|
|
}
|
|
|
|
if (test_value < m_loLimit)
|
|
{
|
|
m_currentLimit = 1;//low limit violation
|
|
m_currentLimitError = test_value - m_loLimit;
|
|
return 1;
|
|
}
|
|
else if (test_value> m_hiLimit)
|
|
{
|
|
m_currentLimit = 2;//High limit violation
|
|
m_currentLimitError = test_value - m_hiLimit;
|
|
return 2;
|
|
};
|
|
|
|
m_currentLimit = 0;//Free from violation
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
real_t G6DOFRotationalLimitMotorSW::solveAngularLimits(
|
|
real_t timeStep,Vector3& axis,real_t jacDiagABInv,
|
|
BodySW * body0, BodySW * body1)
|
|
{
|
|
if (needApplyTorques()==false) return 0.0f;
|
|
|
|
real_t target_velocity = m_targetVelocity;
|
|
real_t maxMotorForce = m_maxMotorForce;
|
|
|
|
//current error correction
|
|
if (m_currentLimit!=0)
|
|
{
|
|
target_velocity = -m_ERP*m_currentLimitError/(timeStep);
|
|
maxMotorForce = m_maxLimitForce;
|
|
}
|
|
|
|
maxMotorForce *= timeStep;
|
|
|
|
// current velocity difference
|
|
Vector3 vel_diff = body0->get_angular_velocity();
|
|
if (body1)
|
|
{
|
|
vel_diff -= body1->get_angular_velocity();
|
|
}
|
|
|
|
|
|
|
|
real_t rel_vel = axis.dot(vel_diff);
|
|
|
|
// correction velocity
|
|
real_t motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel);
|
|
|
|
|
|
if ( motor_relvel < CMP_EPSILON && motor_relvel > -CMP_EPSILON )
|
|
{
|
|
return 0.0f;//no need for applying force
|
|
}
|
|
|
|
|
|
// correction impulse
|
|
real_t unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;
|
|
|
|
// clip correction impulse
|
|
real_t clippedMotorImpulse;
|
|
|
|
///@todo: should clip against accumulated impulse
|
|
if (unclippedMotorImpulse>0.0f)
|
|
{
|
|
clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
|
|
}
|
|
else
|
|
{
|
|
clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
|
|
}
|
|
|
|
|
|
// sort with accumulated impulses
|
|
real_t lo = real_t(-1e30);
|
|
real_t hi = real_t(1e30);
|
|
|
|
real_t oldaccumImpulse = m_accumulatedImpulse;
|
|
real_t sum = oldaccumImpulse + clippedMotorImpulse;
|
|
m_accumulatedImpulse = sum > hi ? real_t(0.) : sum < lo ? real_t(0.) : sum;
|
|
|
|
clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
|
|
|
|
|
|
|
|
Vector3 motorImp = clippedMotorImpulse * axis;
|
|
|
|
|
|
body0->apply_torque_impulse(motorImp);
|
|
if (body1) body1->apply_torque_impulse(-motorImp);
|
|
|
|
return clippedMotorImpulse;
|
|
|
|
|
|
}
|
|
|
|
//////////////////////////// End G6DOFRotationalLimitMotorSW ////////////////////////////////////
|
|
|
|
//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////
|
|
real_t G6DOFTranslationalLimitMotorSW::solveLinearAxis(
|
|
real_t timeStep,
|
|
real_t jacDiagABInv,
|
|
BodySW* body1,const Vector3 &pointInA,
|
|
BodySW* body2,const Vector3 &pointInB,
|
|
int limit_index,
|
|
const Vector3 & axis_normal_on_a,
|
|
const Vector3 & anchorPos)
|
|
{
|
|
|
|
///find relative velocity
|
|
// Vector3 rel_pos1 = pointInA - body1->get_transform().origin;
|
|
// Vector3 rel_pos2 = pointInB - body2->get_transform().origin;
|
|
Vector3 rel_pos1 = anchorPos - body1->get_transform().origin;
|
|
Vector3 rel_pos2 = anchorPos - body2->get_transform().origin;
|
|
|
|
Vector3 vel1 = body1->get_velocity_in_local_point(rel_pos1);
|
|
Vector3 vel2 = body2->get_velocity_in_local_point(rel_pos2);
|
|
Vector3 vel = vel1 - vel2;
|
|
|
|
real_t rel_vel = axis_normal_on_a.dot(vel);
|
|
|
|
|
|
|
|
/// apply displacement correction
|
|
|
|
//positional error (zeroth order error)
|
|
real_t depth = -(pointInA - pointInB).dot(axis_normal_on_a);
|
|
real_t lo = real_t(-1e30);
|
|
real_t hi = real_t(1e30);
|
|
|
|
real_t minLimit = m_lowerLimit[limit_index];
|
|
real_t maxLimit = m_upperLimit[limit_index];
|
|
|
|
//handle the limits
|
|
if (minLimit < maxLimit)
|
|
{
|
|
{
|
|
if (depth > maxLimit)
|
|
{
|
|
depth -= maxLimit;
|
|
lo = real_t(0.);
|
|
|
|
}
|
|
else
|
|
{
|
|
if (depth < minLimit)
|
|
{
|
|
depth -= minLimit;
|
|
hi = real_t(0.);
|
|
}
|
|
else
|
|
{
|
|
return 0.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t normalImpulse= m_limitSoftness[limit_index]*(m_restitution[limit_index]*depth/timeStep - m_damping[limit_index]*rel_vel) * jacDiagABInv;
|
|
|
|
|
|
|
|
|
|
real_t oldNormalImpulse = m_accumulatedImpulse[limit_index];
|
|
real_t sum = oldNormalImpulse + normalImpulse;
|
|
m_accumulatedImpulse[limit_index] = sum > hi ? real_t(0.) : sum < lo ? real_t(0.) : sum;
|
|
normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
|
|
|
|
Vector3 impulse_vector = axis_normal_on_a * normalImpulse;
|
|
body1->apply_impulse( rel_pos1, impulse_vector);
|
|
body2->apply_impulse( rel_pos2, -impulse_vector);
|
|
return normalImpulse;
|
|
}
|
|
|
|
//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////
|
|
|
|
|
|
Generic6DOFJointSW::Generic6DOFJointSW(BodySW* rbA, BodySW* rbB, const Transform& frameInA, const Transform& frameInB, bool useLinearReferenceFrameA)
|
|
: JointSW(_arr,2)
|
|
, m_frameInA(frameInA)
|
|
, m_frameInB(frameInB),
|
|
m_useLinearReferenceFrameA(useLinearReferenceFrameA)
|
|
{
|
|
A=rbA;
|
|
B=rbB;
|
|
A->add_constraint(this,0);
|
|
B->add_constraint(this,1);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Generic6DOFJointSW::calculateAngleInfo()
|
|
{
|
|
Matrix3 relative_frame = m_calculatedTransformA.basis.inverse()*m_calculatedTransformB.basis;
|
|
|
|
matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
|
|
|
|
|
|
|
|
// in euler angle mode we do not actually constrain the angular velocity
|
|
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
|
|
//
|
|
// to get constrain w2-w1 along ...not
|
|
// ------ --------------------- ------
|
|
// d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
|
|
// d(angle[1])/dt = 0 ax[1]
|
|
// d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
|
|
//
|
|
// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
|
|
// to prove the result for angle[0], write the expression for angle[0] from
|
|
// GetInfo1 then take the derivative. to prove this for angle[2] it is
|
|
// easier to take the euler rate expression for d(angle[2])/dt with respect
|
|
// to the components of w and set that to 0.
|
|
|
|
Vector3 axis0 = m_calculatedTransformB.basis.get_axis(0);
|
|
Vector3 axis2 = m_calculatedTransformA.basis.get_axis(2);
|
|
|
|
m_calculatedAxis[1] = axis2.cross(axis0);
|
|
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
|
|
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
|
|
|
|
|
|
// if(m_debugDrawer)
|
|
// {
|
|
//
|
|
// char buff[300];
|
|
// sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ",
|
|
// m_calculatedAxisAngleDiff[0],
|
|
// m_calculatedAxisAngleDiff[1],
|
|
// m_calculatedAxisAngleDiff[2]);
|
|
// m_debugDrawer->reportErrorWarning(buff);
|
|
// }
|
|
|
|
}
|
|
|
|
void Generic6DOFJointSW::calculateTransforms()
|
|
{
|
|
m_calculatedTransformA = A->get_transform() * m_frameInA;
|
|
m_calculatedTransformB = B->get_transform() * m_frameInB;
|
|
|
|
calculateAngleInfo();
|
|
}
|
|
|
|
|
|
void Generic6DOFJointSW::buildLinearJacobian(
|
|
JacobianEntrySW & jacLinear,const Vector3 & normalWorld,
|
|
const Vector3 & pivotAInW,const Vector3 & pivotBInW)
|
|
{
|
|
memnew_placement(&jacLinear, JacobianEntrySW(
|
|
A->get_transform().basis.transposed(),
|
|
B->get_transform().basis.transposed(),
|
|
pivotAInW - A->get_transform().origin,
|
|
pivotBInW - B->get_transform().origin,
|
|
normalWorld,
|
|
A->get_inv_inertia(),
|
|
A->get_inv_mass(),
|
|
B->get_inv_inertia(),
|
|
B->get_inv_mass()));
|
|
|
|
}
|
|
|
|
void Generic6DOFJointSW::buildAngularJacobian(
|
|
JacobianEntrySW & jacAngular,const Vector3 & jointAxisW)
|
|
{
|
|
memnew_placement(&jacAngular, JacobianEntrySW(jointAxisW,
|
|
A->get_transform().basis.transposed(),
|
|
B->get_transform().basis.transposed(),
|
|
A->get_inv_inertia(),
|
|
B->get_inv_inertia()));
|
|
|
|
}
|
|
|
|
bool Generic6DOFJointSW::testAngularLimitMotor(int axis_index)
|
|
{
|
|
real_t angle = m_calculatedAxisAngleDiff[axis_index];
|
|
|
|
//test limits
|
|
m_angularLimits[axis_index].testLimitValue(angle);
|
|
return m_angularLimits[axis_index].needApplyTorques();
|
|
}
|
|
|
|
bool Generic6DOFJointSW::setup(float p_step) {
|
|
|
|
// Clear accumulated impulses for the next simulation step
|
|
m_linearLimits.m_accumulatedImpulse=Vector3(real_t(0.), real_t(0.), real_t(0.));
|
|
int i;
|
|
for(i = 0; i < 3; i++)
|
|
{
|
|
m_angularLimits[i].m_accumulatedImpulse = real_t(0.);
|
|
}
|
|
//calculates transform
|
|
calculateTransforms();
|
|
|
|
// const Vector3& pivotAInW = m_calculatedTransformA.origin;
|
|
// const Vector3& pivotBInW = m_calculatedTransformB.origin;
|
|
calcAnchorPos();
|
|
Vector3 pivotAInW = m_AnchorPos;
|
|
Vector3 pivotBInW = m_AnchorPos;
|
|
|
|
// not used here
|
|
// Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
|
|
// Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;
|
|
|
|
Vector3 normalWorld;
|
|
//linear part
|
|
for (i=0;i<3;i++)
|
|
{
|
|
if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i))
|
|
{
|
|
if (m_useLinearReferenceFrameA)
|
|
normalWorld = m_calculatedTransformA.basis.get_axis(i);
|
|
else
|
|
normalWorld = m_calculatedTransformB.basis.get_axis(i);
|
|
|
|
buildLinearJacobian(
|
|
m_jacLinear[i],normalWorld ,
|
|
pivotAInW,pivotBInW);
|
|
|
|
}
|
|
}
|
|
|
|
// angular part
|
|
for (i=0;i<3;i++)
|
|
{
|
|
//calculates error angle
|
|
if (m_angularLimits[i].m_enableLimit && testAngularLimitMotor(i))
|
|
{
|
|
normalWorld = this->getAxis(i);
|
|
// Create angular atom
|
|
buildAngularJacobian(m_jacAng[i],normalWorld);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Generic6DOFJointSW::solve(real_t timeStep)
|
|
{
|
|
m_timeStep = timeStep;
|
|
|
|
//calculateTransforms();
|
|
|
|
int i;
|
|
|
|
// linear
|
|
|
|
Vector3 pointInA = m_calculatedTransformA.origin;
|
|
Vector3 pointInB = m_calculatedTransformB.origin;
|
|
|
|
real_t jacDiagABInv;
|
|
Vector3 linear_axis;
|
|
for (i=0;i<3;i++)
|
|
{
|
|
if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i))
|
|
{
|
|
jacDiagABInv = real_t(1.) / m_jacLinear[i].getDiagonal();
|
|
|
|
if (m_useLinearReferenceFrameA)
|
|
linear_axis = m_calculatedTransformA.basis.get_axis(i);
|
|
else
|
|
linear_axis = m_calculatedTransformB.basis.get_axis(i);
|
|
|
|
m_linearLimits.solveLinearAxis(
|
|
m_timeStep,
|
|
jacDiagABInv,
|
|
A,pointInA,
|
|
B,pointInB,
|
|
i,linear_axis, m_AnchorPos);
|
|
|
|
}
|
|
}
|
|
|
|
// angular
|
|
Vector3 angular_axis;
|
|
real_t angularJacDiagABInv;
|
|
for (i=0;i<3;i++)
|
|
{
|
|
if (m_angularLimits[i].m_enableLimit && m_angularLimits[i].needApplyTorques())
|
|
{
|
|
|
|
// get axis
|
|
angular_axis = getAxis(i);
|
|
|
|
angularJacDiagABInv = real_t(1.) / m_jacAng[i].getDiagonal();
|
|
|
|
m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, A,B);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Generic6DOFJointSW::updateRHS(real_t timeStep)
|
|
{
|
|
(void)timeStep;
|
|
|
|
}
|
|
|
|
Vector3 Generic6DOFJointSW::getAxis(int axis_index) const
|
|
{
|
|
return m_calculatedAxis[axis_index];
|
|
}
|
|
|
|
real_t Generic6DOFJointSW::getAngle(int axis_index) const
|
|
{
|
|
return m_calculatedAxisAngleDiff[axis_index];
|
|
}
|
|
|
|
void Generic6DOFJointSW::calcAnchorPos(void)
|
|
{
|
|
real_t imA = A->get_inv_mass();
|
|
real_t imB = B->get_inv_mass();
|
|
real_t weight;
|
|
if(imB == real_t(0.0))
|
|
{
|
|
weight = real_t(1.0);
|
|
}
|
|
else
|
|
{
|
|
weight = imA / (imA + imB);
|
|
}
|
|
const Vector3& pA = m_calculatedTransformA.origin;
|
|
const Vector3& pB = m_calculatedTransformB.origin;
|
|
m_AnchorPos = pA * weight + pB * (real_t(1.0) - weight);
|
|
return;
|
|
} // Generic6DOFJointSW::calcAnchorPos()
|
|
|
|
|
|
void Generic6DOFJointSW::set_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param, float p_value) {
|
|
|
|
ERR_FAIL_INDEX(p_axis,3);
|
|
switch(p_param) {
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {
|
|
|
|
m_linearLimits.m_lowerLimit[p_axis]=p_value;
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {
|
|
|
|
m_linearLimits.m_upperLimit[p_axis]=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
|
|
|
|
m_linearLimits.m_limitSoftness[p_axis]=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION: {
|
|
|
|
m_linearLimits.m_restitution[p_axis]=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING: {
|
|
|
|
m_linearLimits.m_damping[p_axis]=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {
|
|
|
|
m_angularLimits[p_axis].m_loLimit=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {
|
|
|
|
m_angularLimits[p_axis].m_hiLimit=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
|
|
|
|
m_angularLimits[p_axis].m_limitSoftness;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING: {
|
|
|
|
m_angularLimits[p_axis].m_damping=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION: {
|
|
|
|
m_angularLimits[p_axis].m_bounce=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
|
|
|
|
m_angularLimits[p_axis].m_maxLimitForce=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP: {
|
|
|
|
m_angularLimits[p_axis].m_ERP=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {
|
|
|
|
m_angularLimits[p_axis].m_targetVelocity=p_value;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {
|
|
|
|
m_angularLimits[p_axis].m_maxLimitForce=p_value;
|
|
|
|
} break;
|
|
}
|
|
}
|
|
|
|
float Generic6DOFJointSW::get_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param) const{
|
|
ERR_FAIL_INDEX_V(p_axis,3,0);
|
|
switch(p_param) {
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {
|
|
|
|
return m_linearLimits.m_lowerLimit[p_axis];
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {
|
|
|
|
return m_linearLimits.m_upperLimit[p_axis];
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
|
|
|
|
return m_linearLimits.m_limitSoftness[p_axis];
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION: {
|
|
|
|
return m_linearLimits.m_restitution[p_axis];
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING: {
|
|
|
|
return m_linearLimits.m_damping[p_axis];
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {
|
|
|
|
return m_angularLimits[p_axis].m_loLimit;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {
|
|
|
|
return m_angularLimits[p_axis].m_hiLimit;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
|
|
|
|
return m_angularLimits[p_axis].m_limitSoftness;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING: {
|
|
|
|
return m_angularLimits[p_axis].m_damping;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION: {
|
|
|
|
return m_angularLimits[p_axis].m_bounce;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
|
|
|
|
return m_angularLimits[p_axis].m_maxLimitForce;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP: {
|
|
|
|
return m_angularLimits[p_axis].m_ERP;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {
|
|
|
|
return m_angularLimits[p_axis].m_targetVelocity;
|
|
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {
|
|
|
|
return m_angularLimits[p_axis].m_maxLimitForce;
|
|
|
|
} break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void Generic6DOFJointSW::set_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value){
|
|
|
|
ERR_FAIL_INDEX(p_axis,3);
|
|
|
|
switch(p_flag) {
|
|
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {
|
|
|
|
m_linearLimits.enable_limit[p_axis]=p_value;
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {
|
|
|
|
m_angularLimits[p_axis].m_enableLimit=p_value;
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {
|
|
|
|
m_angularLimits[p_axis].m_enableMotor=p_value;
|
|
} break;
|
|
}
|
|
|
|
|
|
}
|
|
bool Generic6DOFJointSW::get_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag) const{
|
|
|
|
ERR_FAIL_INDEX_V(p_axis,3,0);
|
|
switch(p_flag) {
|
|
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {
|
|
|
|
return m_linearLimits.enable_limit[p_axis];
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {
|
|
|
|
return m_angularLimits[p_axis].m_enableLimit;
|
|
} break;
|
|
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {
|
|
|
|
return m_angularLimits[p_axis].m_enableMotor;
|
|
} break;
|
|
}
|
|
|
|
return 0;
|
|
}
|