virtualx-engine/thirdparty/bullet/Bullet3Collision/NarrowPhaseCollision/shared/b3FindSeparatingAxis.h
2019-01-07 12:30:35 +01:00

197 lines
5.4 KiB
C++

#ifndef B3_FIND_SEPARATING_AXIS_H
#define B3_FIND_SEPARATING_AXIS_H
inline void b3ProjectAxis(const b3ConvexPolyhedronData& hull, const b3Float4& pos, const b3Quaternion& orn, const b3Float4& dir, const b3AlignedObjectArray<b3Vector3>& vertices, b3Scalar& min, b3Scalar& max)
{
min = FLT_MAX;
max = -FLT_MAX;
int numVerts = hull.m_numVertices;
const b3Float4 localDir = b3QuatRotate(orn.inverse(), dir);
b3Scalar offset = b3Dot3F4(pos, dir);
for (int i = 0; i < numVerts; i++)
{
//b3Vector3 pt = trans * vertices[m_vertexOffset+i];
//b3Scalar dp = pt.dot(dir);
//b3Vector3 vertex = vertices[hull.m_vertexOffset+i];
b3Scalar dp = b3Dot3F4((b3Float4&)vertices[hull.m_vertexOffset + i], localDir);
//b3Assert(dp==dpL);
if (dp < min) min = dp;
if (dp > max) max = dp;
}
if (min > max)
{
b3Scalar tmp = min;
min = max;
max = tmp;
}
min += offset;
max += offset;
}
inline bool b3TestSepAxis(const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB,
const b3Float4& posA, const b3Quaternion& ornA,
const b3Float4& posB, const b3Quaternion& ornB,
const b3Float4& sep_axis, const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB, b3Scalar& depth)
{
b3Scalar Min0, Max0;
b3Scalar Min1, Max1;
b3ProjectAxis(hullA, posA, ornA, sep_axis, verticesA, Min0, Max0);
b3ProjectAxis(hullB, posB, ornB, sep_axis, verticesB, Min1, Max1);
if (Max0 < Min1 || Max1 < Min0)
return false;
b3Scalar d0 = Max0 - Min1;
b3Assert(d0 >= 0.0f);
b3Scalar d1 = Max1 - Min0;
b3Assert(d1 >= 0.0f);
depth = d0 < d1 ? d0 : d1;
return true;
}
inline bool b3FindSeparatingAxis(const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB,
const b3Float4& posA1,
const b3Quaternion& ornA,
const b3Float4& posB1,
const b3Quaternion& ornB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA,
const b3AlignedObjectArray<b3GpuFace>& facesA,
const b3AlignedObjectArray<int>& indicesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB,
const b3AlignedObjectArray<b3GpuFace>& facesB,
const b3AlignedObjectArray<int>& indicesB,
b3Vector3& sep)
{
B3_PROFILE("findSeparatingAxis");
b3Float4 posA = posA1;
posA.w = 0.f;
b3Float4 posB = posB1;
posB.w = 0.f;
//#ifdef TEST_INTERNAL_OBJECTS
b3Float4 c0local = (b3Float4&)hullA.m_localCenter;
b3Float4 c0 = b3TransformPoint(c0local, posA, ornA);
b3Float4 c1local = (b3Float4&)hullB.m_localCenter;
b3Float4 c1 = b3TransformPoint(c1local, posB, ornB);
const b3Float4 deltaC2 = c0 - c1;
//#endif
b3Scalar dmin = FLT_MAX;
int curPlaneTests = 0;
int numFacesA = hullA.m_numFaces;
// Test normals from hullA
for (int i = 0; i < numFacesA; i++)
{
const b3Float4& normal = (b3Float4&)facesA[hullA.m_faceOffset + i].m_plane;
b3Float4 faceANormalWS = b3QuatRotate(ornA, normal);
if (b3Dot3F4(deltaC2, faceANormalWS) < 0)
faceANormalWS *= -1.f;
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, faceANormalWS, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar d;
if (!b3TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, faceANormalWS, verticesA, verticesB, d))
return false;
if (d < dmin)
{
dmin = d;
sep = (b3Vector3&)faceANormalWS;
}
}
int numFacesB = hullB.m_numFaces;
// Test normals from hullB
for (int i = 0; i < numFacesB; i++)
{
b3Float4 normal = (b3Float4&)facesB[hullB.m_faceOffset + i].m_plane;
b3Float4 WorldNormal = b3QuatRotate(ornB, normal);
if (b3Dot3F4(deltaC2, WorldNormal) < 0)
{
WorldNormal *= -1.f;
}
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, WorldNormal, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar d;
if (!b3TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, WorldNormal, verticesA, verticesB, d))
return false;
if (d < dmin)
{
dmin = d;
sep = (b3Vector3&)WorldNormal;
}
}
// b3Vector3 edgeAstart,edgeAend,edgeBstart,edgeBend;
int curEdgeEdge = 0;
// Test edges
for (int e0 = 0; e0 < hullA.m_numUniqueEdges; e0++)
{
const b3Float4& edge0 = (b3Float4&)uniqueEdgesA[hullA.m_uniqueEdgesOffset + e0];
b3Float4 edge0World = b3QuatRotate(ornA, (b3Float4&)edge0);
for (int e1 = 0; e1 < hullB.m_numUniqueEdges; e1++)
{
const b3Vector3 edge1 = uniqueEdgesB[hullB.m_uniqueEdgesOffset + e1];
b3Float4 edge1World = b3QuatRotate(ornB, (b3Float4&)edge1);
b3Float4 crossje = b3Cross3(edge0World, edge1World);
curEdgeEdge++;
if (!b3IsAlmostZero((b3Vector3&)crossje))
{
crossje = b3FastNormalized3(crossje);
if (b3Dot3F4(deltaC2, crossje) < 0)
crossje *= -1.f;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, Cross, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar dist;
if (!b3TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, crossje, verticesA, verticesB, dist))
return false;
if (dist < dmin)
{
dmin = dist;
sep = (b3Vector3&)crossje;
}
}
}
}
if ((b3Dot3F4(-deltaC2, (b3Float4&)sep)) > 0.0f)
sep = -sep;
return true;
}
#endif //B3_FIND_SEPARATING_AXIS_H