virtualx-engine/drivers/gles2/shaders/scene.glsl
2018-10-02 19:08:33 -03:00

2065 lines
51 KiB
GLSL

/* clang-format off */
[vertex]
#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision highp float;
precision highp int;
#endif
#include "stdlib.glsl"
#define SHADER_IS_SRGB true
#define M_PI 3.14159265359
//
// attributes
//
attribute highp vec4 vertex_attrib; // attrib:0
/* clang-format on */
attribute vec3 normal_attrib; // attrib:1
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
attribute vec4 tangent_attrib; // attrib:2
#endif
#if defined(ENABLE_COLOR_INTERP)
attribute vec4 color_attrib; // attrib:3
#endif
#if defined(ENABLE_UV_INTERP)
attribute vec2 uv_attrib; // attrib:4
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
attribute vec2 uv2_attrib; // attrib:5
#endif
#ifdef USE_SKELETON
#ifdef USE_SKELETON_SOFTWARE
attribute highp vec4 bone_transform_row_0; // attrib:13
attribute highp vec4 bone_transform_row_1; // attrib:14
attribute highp vec4 bone_transform_row_2; // attrib:15
#else
attribute vec4 bone_ids; // attrib:6
attribute highp vec4 bone_weights; // attrib:7
uniform highp sampler2D bone_transforms; // texunit:-1
uniform ivec2 skeleton_texture_size;
#endif
#endif
#ifdef USE_INSTANCING
attribute highp vec4 instance_xform_row_0; // attrib:8
attribute highp vec4 instance_xform_row_1; // attrib:9
attribute highp vec4 instance_xform_row_2; // attrib:10
attribute highp vec4 instance_color; // attrib:11
attribute highp vec4 instance_custom_data; // attrib:12
#endif
//
// uniforms
//
uniform mat4 camera_matrix;
uniform mat4 camera_inverse_matrix;
uniform mat4 projection_matrix;
uniform mat4 projection_inverse_matrix;
uniform mat4 world_transform;
uniform highp float time;
uniform float normal_mult;
#ifdef RENDER_DEPTH
uniform float light_bias;
uniform float light_normal_bias;
#endif
//
// varyings
//
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
varying vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
varying vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
varying vec2 uv2_interp;
#endif
/* clang-format off */
VERTEX_SHADER_GLOBALS
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
varying highp float dp_clip;
uniform highp float shadow_dual_paraboloid_render_zfar;
uniform highp float shadow_dual_paraboloid_render_side;
#endif
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
uniform highp mat4 light_shadow_matrix;
varying highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
uniform highp mat4 light_shadow_matrix2;
varying highp vec4 shadow_coord2;
#endif
#if defined(LIGHT_USE_PSSM4)
uniform highp mat4 light_shadow_matrix3;
uniform highp mat4 light_shadow_matrix4;
varying highp vec4 shadow_coord3;
varying highp vec4 shadow_coord4;
#endif
#endif
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
varying highp vec3 diffuse_interp;
varying highp vec3 specular_interp;
// general for all lights
uniform vec4 light_color;
uniform float light_specular;
// directional
uniform vec3 light_direction;
// omni
uniform vec3 light_position;
uniform float light_range;
uniform float light_attenuation;
// spot
uniform float light_spot_attenuation;
uniform float light_spot_range;
uniform float light_spot_angle;
void light_compute(
vec3 N,
vec3 L,
vec3 V,
vec3 light_color,
vec3 attenuation,
float roughness) {
//this makes lights behave closer to linear, but then addition of lights looks bad
//better left disabled
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
/*
#define SRGB_APPROX(m_var) {\
float S1 = sqrt(m_var);\
float S2 = sqrt(S1);\
float S3 = sqrt(S2);\
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
}
*/
#define SRGB_APPROX(m_var)
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#else
// lambert by default for everything else
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
SRGB_APPROX(diffuse_brdf_NL)
diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
if (roughness > 0.0) {
// D
float specular_brdf_NL = 0.0;
#if !defined(SPECULAR_DISABLED)
//normalized blinn always unless disabled
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cVdotH = max(dot(V, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 8.0) / (8.0 * 3.141592654);
specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
#endif
SRGB_APPROX(specular_brdf_NL)
specular_interp += specular_brdf_NL * light_color * attenuation;
}
}
#endif
#ifdef USE_VERTEX_LIGHTING
#ifdef USE_REFLECTION_PROBE1
uniform mat4 refprobe1_local_matrix;
varying mediump vec4 refprobe1_reflection_normal_blend;
uniform vec3 refprobe1_box_extents;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe1_ambient_normal;
#endif
#endif //reflection probe1
#ifdef USE_REFLECTION_PROBE2
uniform mat4 refprobe2_local_matrix;
varying mediump vec4 refprobe2_reflection_normal_blend;
uniform vec3 refprobe2_box_extents;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe2_ambient_normal;
#endif
#endif //reflection probe2
#endif //vertex lighting for refprobes
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
varying vec4 fog_interp;
uniform mediump vec4 fog_color_base;
#ifdef LIGHT_MODE_DIRECTIONAL
uniform mediump vec4 fog_sun_color_amount;
#endif
uniform bool fog_transmit_enabled;
uniform mediump float fog_transmit_curve;
#ifdef FOG_DEPTH_ENABLED
uniform highp float fog_depth_begin;
uniform mediump float fog_depth_curve;
uniform mediump float fog_max_distance;
#endif
#ifdef FOG_HEIGHT_ENABLED
uniform highp float fog_height_min;
uniform highp float fog_height_max;
uniform mediump float fog_height_curve;
#endif
#endif //fog
void main() {
highp vec4 vertex = vertex_attrib;
mat4 world_matrix = world_transform;
#ifdef USE_INSTANCING
{
highp mat4 m = mat4(
instance_xform_row_0,
instance_xform_row_1,
instance_xform_row_2,
vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
vec3 normal = normal_attrib * normal_mult;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 tangent = tangent_attrib.xyz;
tangent *= normal_mult;
float binormalf = tangent_attrib.a;
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
#ifdef USE_INSTANCING
color_interp *= instance_color;
#endif
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = world_matrix * vertex;
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((world_matrix * vec4(tangent, 0.0)), xyz);
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
#ifdef USE_SKELETON
highp mat4 bone_transform = mat4(0.0);
#ifdef USE_SKELETON_SOFTWARE
// passing the transform as attributes
bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
#else
// look up transform from the "pose texture"
{
for (int i = 0; i < 4; i++) {
ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
highp mat4 b = mat4(
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
vec4(0.0, 0.0, 0.0, 1.0));
bone_transform += transpose(b) * bone_weights[i];
}
}
#endif
world_matrix = bone_transform * world_matrix;
#endif
#ifdef USE_INSTANCING
vec4 instance_custom = instance_custom_data;
#else
vec4 instance_custom = vec4(0.0);
#endif
mat4 modelview = camera_inverse_matrix * world_matrix;
float roughness = 1.0;
#define world_transform world_matrix
{
/* clang-format off */
VERTEX_SHADER_CODE
/* clang-format on */
}
vec4 outvec = vertex;
// use local coordinates
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = modelview * vertex;
normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = camera_inverse_matrix * vertex;
normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_DEPTH
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
vertex_interp.z *= shadow_dual_paraboloid_render_side;
normal_interp.z *= shadow_dual_paraboloid_render_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
highp float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#else
float z_ofs = light_bias;
z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
vertex_interp.z -= z_ofs;
#endif //dual parabolloid
#endif //depth
//vertex lighting
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
//vertex shaded version of lighting (more limited)
vec3 L;
vec3 light_att;
#ifdef LIGHT_MODE_OMNI
vec3 light_vec = light_position - vertex_interp;
float light_length = length(light_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 attenuation = vec3(omni_attenuation);
light_att = vec3(omni_attenuation);
} else {
light_att = vec3(0.0);
}
L = normalize(light_vec);
#endif
#ifdef LIGHT_MODE_SPOT
vec3 light_rel_vec = light_position - vertex_interp;
float light_length = length(light_rel_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 spot_dir = light_direction;
float spot_cutoff = light_spot_angle;
float angle = dot(-normalize(light_rel_vec), spot_dir);
if (angle > spot_cutoff) {
float scos = max(angle, spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
light_att = vec3(spot_attenuation);
} else {
light_att = vec3(0.0);
}
} else {
light_att = vec3(0.0);
}
L = normalize(light_rel_vec);
#endif
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 light_vec = -light_direction;
light_att = vec3(1.0); //no base attenuation
L = normalize(light_vec);
#endif
diffuse_interp = vec3(0.0);
specular_interp = vec3(0.0);
light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
#endif
//shadows (for both vertex and fragment)
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
vec4 vi4 = vec4(vertex_interp, 1.0);
shadow_coord = light_shadow_matrix * vi4;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
shadow_coord2 = light_shadow_matrix2 * vi4;
#endif
#if defined(LIGHT_USE_PSSM4)
shadow_coord3 = light_shadow_matrix3 * vi4;
shadow_coord4 = light_shadow_matrix4 * vi4;
#endif
#endif //use shadow and use lighting
#ifdef USE_VERTEX_LIGHTING
#ifdef USE_REFLECTION_PROBE1
{
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
{
vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
refprobe1_reflection_normal_blend.xyz = local_ref_vec;
refprobe1_reflection_normal_blend.a = blend;
}
#ifndef USE_LIGHTMAP
refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
}
#endif //USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
{
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
{
vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
refprobe2_reflection_normal_blend.xyz = local_ref_vec;
refprobe2_reflection_normal_blend.a = blend;
}
#ifndef USE_LIGHTMAP
refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
}
#endif //USE_REFLECTION_PROBE2
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
float fog_amount = 0.0;
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
#else
vec3 fog_color = fog_color_base.rgb;
#endif
#ifdef FOG_DEPTH_ENABLED
{
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve);
}
#endif
#ifdef FOG_HEIGHT_ENABLED
{
float y = (camera_matrix * vec4(vertex_interp, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
#endif
fog_interp = vec4(fog_color,fog_amount);
#endif //fog
#endif //use vertex lighting
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
}
/* clang-format off */
[fragment]
#extension GL_ARB_shader_texture_lod : enable
#ifndef GL_ARB_shader_texture_lod
#define texture2DLod(img, coord, lod) texture2D(img, coord)
#define textureCubeLod(img, coord, lod) textureCube(img, coord)
#endif
#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision mediump float;
precision highp int;
#endif
#include "stdlib.glsl"
#define M_PI 3.14159265359
#define SHADER_IS_SRGB true
//
// uniforms
//
uniform mat4 camera_matrix;
/* clang-format on */
uniform mat4 camera_inverse_matrix;
uniform mat4 projection_matrix;
uniform mat4 projection_inverse_matrix;
uniform mat4 world_transform;
uniform highp float time;
#if defined(SCREEN_UV_USED)
uniform vec2 screen_pixel_size;
#endif
// I think supporting this in GLES2 is difficult
// uniform highp sampler2D depth_buffer;
#if defined(SCREEN_TEXTURE_USED)
uniform highp sampler2D screen_texture; //texunit:-4
#endif
#ifdef USE_REFLECTION_PROBE1
#ifdef USE_VERTEX_LIGHTING
varying mediump vec4 refprobe1_reflection_normal_blend;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe1_ambient_normal;
#endif
#else
uniform bool refprobe1_use_box_project;
uniform vec3 refprobe1_box_extents;
uniform vec3 refprobe1_box_offset;
uniform mat4 refprobe1_local_matrix;
#endif //use vertex lighting
uniform bool refprobe1_exterior;
uniform highp samplerCube reflection_probe1; //texunit:-5
uniform float refprobe1_intensity;
uniform vec4 refprobe1_ambient;
#endif //USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
#ifdef USE_VERTEX_LIGHTING
varying mediump vec4 refprobe2_reflection_normal_blend;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe2_ambient_normal;
#endif
#else
uniform bool refprobe2_use_box_project;
uniform vec3 refprobe2_box_extents;
uniform vec3 refprobe2_box_offset;
uniform mat4 refprobe2_local_matrix;
#endif //use vertex lighting
uniform bool refprobe2_exterior;
uniform highp samplerCube reflection_probe2; //texunit:-6
uniform float refprobe2_intensity;
uniform vec4 refprobe2_ambient;
#endif //USE_REFLECTION_PROBE2
#define RADIANCE_MAX_LOD 6.0
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
void reflection_process(samplerCube reflection_map,
#ifdef USE_VERTEX_LIGHTING
vec3 ref_normal,
#ifndef USE_LIGHTMAP
vec3 amb_normal,
#endif
float ref_blend,
#else //no vertex lighting
vec3 normal, vec3 vertex,
mat4 local_matrix,
bool use_box_project, vec3 box_extents, vec3 box_offset,
#endif //vertex lighting
bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
vec4 reflection;
#ifdef USE_VERTEX_LIGHTING
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
float blend = ref_blend; //crappier blend formula for vertex
blend *= blend;
blend = max(0.0, 1.0 - blend);
#else //fragment lighting
vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
//reflect and make local
vec3 ref_normal = normalize(reflect(vertex, normal));
ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
if (use_box_project) { //box project
vec3 nrdir = normalize(ref_normal);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
ref_normal = posonbox - box_offset.xyz;
}
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
#endif
if (exterior) {
reflection.rgb = mix(skybox, reflection.rgb, blend);
}
reflection.rgb *= intensity;
reflection.a = blend;
reflection.rgb *= blend;
reflection_accum += reflection;
#ifndef USE_LIGHTMAP
vec4 ambient_out;
#ifndef USE_VERTEX_LIGHTING
vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
#endif
ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
if (exterior) {
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.a = blend;
ambient_out.rgb *= blend;
ambient_accum += ambient_out;
#endif
}
#endif //use refprobe 1 or 2
#ifdef USE_LIGHTMAP
uniform mediump sampler2D lightmap; //texunit:-4
uniform mediump float lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
uniform mediump vec4[12] lightmap_captures;
uniform bool lightmap_capture_sky;
#endif
#ifdef USE_RADIANCE_MAP
uniform samplerCube radiance_map; // texunit:-2
uniform mat4 radiance_inverse_xform;
#endif
uniform float bg_energy;
uniform float ambient_sky_contribution;
uniform vec4 ambient_color;
uniform float ambient_energy;
#ifdef USE_LIGHTING
#ifdef USE_VERTEX_LIGHTING
//get from vertex
varying highp vec3 diffuse_interp;
varying highp vec3 specular_interp;
uniform vec3 light_direction; //may be used by fog, so leave here
#else
//done in fragment
// general for all lights
uniform vec4 light_color;
uniform float light_specular;
// directional
uniform vec3 light_direction;
// omni
uniform vec3 light_position;
uniform float light_attenuation;
// spot
uniform float light_spot_attenuation;
uniform float light_spot_range;
uniform float light_spot_angle;
#endif
//this is needed outside above if because dual paraboloid wants it
uniform float light_range;
#ifdef USE_SHADOW
uniform highp vec2 shadow_pixel_size;
#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
uniform highp sampler2D light_shadow_atlas; //texunit:-3
#endif
#ifdef LIGHT_MODE_DIRECTIONAL
uniform highp sampler2D light_directional_shadow; // texunit:-3
uniform highp vec4 light_split_offsets;
#endif
varying highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
varying highp vec4 shadow_coord2;
#endif
#if defined(LIGHT_USE_PSSM4)
varying highp vec4 shadow_coord3;
varying highp vec4 shadow_coord4;
#endif
uniform vec4 light_clamp;
#endif // light shadow
// directional shadow
#endif
//
// varyings
//
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
varying vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
varying vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
varying vec2 uv2_interp;
#endif
varying vec3 view_interp;
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
/* clang-format off */
FRAGMENT_SHADER_GLOBALS
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
varying highp float dp_clip;
#endif
#ifdef USE_LIGHTING
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
/*
float G_GGX_2cos(float cos_theta_m, float alpha) {
// Schlick's approximation
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
// float cos2 = cos_theta_m * cos_theta_m;
// float sin2 = (1.0 - cos2);
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
*/
// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
// See Filament docs, Specular G section.
float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
float v = cos_theta_l * (cos_theta_v * (1.0 - alpha) + alpha);
float l = cos_theta_v * (cos_theta_l * (1.0 - alpha) + alpha);
return 0.5 / (v + l);
}
float D_GGX(float cos_theta_m, float alpha) {
float alpha2 = alpha * alpha;
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
return alpha2 / (M_PI * d * d);
}
/*
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
*/
// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
// See Filament docs, Anisotropic specular BRDF section.
float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
return 0.5 / (Lambda_V + Lambda_L);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
float alpha2 = alpha_x * alpha_y;
highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
/* float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float r_x = cos_phi / alpha_x;
float r_y = sin_phi / alpha_y;
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
float GTR1(float NdotH, float a) {
if (a >= 1.0) return 1.0 / M_PI;
float a2 = a * a;
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
return (a2 - 1.0) / (M_PI * log(a2) * t);
}
void light_compute(
vec3 N,
vec3 L,
vec3 V,
vec3 B,
vec3 T,
vec3 light_color,
vec3 attenuation,
vec3 diffuse_color,
vec3 transmission,
float specular_blob_intensity,
float roughness,
float metallic,
float specular,
float rim,
float rim_tint,
float clearcoat,
float clearcoat_gloss,
float anisotropy,
inout vec3 diffuse_light,
inout vec3 specular_light) {
//this makes lights behave closer to linear, but then addition of lights looks bad
//better left disabled
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
/*
#define SRGB_APPROX(m_var) {\
float S1 = sqrt(m_var);\
float S2 = sqrt(S1);\
float S3 = sqrt(S2);\
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
}
*/
#define SRGB_APPROX(m_var)
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
LIGHT_SHADER_CODE
/* clang-format on */
#else
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
vec3 H = normalize(V + L);
float cLdotH = max(0.0, dot(L, H));
float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness;
float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV);
float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
SRGB_APPROX(diffuse_brdf_NL)
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
#if defined(TRANSMISSION_USED)
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
#endif
#if defined(LIGHT_USE_RIM)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
}
if (roughness > 0.0) {
#if defined(SPECULAR_SCHLICK_GGX)
vec3 specular_brdf_NL = vec3(0.0);
#else
float specular_brdf_NL = 0.0;
#endif
#if defined(SPECULAR_BLINN)
//normalized blinn
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cVdotH = max(dot(V, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 8.0) / (8.0 * 3.141592654);
specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
float cRdotV = max(0.0, dot(R, V));
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 8.0) / (8.0 * 3.141592654);
specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
#elif defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
#if defined(LIGHT_USE_ANISOTROPY)
float alpha = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha / aspect;
float ay = alpha * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
//float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL))
#else
float alpha = roughness * roughness;
float D = D_GGX(cNdotH, alpha);
//float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
float G = V_GGX(cNdotL, cNdotV, alpha);
#endif
// F
vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
specular_brdf_NL = cNdotL * D * F * G;
#endif
SRGB_APPROX(specular_brdf_NL)
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#if defined(LIGHT_USE_CLEARCOAT)
if (clearcoat_gloss > 0.0) {
#if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN)
vec3 H = normalize(V + L);
#endif
#if !defined(SPECULAR_SCHLICK_GGX)
float cNdotH = max(dot(N, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
//float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
float Gr = V_GGX(cNdotL, cNdotV, 0.25);
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
}
#endif
}
#endif //defined(USE_LIGHT_SHADER_CODE)
}
#endif
// shadows
#ifdef USE_SHADOW
#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, texture2D(p_shadow, p_pos).r)
#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, texture2DProj(p_shadow, p_pos).r)
float sample_shadow(
highp sampler2D shadow, highp vec4 spos) {
#ifdef SHADOW_MODE_PCF_13
spos.xyz /= spos.w;
vec2 pos = spos.xy;
float depth = spos.z;
float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth);
return avg * (1.0 / 13.0);
#endif
#ifdef SHADOW_MODE_PCF_5
spos.xyz /= spos.w;
vec2 pos = spos.xy;
float depth = spos.z;
float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
return avg * (1.0 / 5.0);
#endif
#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
#endif
}
#endif
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#if defined(USE_VERTEX_LIGHTING)
varying vec4 fog_interp;
#else
uniform mediump vec4 fog_color_base;
#ifdef LIGHT_MODE_DIRECTIONAL
uniform mediump vec4 fog_sun_color_amount;
#endif
uniform bool fog_transmit_enabled;
uniform mediump float fog_transmit_curve;
#ifdef FOG_DEPTH_ENABLED
uniform highp float fog_depth_begin;
uniform mediump float fog_depth_curve;
uniform mediump float fog_max_distance;
#endif
#ifdef FOG_HEIGHT_ENABLED
uniform highp float fog_height_min;
uniform highp float fog_height_max;
uniform mediump float fog_height_curve;
#endif
#endif //vertex lit
#endif //fog
void main() {
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
highp vec3 vertex = vertex_interp;
vec3 albedo = vec3(1.0);
vec3 transmission = vec3(0.0);
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
float sss_strength = 0.0; //unused
float alpha = 1.0;
float side = 1.0;
float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
specular_blob_intensity *= specular * 2.0;
#endif
#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 binormal = normalize(binormal_interp) * side;
vec3 tangent = normalize(tangent_interp) * side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp) * side;
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(SCREEN_UV_USED)
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
{
/* clang-format off */
FRAGMENT_SHADER_CODE
/* clang-format on */
}
#if defined(ENABLE_NORMALMAP)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
//normal = normalmap;
#endif
normal = normalize(normal);
vec3 N = normal;
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
vec3 eye_position = -normalize(vertex_interp);
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif
#ifdef BASE_PASS
//none
#ifdef USE_RADIANCE_MAP
vec3 ref_vec = reflect(-eye_position, N);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
ref_vec.z *= -1.0;
specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
{
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy;
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
}
#else
ambient_light = ambient_color.rgb;
#endif
ambient_light *= ambient_energy;
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
vec4 ambient_accum = vec4(0.0);
vec4 reflection_accum = vec4(0.0);
#ifdef USE_REFLECTION_PROBE1
reflection_process(reflection_probe1,
#ifdef USE_VERTEX_LIGHTING
refprobe1_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe1_ambient_normal,
#endif
refprobe1_reflection_normal_blend.a,
#else
normal_interp, vertex_interp, refprobe1_local_matrix,
refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
#endif
refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
reflection_process(reflection_probe2,
#ifdef USE_VERTEX_LIGHTING
refprobe2_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe2_ambient_normal,
#endif
refprobe2_reflection_normal_blend.a,
#else
normal_interp, vertex_interp, refprobe2_local_matrix,
refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
#endif
refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE2
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#ifndef USE_LIGHTMAP
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
#ifdef USE_LIGHTMAP
//ambient light will come entirely from lightmap is lightmap is used
ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
{
vec3 cone_dirs[12] = vec3[](
vec3(0, 0, 1),
vec3(0.866025, 0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5),
vec3(0, 0, -1),
vec3(0.866025, 0, -0.5),
vec3(0.267617, 0.823639, -0.5),
vec3(-0.700629, 0.509037, -0.5),
vec3(-0.700629, -0.509037, -0.5),
vec3(0.267617, -0.823639, -0.5));
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
for (int i = 0; i < 12; i++) {
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
captured += lightmap_captures[i] * amount;
sum += amount;
}
captured /= sum;
if (lightmap_capture_sky) {
ambient_light = mix(ambient_light, captured.rgb, captured.a);
} else {
ambient_light = captured.rgb;
}
}
#endif
#endif //BASE PASS
//
// Lighting
//
#ifdef USE_LIGHTING
#ifndef USE_VERTEX_LIGHTING
vec3 L;
#endif
vec3 light_att = vec3(1.0);
#ifdef LIGHT_MODE_OMNI
#ifndef USE_VERTEX_LIGHTING
vec3 light_vec = light_position - vertex;
float light_length = length(light_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
light_att = vec3(omni_attenuation);
} else {
light_att = vec3(0.0);
}
L = normalize(light_vec);
#endif
#ifdef USE_SHADOW
{
highp vec4 splane = shadow_coord;
float shadow_len = length(splane.xyz);
splane = normalize(splane.xyz);
vec4 clamp_rect = light_clamp;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len / light_range;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0;
float shadow = sample_shadow(light_shadow_atlas, splane);
light_att *= shadow;
}
#endif
#endif //type omni
#ifdef LIGHT_MODE_DIRECTIONAL
#ifndef USE_VERTEX_LIGHTING
vec3 light_vec = -light_direction;
L = normalize(light_vec);
#endif
float depth_z = -vertex.z;
#ifdef USE_SHADOW
#ifdef USE_VERTEX_LIGHTING
//compute shadows in a mobile friendly way
#ifdef LIGHT_USE_PSSM4
//take advantage of prefetch
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
if (depth_z < light_split_offsets.w) {
float pssm_fade = 0.0;
float shadow_att = 1.0;
#ifdef LIGHT_USE_PSSM_BLEND
float shadow_att2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
shadow_att = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
shadow_att = shadow2;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
shadow_att = shadow3;
#if defined(LIGHT_USE_PSSM_BLEND)
shadow_att2 = shadow4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
shadow_att = shadow4;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
}
#endif
light_att *= shadow_att;
}
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
//take advantage of prefetch
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
if (depth_z < light_split_offsets.y) {
float shadow_att = 1.0;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float shadow_att2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.x) {
float pssm_fade = 0.0;
shadow_att = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
shadow_att = shadow2;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
}
#endif
light_att *= shadow_att;
}
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
light_att *= sample_shadow(light_directional_shadow, shadow_coord);
#endif //orthogonal
#else //fragment version of pssm
{
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
if (depth_z < light_split_offsets.y) {
#else
if (depth_z < light_split_offsets.x) {
#endif //pssm2
highp vec4 pssm_coord;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
highp vec4 pssm_coord2;
bool use_blend = true;
#endif
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
pssm_coord = shadow_coord;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
pssm_coord = shadow_coord2;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
pssm_coord = shadow_coord3;
#if defined(LIGHT_USE_PSSM_BLEND)
pssm_coord2 = shadow_coord4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
pssm_coord = shadow_coord4;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#endif // LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (depth_z < light_split_offsets.x) {
pssm_coord = shadow_coord;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
pssm_coord = shadow_coord2;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#endif // LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{
pssm_coord = shadow_coord;
}
#endif
float shadow = sample_shadow(light_directional_shadow, pssm_coord);
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
}
#endif
light_att *= shadow;
}
}
#endif //use vertex lighting
#endif //use shadow
#endif
#ifdef LIGHT_MODE_SPOT
light_att = vec3(1.0);
#ifndef USE_VERTEX_LIGHTING
vec3 light_rel_vec = light_position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 spot_dir = light_direction;
float spot_cutoff = light_spot_angle;
float angle = dot(-normalize(light_rel_vec), spot_dir);
if (angle > spot_cutoff) {
float scos = max(angle, spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
light_att = vec3(spot_attenuation);
} else {
light_att = vec3(0.0);
}
} else {
light_att = vec3(0.0);
}
L = normalize(light_rel_vec);
#endif
#ifdef USE_SHADOW
{
highp vec4 splane = shadow_coord;
splane.xyz /= splane.w;
float shadow = sample_shadow(light_shadow_atlas, splane.xy, splane.z);
light_att *= shadow;
}
#endif
#endif
#ifdef USE_VERTEX_LIGHTING
//vertex lighting
specular_light += specular_interp * specular_blob_intensity * light_att;
diffuse_light += diffuse_interp * albedo * light_att;
#else
//fragment lighting
light_compute(
normal,
L,
eye_position,
binormal,
tangent,
light_color.xyz,
light_att,
albedo,
transmission,
specular_blob_intensity * light_specular,
roughness,
metallic,
specular,
rim,
rim_tint,
clearcoat,
clearcoat_gloss,
anisotropy,
diffuse_light,
specular_light);
#endif //vertex lighting
#endif //USE_LIGHTING
//compute and merge
#ifndef RENDER_DEPTH
#ifdef SHADELESS
gl_FragColor = vec4(albedo, alpha);
#else
ambient_light *= albedo;
#if defined(ENABLE_AO)
ambient_light *= ao;
ao_light_affect = mix(1.0, ao, ao_light_affect);
specular_light *= ao_light_affect;
diffuse_light *= ao_light_affect;
#endif
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
// environment BRDF approximation
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
//TODO: this curve is not really designed for gammaspace, should be adjusted
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 f0 = F0(metallic, specular, albedo);
specular_light *= env.x * f0 + env.y;
#endif
}
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
//add emission if in base pass
#ifdef BASE_PASS
gl_FragColor.rgb += emission;
#endif
// gl_FragColor = vec4(normal, 1.0);
#endif //unshaded
//apply fog
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#if defined(USE_VERTEX_LIGHTING)
gl_FragColor.rgb = mix(gl_FragColor.rgb,fog_interp.rgb,fog_interp.a);
#else //pixel based fog
float fog_amount = 0.0;
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
#else
vec3 fog_color = fog_color_base.rgb;
#endif
#ifdef FOG_DEPTH_ENABLED
{
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve);
if (fog_transmit_enabled) {
vec3 total_light = gl_FragColor.rgb;
float transmit = pow(fog_z, fog_transmit_curve);
fog_color = mix(max(total_light, fog_color), fog_color, transmit);
}
}
#endif
#ifdef FOG_HEIGHT_ENABLED
{
float y = (camera_matrix * vec4(vertex, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
#endif
gl_FragColor.rgb = mix(gl_FragColor.rgb,fog_color,fog_amount);
#endif //use vertex lit
#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#endif // not RENDER_DEPTH
}