virtualx-engine/core/io/http_client_tcp.cpp

788 lines
22 KiB
C++

/*************************************************************************/
/* http_client_tcp.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef JAVASCRIPT_ENABLED
#include "http_client_tcp.h"
#include "core/io/stream_peer_ssl.h"
#include "core/version.h"
HTTPClient *HTTPClientTCP::_create_func() {
return memnew(HTTPClientTCP);
}
Error HTTPClientTCP::connect_to_host(const String &p_host, int p_port, bool p_ssl, bool p_verify_host) {
close();
conn_port = p_port;
conn_host = p_host;
ip_candidates.clear();
ssl = p_ssl;
ssl_verify_host = p_verify_host;
String host_lower = conn_host.to_lower();
if (host_lower.begins_with("http://")) {
conn_host = conn_host.substr(7, conn_host.length() - 7);
} else if (host_lower.begins_with("https://")) {
ssl = true;
conn_host = conn_host.substr(8, conn_host.length() - 8);
}
ERR_FAIL_COND_V(conn_host.length() < HOST_MIN_LEN, ERR_INVALID_PARAMETER);
if (conn_port < 0) {
if (ssl) {
conn_port = PORT_HTTPS;
} else {
conn_port = PORT_HTTP;
}
}
connection = tcp_connection;
if (ssl && https_proxy_port != -1) {
proxy_client.instantiate(); // Needs proxy negotiation.
server_host = https_proxy_host;
server_port = https_proxy_port;
} else if (!ssl && http_proxy_port != -1) {
server_host = http_proxy_host;
server_port = http_proxy_port;
} else {
server_host = conn_host;
server_port = conn_port;
}
if (server_host.is_valid_ip_address()) {
// Host contains valid IP.
Error err = tcp_connection->connect_to_host(IPAddress(server_host), server_port);
if (err) {
status = STATUS_CANT_CONNECT;
return err;
}
status = STATUS_CONNECTING;
} else {
// Host contains hostname and needs to be resolved to IP.
resolving = IP::get_singleton()->resolve_hostname_queue_item(server_host);
status = STATUS_RESOLVING;
}
return OK;
}
void HTTPClientTCP::set_connection(const Ref<StreamPeer> &p_connection) {
ERR_FAIL_COND_MSG(p_connection.is_null(), "Connection is not a reference to a valid StreamPeer object.");
if (ssl) {
ERR_FAIL_NULL_MSG(Object::cast_to<StreamPeerSSL>(p_connection.ptr()),
"Connection is not a reference to a valid StreamPeerSSL object.");
}
if (connection == p_connection) {
return;
}
close();
connection = p_connection;
status = STATUS_CONNECTED;
}
Ref<StreamPeer> HTTPClientTCP::get_connection() const {
return connection;
}
static bool _check_request_url(HTTPClientTCP::Method p_method, const String &p_url) {
switch (p_method) {
case HTTPClientTCP::METHOD_CONNECT: {
// Authority in host:port format, as in RFC7231.
int pos = p_url.find_char(':');
return 0 < pos && pos < p_url.length() - 1;
}
case HTTPClientTCP::METHOD_OPTIONS: {
if (p_url == "*") {
return true;
}
[[fallthrough]];
}
default:
// Absolute path or absolute URL.
return p_url.begins_with("/") || p_url.begins_with("http://") || p_url.begins_with("https://");
}
}
Error HTTPClientTCP::request(Method p_method, const String &p_url, const Vector<String> &p_headers, const uint8_t *p_body, int p_body_size) {
ERR_FAIL_INDEX_V(p_method, METHOD_MAX, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(!_check_request_url(p_method, p_url), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(status != STATUS_CONNECTED, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(connection.is_null(), ERR_INVALID_DATA);
Error err = verify_headers(p_headers);
if (err) {
return err;
}
String uri = p_url;
if (!ssl && http_proxy_port != -1) {
uri = vformat("http://%s:%d%s", conn_host, conn_port, p_url);
}
String request = String(_methods[p_method]) + " " + uri + " HTTP/1.1\r\n";
bool add_host = true;
bool add_clen = p_body_size > 0;
bool add_uagent = true;
bool add_accept = true;
for (int i = 0; i < p_headers.size(); i++) {
request += p_headers[i] + "\r\n";
if (add_host && p_headers[i].findn("Host:") == 0) {
add_host = false;
}
if (add_clen && p_headers[i].findn("Content-Length:") == 0) {
add_clen = false;
}
if (add_uagent && p_headers[i].findn("User-Agent:") == 0) {
add_uagent = false;
}
if (add_accept && p_headers[i].findn("Accept:") == 0) {
add_accept = false;
}
}
if (add_host) {
if ((ssl && conn_port == PORT_HTTPS) || (!ssl && conn_port == PORT_HTTP)) {
// Don't append the standard ports.
request += "Host: " + conn_host + "\r\n";
} else {
request += "Host: " + conn_host + ":" + itos(conn_port) + "\r\n";
}
}
if (add_clen) {
request += "Content-Length: " + itos(p_body_size) + "\r\n";
// Should it add utf8 encoding?
}
if (add_uagent) {
request += "User-Agent: GodotEngine/" + String(VERSION_FULL_BUILD) + " (" + OS::get_singleton()->get_name() + ")\r\n";
}
if (add_accept) {
request += "Accept: */*\r\n";
}
request += "\r\n";
CharString cs = request.utf8();
request_buffer->clear();
request_buffer->put_data((const uint8_t *)cs.get_data(), cs.length());
if (p_body_size > 0) {
request_buffer->put_data(p_body, p_body_size);
}
request_buffer->seek(0);
status = STATUS_REQUESTING;
head_request = p_method == METHOD_HEAD;
return OK;
}
bool HTTPClientTCP::has_response() const {
return response_headers.size() != 0;
}
bool HTTPClientTCP::is_response_chunked() const {
return chunked;
}
int HTTPClientTCP::get_response_code() const {
return response_num;
}
Error HTTPClientTCP::get_response_headers(List<String> *r_response) {
if (!response_headers.size()) {
return ERR_INVALID_PARAMETER;
}
for (int i = 0; i < response_headers.size(); i++) {
r_response->push_back(response_headers[i]);
}
response_headers.clear();
return OK;
}
void HTTPClientTCP::close() {
if (tcp_connection->get_status() != StreamPeerTCP::STATUS_NONE) {
tcp_connection->disconnect_from_host();
}
connection.unref();
proxy_client.unref();
status = STATUS_DISCONNECTED;
head_request = false;
if (resolving != IP::RESOLVER_INVALID_ID) {
IP::get_singleton()->erase_resolve_item(resolving);
resolving = IP::RESOLVER_INVALID_ID;
}
ip_candidates.clear();
response_headers.clear();
response_str.clear();
request_buffer->clear();
body_size = -1;
body_left = 0;
chunk_left = 0;
chunk_trailer_part = false;
read_until_eof = false;
response_num = 0;
handshaking = false;
}
Error HTTPClientTCP::poll() {
switch (status) {
case STATUS_RESOLVING: {
ERR_FAIL_COND_V(resolving == IP::RESOLVER_INVALID_ID, ERR_BUG);
IP::ResolverStatus rstatus = IP::get_singleton()->get_resolve_item_status(resolving);
switch (rstatus) {
case IP::RESOLVER_STATUS_WAITING:
return OK; // Still resolving.
case IP::RESOLVER_STATUS_DONE: {
ip_candidates = IP::get_singleton()->get_resolve_item_addresses(resolving);
IP::get_singleton()->erase_resolve_item(resolving);
resolving = IP::RESOLVER_INVALID_ID;
Error err = ERR_BUG; // Should be at least one entry.
while (ip_candidates.size() > 0) {
err = tcp_connection->connect_to_host(ip_candidates.pop_front(), server_port);
if (err == OK) {
break;
}
}
if (err) {
status = STATUS_CANT_CONNECT;
return err;
}
status = STATUS_CONNECTING;
} break;
case IP::RESOLVER_STATUS_NONE:
case IP::RESOLVER_STATUS_ERROR: {
IP::get_singleton()->erase_resolve_item(resolving);
resolving = IP::RESOLVER_INVALID_ID;
close();
status = STATUS_CANT_RESOLVE;
return ERR_CANT_RESOLVE;
} break;
}
} break;
case STATUS_CONNECTING: {
StreamPeerTCP::Status s = tcp_connection->get_status();
switch (s) {
case StreamPeerTCP::STATUS_CONNECTING: {
return OK;
} break;
case StreamPeerTCP::STATUS_CONNECTED: {
if (ssl && proxy_client.is_valid()) {
Error err = proxy_client->poll();
if (err == ERR_UNCONFIGURED) {
proxy_client->set_connection(tcp_connection);
const Vector<String> headers;
err = proxy_client->request(METHOD_CONNECT, vformat("%s:%d", conn_host, conn_port), headers, nullptr, 0);
if (err != OK) {
status = STATUS_CANT_CONNECT;
return err;
}
} else if (err != OK) {
status = STATUS_CANT_CONNECT;
return err;
}
switch (proxy_client->get_status()) {
case STATUS_REQUESTING: {
return OK;
} break;
case STATUS_BODY: {
proxy_client->read_response_body_chunk();
return OK;
} break;
case STATUS_CONNECTED: {
if (proxy_client->get_response_code() != RESPONSE_OK) {
status = STATUS_CANT_CONNECT;
return ERR_CANT_CONNECT;
}
proxy_client.unref();
return OK;
}
case STATUS_DISCONNECTED:
case STATUS_RESOLVING:
case STATUS_CONNECTING: {
status = STATUS_CANT_CONNECT;
ERR_FAIL_V(ERR_BUG);
} break;
default: {
status = STATUS_CANT_CONNECT;
return ERR_CANT_CONNECT;
} break;
}
} else if (ssl) {
Ref<StreamPeerSSL> ssl;
if (!handshaking) {
// Connect the StreamPeerSSL and start handshaking.
ssl = Ref<StreamPeerSSL>(StreamPeerSSL::create());
ssl->set_blocking_handshake_enabled(false);
Error err = ssl->connect_to_stream(tcp_connection, ssl_verify_host, conn_host);
if (err != OK) {
close();
status = STATUS_SSL_HANDSHAKE_ERROR;
return ERR_CANT_CONNECT;
}
connection = ssl;
handshaking = true;
} else {
// We are already handshaking, which means we can use your already active SSL connection.
ssl = static_cast<Ref<StreamPeerSSL>>(connection);
if (ssl.is_null()) {
close();
status = STATUS_SSL_HANDSHAKE_ERROR;
return ERR_CANT_CONNECT;
}
ssl->poll(); // Try to finish the handshake.
}
if (ssl->get_status() == StreamPeerSSL::STATUS_CONNECTED) {
// Handshake has been successful.
handshaking = false;
ip_candidates.clear();
status = STATUS_CONNECTED;
return OK;
} else if (ssl->get_status() != StreamPeerSSL::STATUS_HANDSHAKING) {
// Handshake has failed.
close();
status = STATUS_SSL_HANDSHAKE_ERROR;
return ERR_CANT_CONNECT;
}
// ... we will need to poll more for handshake to finish.
} else {
ip_candidates.clear();
status = STATUS_CONNECTED;
}
return OK;
} break;
case StreamPeerTCP::STATUS_ERROR:
case StreamPeerTCP::STATUS_NONE: {
Error err = ERR_CANT_CONNECT;
while (ip_candidates.size() > 0) {
tcp_connection->disconnect_from_host();
err = tcp_connection->connect_to_host(ip_candidates.pop_front(), server_port);
if (err == OK) {
return OK;
}
}
close();
status = STATUS_CANT_CONNECT;
return err;
} break;
}
} break;
case STATUS_BODY:
case STATUS_CONNECTED: {
// Check if we are still connected.
if (ssl) {
Ref<StreamPeerSSL> tmp = connection;
tmp->poll();
if (tmp->get_status() != StreamPeerSSL::STATUS_CONNECTED) {
status = STATUS_CONNECTION_ERROR;
return ERR_CONNECTION_ERROR;
}
} else if (tcp_connection->get_status() != StreamPeerTCP::STATUS_CONNECTED) {
status = STATUS_CONNECTION_ERROR;
return ERR_CONNECTION_ERROR;
}
// Connection established, requests can now be made.
return OK;
} break;
case STATUS_REQUESTING: {
if (request_buffer->get_available_bytes()) {
int avail = request_buffer->get_available_bytes();
int pos = request_buffer->get_position();
const Vector<uint8_t> data = request_buffer->get_data_array();
int wrote = 0;
Error err;
if (blocking) {
err = connection->put_data(data.ptr() + pos, avail);
wrote += avail;
} else {
err = connection->put_partial_data(data.ptr() + pos, avail, wrote);
}
if (err != OK) {
close();
status = STATUS_CONNECTION_ERROR;
return ERR_CONNECTION_ERROR;
}
pos += wrote;
request_buffer->seek(pos);
if (avail - wrote > 0) {
return OK;
}
request_buffer->clear();
}
while (true) {
uint8_t byte;
int rec = 0;
Error err = _get_http_data(&byte, 1, rec);
if (err != OK) {
close();
status = STATUS_CONNECTION_ERROR;
return ERR_CONNECTION_ERROR;
}
if (rec == 0) {
return OK; // Still requesting, keep trying!
}
response_str.push_back(byte);
int rs = response_str.size();
if (
(rs >= 2 && response_str[rs - 2] == '\n' && response_str[rs - 1] == '\n') ||
(rs >= 4 && response_str[rs - 4] == '\r' && response_str[rs - 3] == '\n' && response_str[rs - 2] == '\r' && response_str[rs - 1] == '\n')) {
// End of response, parse.
response_str.push_back(0);
String response;
response.parse_utf8((const char *)response_str.ptr());
Vector<String> responses = response.split("\n");
body_size = -1;
chunked = false;
body_left = 0;
chunk_left = 0;
chunk_trailer_part = false;
read_until_eof = false;
response_str.clear();
response_headers.clear();
response_num = RESPONSE_OK;
// Per the HTTP 1.1 spec, keep-alive is the default.
// Not following that specification breaks standard implementations.
// Broken web servers should be fixed.
bool keep_alive = true;
for (int i = 0; i < responses.size(); i++) {
String header = responses[i].strip_edges();
String s = header.to_lower();
if (s.length() == 0) {
continue;
}
if (s.begins_with("content-length:")) {
body_size = s.substr(s.find(":") + 1, s.length()).strip_edges().to_int();
body_left = body_size;
} else if (s.begins_with("transfer-encoding:")) {
String encoding = header.substr(header.find(":") + 1, header.length()).strip_edges();
if (encoding == "chunked") {
chunked = true;
}
} else if (s.begins_with("connection: close")) {
keep_alive = false;
}
if (i == 0 && responses[i].begins_with("HTTP")) {
String num = responses[i].get_slicec(' ', 1);
response_num = num.to_int();
} else {
response_headers.push_back(header);
}
}
// This is a HEAD request, we won't receive anything.
if (head_request) {
body_size = 0;
body_left = 0;
}
if (body_size != -1 || chunked) {
status = STATUS_BODY;
} else if (!keep_alive) {
read_until_eof = true;
status = STATUS_BODY;
} else {
status = STATUS_CONNECTED;
}
return OK;
}
}
} break;
case STATUS_DISCONNECTED: {
return ERR_UNCONFIGURED;
} break;
case STATUS_CONNECTION_ERROR:
case STATUS_SSL_HANDSHAKE_ERROR: {
return ERR_CONNECTION_ERROR;
} break;
case STATUS_CANT_CONNECT: {
return ERR_CANT_CONNECT;
} break;
case STATUS_CANT_RESOLVE: {
return ERR_CANT_RESOLVE;
} break;
}
return OK;
}
int64_t HTTPClientTCP::get_response_body_length() const {
return body_size;
}
PackedByteArray HTTPClientTCP::read_response_body_chunk() {
ERR_FAIL_COND_V(status != STATUS_BODY, PackedByteArray());
PackedByteArray ret;
Error err = OK;
if (chunked) {
while (true) {
if (chunk_trailer_part) {
// We need to consume the trailer part too or keep-alive will break.
uint8_t b;
int rec = 0;
err = _get_http_data(&b, 1, rec);
if (rec == 0) {
break;
}
chunk.push_back(b);
int cs = chunk.size();
if ((cs >= 2 && chunk[cs - 2] == '\r' && chunk[cs - 1] == '\n')) {
if (cs == 2) {
// Finally over.
chunk_trailer_part = false;
status = STATUS_CONNECTED;
chunk.clear();
break;
} else {
// We do not process nor return the trailer data.
chunk.clear();
}
}
} else if (chunk_left == 0) {
// Reading length.
uint8_t b;
int rec = 0;
err = _get_http_data(&b, 1, rec);
if (rec == 0) {
break;
}
chunk.push_back(b);
if (chunk.size() > 32) {
ERR_PRINT("HTTP Invalid chunk hex len");
status = STATUS_CONNECTION_ERROR;
break;
}
if (chunk.size() > 2 && chunk[chunk.size() - 2] == '\r' && chunk[chunk.size() - 1] == '\n') {
int len = 0;
for (int i = 0; i < chunk.size() - 2; i++) {
char c = chunk[i];
int v = 0;
if (is_digit(c)) {
v = c - '0';
} else if (c >= 'a' && c <= 'f') {
v = c - 'a' + 10;
} else if (c >= 'A' && c <= 'F') {
v = c - 'A' + 10;
} else {
ERR_PRINT("HTTP Chunk len not in hex!!");
status = STATUS_CONNECTION_ERROR;
break;
}
len <<= 4;
len |= v;
if (len > (1 << 24)) {
ERR_PRINT("HTTP Chunk too big!! >16mb");
status = STATUS_CONNECTION_ERROR;
break;
}
}
if (len == 0) {
// End reached!
chunk_trailer_part = true;
chunk.clear();
break;
}
chunk_left = len + 2;
chunk.resize(chunk_left);
}
} else {
int rec = 0;
err = _get_http_data(&chunk.write[chunk.size() - chunk_left], chunk_left, rec);
if (rec == 0) {
break;
}
chunk_left -= rec;
if (chunk_left == 0) {
if (chunk[chunk.size() - 2] != '\r' || chunk[chunk.size() - 1] != '\n') {
ERR_PRINT("HTTP Invalid chunk terminator (not \\r\\n)");
status = STATUS_CONNECTION_ERROR;
break;
}
ret.resize(chunk.size() - 2);
uint8_t *w = ret.ptrw();
memcpy(w, chunk.ptr(), chunk.size() - 2);
chunk.clear();
}
break;
}
}
} else {
int to_read = !read_until_eof ? MIN(body_left, read_chunk_size) : read_chunk_size;
ret.resize(to_read);
int _offset = 0;
while (to_read > 0) {
int rec = 0;
{
uint8_t *w = ret.ptrw();
err = _get_http_data(w + _offset, to_read, rec);
}
if (rec <= 0) { // Ended up reading less.
ret.resize(_offset);
break;
} else {
_offset += rec;
to_read -= rec;
if (!read_until_eof) {
body_left -= rec;
}
}
if (err != OK) {
ret.resize(_offset);
break;
}
}
}
if (err != OK) {
close();
if (err == ERR_FILE_EOF) {
status = STATUS_DISCONNECTED; // Server disconnected.
} else {
status = STATUS_CONNECTION_ERROR;
}
} else if (body_left == 0 && !chunked && !read_until_eof) {
status = STATUS_CONNECTED;
}
return ret;
}
HTTPClientTCP::Status HTTPClientTCP::get_status() const {
return status;
}
void HTTPClientTCP::set_blocking_mode(bool p_enable) {
blocking = p_enable;
}
bool HTTPClientTCP::is_blocking_mode_enabled() const {
return blocking;
}
Error HTTPClientTCP::_get_http_data(uint8_t *p_buffer, int p_bytes, int &r_received) {
if (blocking) {
// We can't use StreamPeer.get_data, since when reaching EOF we will get an
// error without knowing how many bytes we received.
Error err = ERR_FILE_EOF;
int read = 0;
int left = p_bytes;
r_received = 0;
while (left > 0) {
err = connection->get_partial_data(p_buffer + r_received, left, read);
if (err == OK) {
r_received += read;
} else if (err == ERR_FILE_EOF) {
r_received += read;
return err;
} else {
return err;
}
left -= read;
}
return err;
} else {
return connection->get_partial_data(p_buffer, p_bytes, r_received);
}
}
void HTTPClientTCP::set_read_chunk_size(int p_size) {
ERR_FAIL_COND(p_size < 256 || p_size > (1 << 24));
read_chunk_size = p_size;
}
int HTTPClientTCP::get_read_chunk_size() const {
return read_chunk_size;
}
void HTTPClientTCP::set_http_proxy(const String &p_host, int p_port) {
if (p_host.is_empty() || p_port == -1) {
http_proxy_host = "";
http_proxy_port = -1;
} else {
http_proxy_host = p_host;
http_proxy_port = p_port;
}
}
void HTTPClientTCP::set_https_proxy(const String &p_host, int p_port) {
if (p_host.is_empty() || p_port == -1) {
https_proxy_host = "";
https_proxy_port = -1;
} else {
https_proxy_host = p_host;
https_proxy_port = p_port;
}
}
HTTPClientTCP::HTTPClientTCP() {
tcp_connection.instantiate();
request_buffer.instantiate();
}
HTTPClient *(*HTTPClient::_create)() = HTTPClientTCP::_create_func;
#endif // #ifndef JAVASCRIPT_ENABLED