virtualx-engine/servers/rendering/renderer_rd/environment/sky.cpp
Rémi Verschelde 347a8e20ae
Merge pull request #69324 from RedMser/advanced-settings-errors
Make it easier to solve warnings/errors referring to project settings
2023-04-11 19:39:53 +02:00

1751 lines
73 KiB
C++

/**************************************************************************/
/* sky.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "sky.h"
#include "core/config/project_settings.h"
#include "core/math/math_defs.h"
#include "servers/rendering/renderer_rd/effects/copy_effects.h"
#include "servers/rendering/renderer_rd/framebuffer_cache_rd.h"
#include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
#include "servers/rendering/renderer_rd/renderer_scene_render_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/render_scene_buffers_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
#include "servers/rendering/renderer_rd/uniform_set_cache_rd.h"
#include "servers/rendering/rendering_server_default.h"
#include "servers/rendering/rendering_server_globals.h"
using namespace RendererRD;
#define RB_SCOPE_SKY SNAME("sky_buffers")
#define RB_HALF_TEXTURE SNAME("half_texture")
#define RB_QUARTER_TEXTURE SNAME("quarter_texture")
////////////////////////////////////////////////////////////////////////////////
// SKY SHADER
void SkyRD::SkyShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
if (code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompiler::GeneratedCode gen_code;
ShaderCompiler::IdentifierActions actions;
actions.entry_point_stages["sky"] = ShaderCompiler::STAGE_FRAGMENT;
uses_time = false;
uses_half_res = false;
uses_quarter_res = false;
uses_position = false;
uses_light = false;
actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
actions.usage_flag_pointers["TIME"] = &uses_time;
actions.usage_flag_pointers["POSITION"] = &uses_position;
actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_SIZE"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_SIZE"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_SIZE"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_SIZE"] = &uses_light;
actions.uniforms = &uniforms;
// !BAS! Contemplate making `SkyShader sky` accessible from this struct or even part of this struct.
RendererSceneRenderRD *scene_singleton = static_cast<RendererSceneRenderRD *>(RendererSceneRenderRD::singleton);
Error err = scene_singleton->sky.sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
if (version.is_null()) {
version = scene_singleton->sky.sky_shader.shader.version_create();
}
#if 0
print_line("**compiling shader:");
print_line("**defines:\n");
for (int i = 0; i < gen_code.defines.size(); i++) {
print_line(gen_code.defines[i]);
}
HashMap<String, String>::Iterator el = gen_code.code.begin();
while (el) {
print_line("\n**code " + el->key + ":\n" + el->value);
++el;
}
print_line("\n**uniforms:\n" + gen_code.uniforms);
print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]);
print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]);
#endif
scene_singleton->sky.sky_shader.shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines);
ERR_FAIL_COND(!scene_singleton->sky.sky_shader.shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
//update pipelines
for (int i = 0; i < SKY_VERSION_MAX; i++) {
RD::PipelineDepthStencilState depth_stencil_state;
depth_stencil_state.enable_depth_test = true;
depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
if (scene_singleton->sky.sky_shader.shader.is_variant_enabled(i)) {
RID shader_variant = scene_singleton->sky.sky_shader.shader.version_get_shader(version, i);
pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0);
} else {
pipelines[i].clear();
}
}
valid = true;
}
bool SkyRD::SkyShaderData::is_animated() const {
return false;
}
bool SkyRD::SkyShaderData::casts_shadows() const {
return false;
}
RS::ShaderNativeSourceCode SkyRD::SkyShaderData::get_native_source_code() const {
RendererSceneRenderRD *scene_singleton = static_cast<RendererSceneRenderRD *>(RendererSceneRenderRD::singleton);
return scene_singleton->sky.sky_shader.shader.version_get_native_source_code(version);
}
SkyRD::SkyShaderData::~SkyShaderData() {
RendererSceneRenderRD *scene_singleton = static_cast<RendererSceneRenderRD *>(RendererSceneRenderRD::singleton);
ERR_FAIL_COND(!scene_singleton);
//pipeline variants will clear themselves if shader is gone
if (version.is_valid()) {
scene_singleton->sky.sky_shader.shader.version_free(version);
}
}
////////////////////////////////////////////////////////////////////////////////
// Sky material
bool SkyRD::SkyMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
RendererSceneRenderRD *scene_singleton = static_cast<RendererSceneRenderRD *>(RendererSceneRenderRD::singleton);
uniform_set_updated = true;
return update_parameters_uniform_set(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size, uniform_set, scene_singleton->sky.sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL, true);
}
SkyRD::SkyMaterialData::~SkyMaterialData() {
free_parameters_uniform_set(uniform_set);
}
////////////////////////////////////////////////////////////////////////////////
// Render sky
static _FORCE_INLINE_ void store_transform_3x3(const Basis &p_basis, float *p_array) {
p_array[0] = p_basis.rows[0][0];
p_array[1] = p_basis.rows[1][0];
p_array[2] = p_basis.rows[2][0];
p_array[3] = 0;
p_array[4] = p_basis.rows[0][1];
p_array[5] = p_basis.rows[1][1];
p_array[6] = p_basis.rows[2][1];
p_array[7] = 0;
p_array[8] = p_basis.rows[0][2];
p_array[9] = p_basis.rows[1][2];
p_array[10] = p_basis.rows[2][2];
p_array[11] = 0;
}
void SkyRD::_render_sky(RD::DrawListID p_list, float p_time, RID p_fb, PipelineCacheRD *p_pipeline, RID p_uniform_set, RID p_texture_set, const Projection &p_projection, const Basis &p_orientation, const Vector3 &p_position, float p_luminance_multiplier) {
SkyPushConstant sky_push_constant;
memset(&sky_push_constant, 0, sizeof(SkyPushConstant));
// We only need key components of our projection matrix
sky_push_constant.projection[0] = p_projection.columns[2][0];
sky_push_constant.projection[1] = p_projection.columns[0][0];
sky_push_constant.projection[2] = p_projection.columns[2][1];
sky_push_constant.projection[3] = p_projection.columns[1][1];
sky_push_constant.position[0] = p_position.x;
sky_push_constant.position[1] = p_position.y;
sky_push_constant.position[2] = p_position.z;
sky_push_constant.time = p_time;
sky_push_constant.luminance_multiplier = p_luminance_multiplier;
store_transform_3x3(p_orientation, sky_push_constant.orientation);
RenderingDevice::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(p_fb);
RD::DrawListID draw_list = p_list;
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, p_pipeline->get_render_pipeline(RD::INVALID_ID, fb_format, false, RD::get_singleton()->draw_list_get_current_pass()));
// Update uniform sets.
{
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, sky_scene_state.uniform_set, 0);
if (p_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(p_uniform_set)) { // Material may not have a uniform set.
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, p_uniform_set, 1);
}
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, p_texture_set, 2);
// Fog uniform set can be invalidated before drawing, so validate at draw time
if (sky_scene_state.fog_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.fog_uniform_set)) {
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, sky_scene_state.fog_uniform_set, 3);
} else {
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, sky_scene_state.default_fog_uniform_set, 3);
}
}
RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &sky_push_constant, sizeof(SkyPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
}
////////////////////////////////////////////////////////////////////////////////
// ReflectionData
void SkyRD::ReflectionData::clear_reflection_data() {
layers.clear();
radiance_base_cubemap = RID();
if (downsampled_radiance_cubemap.is_valid()) {
RD::get_singleton()->free(downsampled_radiance_cubemap);
}
downsampled_radiance_cubemap = RID();
downsampled_layer.mipmaps.clear();
coefficient_buffer = RID();
}
void SkyRD::ReflectionData::update_reflection_data(int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality, int p_roughness_layers, RD::DataFormat p_texture_format) {
//recreate radiance and all data
int mipmaps = p_mipmaps;
uint32_t w = p_size, h = p_size;
bool render_buffers_can_be_storage = RendererSceneRenderRD::get_singleton()->_render_buffers_can_be_storage();
if (p_use_array) {
int num_layers = p_low_quality ? 8 : p_roughness_layers;
for (int i = 0; i < num_layers; i++) {
ReflectionData::Layer layer;
uint32_t mmw = w;
uint32_t mmh = h;
layer.mipmaps.resize(mipmaps);
layer.views.resize(mipmaps);
for (int j = 0; j < mipmaps; j++) {
ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
mm.size.width = mmw;
mm.size.height = mmh;
for (int k = 0; k < 6; k++) {
mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j);
Vector<RID> fbtex;
fbtex.push_back(mm.views[k]);
mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
}
layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, 1, RD::TEXTURE_SLICE_CUBEMAP);
mmw = MAX(1u, mmw >> 1);
mmh = MAX(1u, mmh >> 1);
}
layers.push_back(layer);
}
} else {
mipmaps = p_low_quality ? 8 : mipmaps;
//regular cubemap, lower quality (aliasing, less memory)
ReflectionData::Layer layer;
uint32_t mmw = w;
uint32_t mmh = h;
layer.mipmaps.resize(mipmaps);
layer.views.resize(mipmaps);
for (int j = 0; j < mipmaps; j++) {
ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
mm.size.width = mmw;
mm.size.height = mmh;
for (int k = 0; k < 6; k++) {
mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j);
Vector<RID> fbtex;
fbtex.push_back(mm.views[k]);
mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
}
layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, 1, RD::TEXTURE_SLICE_CUBEMAP);
mmw = MAX(1u, mmw >> 1);
mmh = MAX(1u, mmh >> 1);
}
layers.push_back(layer);
}
radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, 1, RD::TEXTURE_SLICE_CUBEMAP);
RD::get_singleton()->set_resource_name(radiance_base_cubemap, "radiance base cubemap");
RD::TextureFormat tf;
tf.format = p_texture_format;
tf.width = p_low_quality ? 64 : p_size >> 1; // Always 64x64 when using REALTIME.
tf.height = p_low_quality ? 64 : p_size >> 1;
tf.texture_type = RD::TEXTURE_TYPE_CUBE;
tf.array_layers = 6;
tf.mipmaps = p_low_quality ? 7 : mipmaps - 1;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
if (render_buffers_can_be_storage) {
tf.usage_bits |= RD::TEXTURE_USAGE_STORAGE_BIT;
}
downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(downsampled_radiance_cubemap, "downsampled radiance cubemap");
{
uint32_t mmw = tf.width;
uint32_t mmh = tf.height;
downsampled_layer.mipmaps.resize(tf.mipmaps);
for (int j = 0; j < downsampled_layer.mipmaps.size(); j++) {
ReflectionData::DownsampleLayer::Mipmap &mm = downsampled_layer.mipmaps.write[j];
mm.size.width = mmw;
mm.size.height = mmh;
mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), downsampled_radiance_cubemap, 0, j, 1, RD::TEXTURE_SLICE_CUBEMAP);
RD::get_singleton()->set_resource_name(mm.view, "Downsampled Radiance Cubemap Mip " + itos(j) + " ");
if (!render_buffers_can_be_storage) {
// we need a framebuffer for each side of our cubemap
for (int k = 0; k < 6; k++) {
mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), downsampled_radiance_cubemap, k, j);
RD::get_singleton()->set_resource_name(mm.view, "Downsampled Radiance Cubemap Mip: " + itos(j) + " Face: " + itos(k) + " ");
Vector<RID> fbtex;
fbtex.push_back(mm.views[k]);
mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
}
}
mmw = MAX(1u, mmw >> 1);
mmh = MAX(1u, mmh >> 1);
}
}
}
void SkyRD::ReflectionData::create_reflection_fast_filter(bool p_use_arrays) {
RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
ERR_FAIL_NULL_MSG(copy_effects, "Effects haven't been initialized");
bool prefer_raster_effects = copy_effects->get_prefer_raster_effects();
if (prefer_raster_effects) {
RD::get_singleton()->draw_command_begin_label("Downsample radiance map");
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_downsample_raster(radiance_base_cubemap, downsampled_layer.mipmaps[0].framebuffers[k], k, downsampled_layer.mipmaps[0].size);
}
for (int i = 1; i < downsampled_layer.mipmaps.size(); i++) {
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_downsample_raster(downsampled_layer.mipmaps[i - 1].view, downsampled_layer.mipmaps[i].framebuffers[k], k, downsampled_layer.mipmaps[i].size);
}
}
RD::get_singleton()->draw_command_end_label(); // Downsample Radiance
if (p_use_arrays) {
RD::get_singleton()->draw_command_begin_label("filter radiance map into array heads");
for (int i = 0; i < layers.size(); i++) {
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_filter_raster(downsampled_radiance_cubemap, layers[i].mipmaps[0].framebuffers[k], k, i);
}
}
} else {
RD::get_singleton()->draw_command_begin_label("filter radiance map into mipmaps directly");
for (int j = 0; j < layers[0].mipmaps.size(); j++) {
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_filter_raster(downsampled_radiance_cubemap, layers[0].mipmaps[j].framebuffers[k], k, j);
}
}
}
RD::get_singleton()->draw_command_end_label(); // Filter radiance
} else {
RD::get_singleton()->draw_command_begin_label("Downsample radiance map");
copy_effects->cubemap_downsample(radiance_base_cubemap, downsampled_layer.mipmaps[0].view, downsampled_layer.mipmaps[0].size);
for (int i = 1; i < downsampled_layer.mipmaps.size(); i++) {
copy_effects->cubemap_downsample(downsampled_layer.mipmaps[i - 1].view, downsampled_layer.mipmaps[i].view, downsampled_layer.mipmaps[i].size);
}
RD::get_singleton()->draw_command_end_label(); // Downsample Radiance
Vector<RID> views;
if (p_use_arrays) {
for (int i = 1; i < layers.size(); i++) {
views.push_back(layers[i].views[0]);
}
} else {
for (int i = 1; i < layers[0].views.size(); i++) {
views.push_back(layers[0].views[i]);
}
}
RD::get_singleton()->draw_command_begin_label("Fast filter radiance");
copy_effects->cubemap_filter(downsampled_radiance_cubemap, views, p_use_arrays);
RD::get_singleton()->draw_command_end_label(); // Filter radiance
}
}
void SkyRD::ReflectionData::create_reflection_importance_sample(bool p_use_arrays, int p_cube_side, int p_base_layer, uint32_t p_sky_ggx_samples_quality) {
RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
ERR_FAIL_NULL_MSG(copy_effects, "Effects haven't been initialized");
bool prefer_raster_effects = copy_effects->get_prefer_raster_effects();
if (prefer_raster_effects) {
if (p_base_layer == 1) {
RD::get_singleton()->draw_command_begin_label("Downsample radiance map");
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_downsample_raster(radiance_base_cubemap, downsampled_layer.mipmaps[0].framebuffers[k], k, downsampled_layer.mipmaps[0].size);
}
for (int i = 1; i < downsampled_layer.mipmaps.size(); i++) {
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_downsample_raster(downsampled_layer.mipmaps[i - 1].view, downsampled_layer.mipmaps[i].framebuffers[k], k, downsampled_layer.mipmaps[i].size);
}
}
RD::get_singleton()->draw_command_end_label(); // Downsample Radiance
}
RD::get_singleton()->draw_command_begin_label("High Quality filter radiance");
if (p_use_arrays) {
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_roughness_raster(
downsampled_radiance_cubemap,
layers[p_base_layer].mipmaps[0].framebuffers[k],
k,
p_sky_ggx_samples_quality,
float(p_base_layer) / (layers.size() - 1.0),
layers[p_base_layer].mipmaps[0].size.x);
}
} else {
for (int k = 0; k < 6; k++) {
copy_effects->cubemap_roughness_raster(
downsampled_radiance_cubemap,
layers[0].mipmaps[p_base_layer].framebuffers[k],
k,
p_sky_ggx_samples_quality,
float(p_base_layer) / (layers[0].mipmaps.size() - 1.0),
layers[0].mipmaps[p_base_layer].size.x);
}
}
} else {
if (p_base_layer == 1) {
RD::get_singleton()->draw_command_begin_label("Downsample radiance map");
copy_effects->cubemap_downsample(radiance_base_cubemap, downsampled_layer.mipmaps[0].view, downsampled_layer.mipmaps[0].size);
for (int i = 1; i < downsampled_layer.mipmaps.size(); i++) {
copy_effects->cubemap_downsample(downsampled_layer.mipmaps[i - 1].view, downsampled_layer.mipmaps[i].view, downsampled_layer.mipmaps[i].size);
}
RD::get_singleton()->draw_command_end_label(); // Downsample Radiance
}
RD::get_singleton()->draw_command_begin_label("High Quality filter radiance");
if (p_use_arrays) {
copy_effects->cubemap_roughness(downsampled_radiance_cubemap, layers[p_base_layer].views[0], p_cube_side, p_sky_ggx_samples_quality, float(p_base_layer) / (layers.size() - 1.0), layers[p_base_layer].mipmaps[0].size.x);
} else {
copy_effects->cubemap_roughness(
downsampled_radiance_cubemap,
layers[0].views[p_base_layer],
p_cube_side,
p_sky_ggx_samples_quality,
float(p_base_layer) / (layers[0].mipmaps.size() - 1.0),
layers[0].mipmaps[p_base_layer].size.x);
}
}
RD::get_singleton()->draw_command_end_label(); // Filter radiance
}
void SkyRD::ReflectionData::update_reflection_mipmaps(int p_start, int p_end) {
RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
ERR_FAIL_NULL_MSG(copy_effects, "Effects haven't been initialized");
bool prefer_raster_effects = copy_effects->get_prefer_raster_effects();
RD::get_singleton()->draw_command_begin_label("Update Radiance Cubemap Array Mipmaps");
for (int i = p_start; i < p_end; i++) {
for (int j = 0; j < layers[i].views.size() - 1; j++) {
RID view = layers[i].views[j];
Size2i size = layers[i].mipmaps[j + 1].size;
if (prefer_raster_effects) {
for (int k = 0; k < 6; k++) {
RID framebuffer = layers[i].mipmaps[j + 1].framebuffers[k];
copy_effects->cubemap_downsample_raster(view, framebuffer, k, size);
}
} else {
RID texture = layers[i].views[j + 1];
copy_effects->cubemap_downsample(view, texture, size);
}
}
}
RD::get_singleton()->draw_command_end_label();
}
////////////////////////////////////////////////////////////////////////////////
// SkyRD::Sky
void SkyRD::Sky::free() {
if (radiance.is_valid()) {
RD::get_singleton()->free(radiance);
radiance = RID();
}
reflection.clear_reflection_data();
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
uniform_buffer = RID();
}
if (material.is_valid()) {
RSG::material_storage->material_free(material);
material = RID();
}
}
RID SkyRD::Sky::get_textures(SkyTextureSetVersion p_version, RID p_default_shader_rd, Ref<RenderSceneBuffersRD> p_render_buffers) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 0;
if (radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) {
u.append_id(radiance);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1; // half res
if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
if (reflection.layers.size() && reflection.layers[0].views.size() >= 2 && reflection.layers[0].views[1].is_valid() && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) {
u.append_id(reflection.layers[0].views[1]);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
}
} else {
RID half_texture = p_render_buffers->has_texture(RB_SCOPE_SKY, RB_HALF_TEXTURE) ? p_render_buffers->get_texture(RB_SCOPE_SKY, RB_HALF_TEXTURE) : RID();
if (half_texture.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES) {
u.append_id(half_texture);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE));
}
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2; // quarter res
if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
if (reflection.layers.size() && reflection.layers[0].views.size() >= 3 && reflection.layers[0].views[2].is_valid() && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) {
u.append_id(reflection.layers[0].views[2]);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
}
} else {
RID quarter_texture = p_render_buffers->has_texture(RB_SCOPE_SKY, RB_QUARTER_TEXTURE) ? p_render_buffers->get_texture(RB_SCOPE_SKY, RB_QUARTER_TEXTURE) : RID();
if (quarter_texture.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES) {
u.append_id(quarter_texture);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE));
}
}
uniforms.push_back(u);
}
return UniformSetCacheRD::get_singleton()->get_cache_vec(p_default_shader_rd, SKY_SET_TEXTURES, uniforms);
}
bool SkyRD::Sky::set_radiance_size(int p_radiance_size) {
ERR_FAIL_COND_V(p_radiance_size < 32 || p_radiance_size > 2048, false);
if (radiance_size == p_radiance_size) {
return false;
}
radiance_size = p_radiance_size;
if (mode == RS::SKY_MODE_REALTIME && radiance_size != 256) {
WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
radiance_size = 256;
}
if (radiance.is_valid()) {
RD::get_singleton()->free(radiance);
radiance = RID();
}
reflection.clear_reflection_data();
return true;
}
bool SkyRD::Sky::set_mode(RS::SkyMode p_mode) {
if (mode == p_mode) {
return false;
}
mode = p_mode;
if (mode == RS::SKY_MODE_REALTIME && radiance_size != 256) {
WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
set_radiance_size(256);
}
if (radiance.is_valid()) {
RD::get_singleton()->free(radiance);
radiance = RID();
}
reflection.clear_reflection_data();
return true;
}
bool SkyRD::Sky::set_material(RID p_material) {
if (material == p_material) {
return false;
}
material = p_material;
return true;
}
Ref<Image> SkyRD::Sky::bake_panorama(float p_energy, int p_roughness_layers, const Size2i &p_size) {
if (radiance.is_valid()) {
RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; // Could be RGBA16
tf.width = p_size.width;
tf.height = p_size.height;
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
RID rad_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
copy_effects->copy_cubemap_to_panorama(radiance, rad_tex, p_size, p_roughness_layers, reflection.layers.size() > 1);
Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rad_tex, 0);
RD::get_singleton()->free(rad_tex);
Ref<Image> img = Image::create_from_data(p_size.width, p_size.height, false, Image::FORMAT_RGBAF, data);
for (int i = 0; i < p_size.width; i++) {
for (int j = 0; j < p_size.height; j++) {
Color c = img->get_pixel(i, j);
c.r *= p_energy;
c.g *= p_energy;
c.b *= p_energy;
img->set_pixel(i, j, c);
}
}
return img;
}
return Ref<Image>();
}
////////////////////////////////////////////////////////////////////////////////
// SkyRD
RendererRD::MaterialStorage::ShaderData *SkyRD::_create_sky_shader_func() {
SkyShaderData *shader_data = memnew(SkyShaderData);
return shader_data;
}
RendererRD::MaterialStorage::ShaderData *SkyRD::_create_sky_shader_funcs() {
// !BAS! Why isn't _create_sky_shader_func not just static too?
return static_cast<RendererSceneRenderRD *>(RendererSceneRenderRD::singleton)->sky._create_sky_shader_func();
};
RendererRD::MaterialStorage::MaterialData *SkyRD::_create_sky_material_func(SkyShaderData *p_shader) {
SkyMaterialData *material_data = memnew(SkyMaterialData);
material_data->shader_data = p_shader;
//update will happen later anyway so do nothing.
return material_data;
}
RendererRD::MaterialStorage::MaterialData *SkyRD::_create_sky_material_funcs(RendererRD::MaterialStorage::ShaderData *p_shader) {
// !BAS! same here, we could just make _create_sky_material_func static?
return static_cast<RendererSceneRenderRD *>(RendererSceneRenderRD::singleton)->sky._create_sky_material_func(static_cast<SkyShaderData *>(p_shader));
};
SkyRD::SkyRD() {
roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers");
sky_ggx_samples_quality = GLOBAL_GET("rendering/reflections/sky_reflections/ggx_samples");
sky_use_cubemap_array = GLOBAL_GET("rendering/reflections/sky_reflections/texture_array_reflections");
}
void SkyRD::init() {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
{
// Start with the directional lights for the sky
sky_scene_state.max_directional_lights = 4;
uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData);
sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1;
sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n";
// Initialize sky
Vector<String> sky_modes;
sky_modes.push_back(""); // Full size
sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res
sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res
sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap
sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap
sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap
sky_modes.push_back("\n#define USE_MULTIVIEW\n"); // Full size multiview
sky_modes.push_back("\n#define USE_HALF_RES_PASS\n#define USE_MULTIVIEW\n"); // Half Res multiview
sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n#define USE_MULTIVIEW\n"); // Quarter res multiview
sky_shader.shader.initialize(sky_modes, defines);
if (!RendererCompositorRD::get_singleton()->is_xr_enabled()) {
sky_shader.shader.set_variant_enabled(SKY_VERSION_BACKGROUND_MULTIVIEW, false);
sky_shader.shader.set_variant_enabled(SKY_VERSION_HALF_RES_MULTIVIEW, false);
sky_shader.shader.set_variant_enabled(SKY_VERSION_QUARTER_RES_MULTIVIEW, false);
}
}
// register our shader funds
material_storage->shader_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_SKY, _create_sky_shader_funcs);
material_storage->material_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_SKY, _create_sky_material_funcs);
{
ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["COLOR"] = "color";
actions.renames["ALPHA"] = "alpha";
actions.renames["EYEDIR"] = "cube_normal";
actions.renames["POSITION"] = "params.position";
actions.renames["SKY_COORDS"] = "panorama_coords";
actions.renames["SCREEN_UV"] = "uv";
actions.renames["FRAGCOORD"] = "gl_FragCoord";
actions.renames["TIME"] = "params.time";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
actions.renames["HALF_RES_COLOR"] = "half_res_color";
actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color";
actions.renames["RADIANCE"] = "radiance";
actions.renames["FOG"] = "custom_fog";
actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled";
actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction_energy.xyz";
actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].direction_energy.w";
actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color_size.xyz";
actions.renames["LIGHT0_SIZE"] = "directional_lights.data[0].color_size.w";
actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled";
actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction_energy.xyz";
actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].direction_energy.w";
actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color_size.xyz";
actions.renames["LIGHT1_SIZE"] = "directional_lights.data[1].color_size.w";
actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled";
actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction_energy.xyz";
actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].direction_energy.w";
actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color_size.xyz";
actions.renames["LIGHT2_SIZE"] = "directional_lights.data[2].color_size.w";
actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled";
actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction_energy.xyz";
actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].direction_energy.w";
actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color_size.xyz";
actions.renames["LIGHT3_SIZE"] = "directional_lights.data[3].color_size.w";
actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
actions.custom_samplers["RADIANCE"] = "material_samplers[3]";
actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n";
actions.render_mode_defines["use_debanding"] = "#define USE_DEBANDING\n";
actions.sampler_array_name = "material_samplers";
actions.base_texture_binding_index = 1;
actions.texture_layout_set = 1;
actions.base_uniform_string = "material.";
actions.base_varying_index = 10;
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
actions.global_buffer_array_variable = "global_shader_uniforms.data";
sky_shader.compiler.initialize(actions);
}
{
// default material and shader for sky shader
sky_shader.default_shader = material_storage->shader_allocate();
material_storage->shader_initialize(sky_shader.default_shader);
material_storage->shader_set_code(sky_shader.default_shader, R"(
// Default sky shader.
shader_type sky;
void sky() {
COLOR = vec3(0.0);
}
)");
sky_shader.default_material = material_storage->material_allocate();
material_storage->material_initialize(sky_shader.default_material);
material_storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader);
SkyMaterialData *md = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_shader.default_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND);
sky_scene_state.uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SkySceneState::UBO));
Vector<RD::Uniform> uniforms;
{
Vector<RID> ids;
ids.resize(12);
RID *ids_ptr = ids.ptrw();
ids_ptr[0] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[1] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[2] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[3] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[4] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[5] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[6] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[7] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[8] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[9] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[10] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[11] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
RD::Uniform u(RD::UNIFORM_TYPE_SAMPLER, 0, ids);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.append_id(RendererRD::MaterialStorage::get_singleton()->global_shader_uniforms_get_storage_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 2;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.append_id(sky_scene_state.uniform_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 3;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.append_id(sky_scene_state.directional_light_buffer);
uniforms.push_back(u);
}
sky_scene_state.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_UNIFORMS);
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 0;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
RID vfog = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
u.append_id(vfog);
uniforms.push_back(u);
}
sky_scene_state.default_fog_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG);
}
{
// Need defaults for using fog with clear color
sky_scene_state.fog_shader = material_storage->shader_allocate();
material_storage->shader_initialize(sky_scene_state.fog_shader);
material_storage->shader_set_code(sky_scene_state.fog_shader, R"(
// Default clear color sky shader.
shader_type sky;
uniform vec4 clear_color;
void sky() {
COLOR = clear_color.rgb;
}
)");
sky_scene_state.fog_material = material_storage->material_allocate();
material_storage->material_initialize(sky_scene_state.fog_material);
material_storage->material_set_shader(sky_scene_state.fog_material, sky_scene_state.fog_shader);
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 0;
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE));
uniforms.push_back(u);
}
sky_scene_state.fog_only_texture_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
}
{ //create index array for copy shaders
Vector<uint8_t> pv;
pv.resize(6 * 4);
{
uint8_t *w = pv.ptrw();
int *p32 = (int *)w;
p32[0] = 0;
p32[1] = 1;
p32[2] = 2;
p32[3] = 0;
p32[4] = 2;
p32[5] = 3;
}
index_buffer = RD::get_singleton()->index_buffer_create(6, RenderingDevice::INDEX_BUFFER_FORMAT_UINT32, pv);
index_array = RD::get_singleton()->index_array_create(index_buffer, 0, 6);
}
}
void SkyRD::set_texture_format(RD::DataFormat p_texture_format) {
texture_format = p_texture_format;
}
SkyRD::~SkyRD() {
// cleanup anything created in init...
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
SkyMaterialData *md = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_shader.default_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
sky_shader.shader.version_free(md->shader_data->version);
RD::get_singleton()->free(sky_scene_state.directional_light_buffer);
RD::get_singleton()->free(sky_scene_state.uniform_buffer);
memdelete_arr(sky_scene_state.directional_lights);
memdelete_arr(sky_scene_state.last_frame_directional_lights);
material_storage->shader_free(sky_shader.default_shader);
material_storage->material_free(sky_shader.default_material);
material_storage->shader_free(sky_scene_state.fog_shader);
material_storage->material_free(sky_scene_state.fog_material);
if (RD::get_singleton()->uniform_set_is_valid(sky_scene_state.uniform_set)) {
RD::get_singleton()->free(sky_scene_state.uniform_set);
}
if (RD::get_singleton()->uniform_set_is_valid(sky_scene_state.default_fog_uniform_set)) {
RD::get_singleton()->free(sky_scene_state.default_fog_uniform_set);
}
if (RD::get_singleton()->uniform_set_is_valid(sky_scene_state.fog_only_texture_uniform_set)) {
RD::get_singleton()->free(sky_scene_state.fog_only_texture_uniform_set);
}
RD::get_singleton()->free(index_buffer); //array gets freed as dependency
}
void SkyRD::setup_sky(RID p_env, Ref<RenderSceneBuffersRD> p_render_buffers, const PagedArray<RID> &p_lights, RID p_camera_attributes, uint32_t p_view_count, const Projection *p_view_projections, const Vector3 *p_view_eye_offsets, const Transform3D &p_cam_transform, const Size2i p_screen_size, RendererSceneRenderRD *p_scene_render) {
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
ERR_FAIL_COND(p_env.is_null());
ERR_FAIL_COND(p_render_buffers.is_null());
// make sure we support our view count
ERR_FAIL_COND(p_view_count == 0);
ERR_FAIL_COND(p_view_count > RendererSceneRender::MAX_RENDER_VIEWS);
SkyMaterialData *material = nullptr;
Sky *sky = get_sky(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
RID sky_material;
SkyShaderData *shader_data = nullptr;
if (sky) {
sky_material = sky_get_material(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
if (sky_material.is_valid()) {
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
if (!material || !material->shader_data->valid) {
material = nullptr;
}
}
if (!material) {
sky_material = sky_shader.default_material;
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
}
ERR_FAIL_COND(!material);
shader_data = material->shader_data;
ERR_FAIL_COND(!shader_data);
material->set_as_used();
// Save our screen size, our buffers will already have been cleared
sky->screen_size.x = p_screen_size.x < 4 ? 4 : p_screen_size.x;
sky->screen_size.y = p_screen_size.y < 4 ? 4 : p_screen_size.y;
// Trigger updating radiance buffers
if (sky->radiance.is_null()) {
invalidate_sky(sky);
update_dirty_skys();
}
if (shader_data->uses_time && p_scene_render->time - sky->prev_time > 0.00001) {
sky->prev_time = p_scene_render->time;
sky->reflection.dirty = true;
RenderingServerDefault::redraw_request();
}
if (material != sky->prev_material) {
sky->prev_material = material;
sky->reflection.dirty = true;
}
if (material->uniform_set_updated) {
material->uniform_set_updated = false;
sky->reflection.dirty = true;
}
if (!p_cam_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
sky->prev_position = p_cam_transform.origin;
sky->reflection.dirty = true;
}
sky_scene_state.ubo.directional_light_count = 0;
if (shader_data->uses_light) {
// Run through the list of lights in the scene and pick out the Directional Lights.
// This can't be done in RenderSceneRenderRD::_setup lights because that needs to be called
// after the depth prepass, but this runs before the depth prepass
for (int i = 0; i < (int)p_lights.size(); i++) {
if (!light_storage->owns_light_instance(p_lights[i])) {
continue;
}
RID base = light_storage->light_instance_get_base_light(p_lights[i]);
ERR_CONTINUE(base.is_null());
RS::LightType type = light_storage->light_get_type(base);
if (type == RS::LIGHT_DIRECTIONAL && light_storage->light_directional_get_sky_mode(base) != RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_ONLY) {
SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[sky_scene_state.ubo.directional_light_count];
Transform3D light_transform = light_storage->light_instance_get_base_transform(p_lights[i]);
Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
sky_light_data.direction[0] = world_direction.x;
sky_light_data.direction[1] = world_direction.y;
sky_light_data.direction[2] = world_direction.z;
float sign = light_storage->light_is_negative(base) ? -1 : 1;
sky_light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
if (p_scene_render->is_using_physical_light_units()) {
sky_light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
}
if (p_camera_attributes.is_valid()) {
sky_light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes);
}
Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
sky_light_data.color[0] = linear_col.r;
sky_light_data.color[1] = linear_col.g;
sky_light_data.color[2] = linear_col.b;
sky_light_data.enabled = true;
float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
if (angular_diameter > 0.0) {
// I know tan(0) is 0, but let's not risk it with numerical precision.
// technically this will keep expanding until reaching the sun, but all we care
// is expand until we reach the radius of the near plane (there can't be more occluders than that)
angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter));
} else {
angular_diameter = 0.0;
}
sky_light_data.size = angular_diameter;
sky_scene_state.ubo.directional_light_count++;
if (sky_scene_state.ubo.directional_light_count >= sky_scene_state.max_directional_lights) {
break;
}
}
}
// Check whether the directional_light_buffer changes
bool light_data_dirty = false;
// Light buffer is dirty if we have fewer or more lights
// If we have fewer lights, make sure that old lights are disabled
if (sky_scene_state.ubo.directional_light_count != sky_scene_state.last_frame_directional_light_count) {
light_data_dirty = true;
for (uint32_t i = sky_scene_state.ubo.directional_light_count; i < sky_scene_state.max_directional_lights; i++) {
sky_scene_state.directional_lights[i].enabled = false;
sky_scene_state.last_frame_directional_lights[i].enabled = false;
}
}
if (!light_data_dirty) {
for (uint32_t i = 0; i < sky_scene_state.ubo.directional_light_count; i++) {
if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] ||
sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] ||
sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] ||
sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy ||
sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] ||
sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] ||
sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] ||
sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled ||
sky_scene_state.directional_lights[i].size != sky_scene_state.last_frame_directional_lights[i].size) {
light_data_dirty = true;
break;
}
}
}
if (light_data_dirty) {
RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights);
SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights;
sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights;
sky_scene_state.directional_lights = temp;
sky_scene_state.last_frame_directional_light_count = sky_scene_state.ubo.directional_light_count;
sky->reflection.dirty = true;
}
}
}
//setup fog variables
sky_scene_state.ubo.volumetric_fog_enabled = false;
if (p_render_buffers.is_valid()) {
if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
sky_scene_state.ubo.volumetric_fog_enabled = true;
float fog_end = fog->length;
if (fog_end > 0.0) {
sky_scene_state.ubo.volumetric_fog_inv_length = 1.0 / fog_end;
} else {
sky_scene_state.ubo.volumetric_fog_inv_length = 1.0;
}
float fog_detail_spread = fog->spread; //reverse lookup
if (fog_detail_spread > 0.0) {
sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0 / fog_detail_spread;
} else {
sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0;
}
sky_scene_state.fog_uniform_set = fog->sky_uniform_set;
}
}
sky_scene_state.view_count = p_view_count;
sky_scene_state.cam_transform = p_cam_transform;
sky_scene_state.cam_projection = p_view_projections[0]; // We only use this when rendering a single view
// Our info in our UBO is only used if we're rendering stereo
for (uint32_t i = 0; i < p_view_count; i++) {
RendererRD::MaterialStorage::store_camera(p_view_projections[i].inverse(), sky_scene_state.ubo.view_inv_projections[i]);
sky_scene_state.ubo.view_eye_offsets[i][0] = p_view_eye_offsets[i].x;
sky_scene_state.ubo.view_eye_offsets[i][1] = p_view_eye_offsets[i].y;
sky_scene_state.ubo.view_eye_offsets[i][2] = p_view_eye_offsets[i].z;
sky_scene_state.ubo.view_eye_offsets[i][3] = 0.0;
}
sky_scene_state.ubo.z_far = p_view_projections[0].get_z_far(); // Should be the same for all projection
sky_scene_state.ubo.fog_enabled = RendererSceneRenderRD::get_singleton()->environment_get_fog_enabled(p_env);
sky_scene_state.ubo.fog_density = RendererSceneRenderRD::get_singleton()->environment_get_fog_density(p_env);
sky_scene_state.ubo.fog_aerial_perspective = RendererSceneRenderRD::get_singleton()->environment_get_fog_aerial_perspective(p_env);
Color fog_color = RendererSceneRenderRD::get_singleton()->environment_get_fog_light_color(p_env).srgb_to_linear();
float fog_energy = RendererSceneRenderRD::get_singleton()->environment_get_fog_light_energy(p_env);
sky_scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy;
sky_scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy;
sky_scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy;
sky_scene_state.ubo.fog_sun_scatter = RendererSceneRenderRD::get_singleton()->environment_get_fog_sun_scatter(p_env);
sky_scene_state.ubo.fog_sky_affect = RendererSceneRenderRD::get_singleton()->environment_get_fog_sky_affect(p_env);
sky_scene_state.ubo.volumetric_fog_sky_affect = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_sky_affect(p_env);
RD::get_singleton()->buffer_update(sky_scene_state.uniform_buffer, 0, sizeof(SkySceneState::UBO), &sky_scene_state.ubo);
}
void SkyRD::update_radiance_buffers(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_env, const Vector3 &p_global_pos, double p_time, float p_luminance_multiplier) {
ERR_FAIL_COND(p_render_buffers.is_null());
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
ERR_FAIL_COND(p_env.is_null());
Sky *sky = get_sky(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
ERR_FAIL_COND(!sky);
RID sky_material = sky_get_material(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
SkyMaterialData *material = nullptr;
if (sky_material.is_valid()) {
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
if (!material || !material->shader_data->valid) {
material = nullptr;
}
}
if (!material) {
sky_material = sky_shader.default_material;
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
}
ERR_FAIL_COND(!material);
SkyShaderData *shader_data = material->shader_data;
ERR_FAIL_COND(!shader_data);
bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY;
RS::SkyMode sky_mode = sky->mode;
if (sky_mode == RS::SKY_MODE_AUTOMATIC) {
if (shader_data->uses_time || shader_data->uses_position) {
update_single_frame = true;
sky_mode = RS::SKY_MODE_REALTIME;
} else if (shader_data->uses_light || shader_data->ubo_size > 0) {
update_single_frame = false;
sky_mode = RS::SKY_MODE_INCREMENTAL;
} else {
update_single_frame = true;
sky_mode = RS::SKY_MODE_QUALITY;
}
}
if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) {
// On the first frame after creating sky, rebuild in single frame
update_single_frame = true;
sky_mode = RS::SKY_MODE_QUALITY;
}
int max_processing_layer = sky_use_cubemap_array ? sky->reflection.layers.size() : sky->reflection.layers[0].mipmaps.size();
// Update radiance cubemap
if (sky->reflection.dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) {
static const Vector3 view_normals[6] = {
Vector3(+1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, +1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1)
};
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1),
Vector3(0, -1, 0),
Vector3(0, -1, 0)
};
Projection cm;
cm.set_perspective(90, 1, 0.01, 10.0);
Projection correction;
correction.set_depth_correction(true);
cm = correction * cm;
// Note, we ignore environment_get_sky_orientation here as this is applied when we do our lookup in our scene shader.
if (shader_data->uses_quarter_res && roughness_layers >= 3) {
RD::get_singleton()->draw_command_begin_label("Render Sky to Quarter Res Cubemap");
PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES];
Vector<Color> clear_colors;
clear_colors.push_back(Color(0.0, 0.0, 0.0));
RD::DrawListID cubemap_draw_list;
for (int i = 0; i < 6; i++) {
Basis local_view = Basis::looking_at(view_normals[i], view_up[i]);
RID texture_uniform_set = sky->get_textures(SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES, sky_shader.default_shader_rd, p_render_buffers);
cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
_render_sky(cubemap_draw_list, p_time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], pipeline, material->uniform_set, texture_uniform_set, cm, local_view, p_global_pos, p_luminance_multiplier);
RD::get_singleton()->draw_list_end();
}
RD::get_singleton()->draw_command_end_label();
} else if (shader_data->uses_quarter_res && roughness_layers < 3) {
ERR_PRINT_ED("Cannot use quarter res buffer in sky shader when roughness layers is less than 3. Please increase rendering/reflections/sky_reflections/roughness_layers.");
}
if (shader_data->uses_half_res && roughness_layers >= 2) {
RD::get_singleton()->draw_command_begin_label("Render Sky to Half Res Cubemap");
PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES];
Vector<Color> clear_colors;
clear_colors.push_back(Color(0.0, 0.0, 0.0));
RD::DrawListID cubemap_draw_list;
for (int i = 0; i < 6; i++) {
Basis local_view = Basis::looking_at(view_normals[i], view_up[i]);
RID texture_uniform_set = sky->get_textures(SKY_TEXTURE_SET_CUBEMAP_HALF_RES, sky_shader.default_shader_rd, p_render_buffers);
cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
_render_sky(cubemap_draw_list, p_time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], pipeline, material->uniform_set, texture_uniform_set, cm, local_view, p_global_pos, p_luminance_multiplier);
RD::get_singleton()->draw_list_end();
}
RD::get_singleton()->draw_command_end_label();
} else if (shader_data->uses_half_res && roughness_layers < 2) {
ERR_PRINT_ED("Cannot use half res buffer in sky shader when roughness layers is less than 2. Please increase rendering/reflections/sky_reflections/roughness_layers.");
}
RD::DrawListID cubemap_draw_list;
PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP];
RD::get_singleton()->draw_command_begin_label("Render Sky Cubemap");
for (int i = 0; i < 6; i++) {
Basis local_view = Basis::looking_at(view_normals[i], view_up[i]);
RID texture_uniform_set = sky->get_textures(SKY_TEXTURE_SET_CUBEMAP, sky_shader.default_shader_rd, p_render_buffers);
cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
_render_sky(cubemap_draw_list, p_time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], pipeline, material->uniform_set, texture_uniform_set, cm, local_view, p_global_pos, p_luminance_multiplier);
RD::get_singleton()->draw_list_end();
}
RD::get_singleton()->draw_command_end_label();
if (sky_mode == RS::SKY_MODE_REALTIME) {
sky->reflection.create_reflection_fast_filter(sky_use_cubemap_array);
if (sky_use_cubemap_array) {
sky->reflection.update_reflection_mipmaps(0, sky->reflection.layers.size());
}
} else {
if (update_single_frame) {
for (int i = 1; i < max_processing_layer; i++) {
sky->reflection.create_reflection_importance_sample(sky_use_cubemap_array, 10, i, sky_ggx_samples_quality);
}
if (sky_use_cubemap_array) {
sky->reflection.update_reflection_mipmaps(0, sky->reflection.layers.size());
}
} else {
if (sky_use_cubemap_array) {
// Multi-Frame so just update the first array level
sky->reflection.update_reflection_mipmaps(0, 1);
}
}
sky->processing_layer = 1;
}
sky->baked_exposure = p_luminance_multiplier;
sky->reflection.dirty = false;
} else {
if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) {
sky->reflection.create_reflection_importance_sample(sky_use_cubemap_array, 10, sky->processing_layer, sky_ggx_samples_quality);
if (sky_use_cubemap_array) {
sky->reflection.update_reflection_mipmaps(sky->processing_layer, sky->processing_layer + 1);
}
sky->processing_layer++;
}
}
}
void SkyRD::update_res_buffers(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_env, double p_time, float p_luminance_multiplier) {
ERR_FAIL_COND(p_render_buffers.is_null());
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
ERR_FAIL_COND(p_env.is_null());
Sky *sky = get_sky(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
SkyMaterialData *material = nullptr;
RID sky_material;
RS::EnvironmentBG background = RendererSceneRenderRD::get_singleton()->environment_get_background(p_env);
if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
ERR_FAIL_COND(!sky);
sky_material = sky_get_material(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
if (sky_material.is_valid()) {
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
if (!material || !material->shader_data->valid) {
material = nullptr;
}
}
if (!material) {
sky_material = sky_shader.default_material;
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
}
}
if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
sky_material = sky_scene_state.fog_material;
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
}
ERR_FAIL_COND(!material);
SkyShaderData *shader_data = material->shader_data;
ERR_FAIL_COND(!shader_data);
if (!shader_data->uses_quarter_res && !shader_data->uses_half_res) {
return;
}
material->set_as_used();
RENDER_TIMESTAMP("Setup Sky Resolution Buffers");
RD::get_singleton()->draw_command_begin_label("Setup Sky Resolution Buffers");
Basis sky_transform = RendererSceneRenderRD::get_singleton()->environment_get_sky_orientation(p_env);
sky_transform.invert();
float custom_fov = RendererSceneRenderRD::get_singleton()->environment_get_sky_custom_fov(p_env);
// Camera
Projection projection = sky_scene_state.cam_projection;
if (custom_fov && sky_scene_state.view_count == 1) {
// With custom fov we don't support stereo...
float near_plane = projection.get_z_near();
float far_plane = projection.get_z_far();
float aspect = projection.get_aspect();
projection.set_perspective(custom_fov, aspect, near_plane, far_plane);
}
sky_transform = sky_transform * sky_scene_state.cam_transform.basis;
if (shader_data->uses_quarter_res) {
PipelineCacheRD *pipeline = &shader_data->pipelines[sky_scene_state.view_count > 1 ? SKY_VERSION_QUARTER_RES_MULTIVIEW : SKY_VERSION_QUARTER_RES];
// Grab texture and framebuffer from cache, create if needed...
uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
Size2i quarter_size = sky->screen_size / 4;
RID texture = p_render_buffers->create_texture(RB_SCOPE_SKY, RB_QUARTER_TEXTURE, texture_format, usage_bits, RD::TEXTURE_SAMPLES_1, quarter_size);
RID framebuffer = FramebufferCacheRD::get_singleton()->get_cache_multiview(sky_scene_state.view_count, texture);
RID texture_uniform_set = sky->get_textures(SKY_TEXTURE_SET_QUARTER_RES, sky_shader.default_shader_rd, p_render_buffers);
Vector<Color> clear_colors;
clear_colors.push_back(Color(0.0, 0.0, 0.0));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
_render_sky(draw_list, p_time, framebuffer, pipeline, material->uniform_set, texture_uniform_set, projection, sky_transform, sky_scene_state.cam_transform.origin, p_luminance_multiplier);
RD::get_singleton()->draw_list_end();
}
if (shader_data->uses_half_res) {
PipelineCacheRD *pipeline = &shader_data->pipelines[sky_scene_state.view_count > 1 ? SKY_VERSION_HALF_RES_MULTIVIEW : SKY_VERSION_HALF_RES];
// Grab texture and framebuffer from cache, create if needed...
uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
Size2i half_size = sky->screen_size / 2;
RID texture = p_render_buffers->create_texture(RB_SCOPE_SKY, RB_HALF_TEXTURE, texture_format, usage_bits, RD::TEXTURE_SAMPLES_1, half_size);
RID framebuffer = FramebufferCacheRD::get_singleton()->get_cache_multiview(sky_scene_state.view_count, texture);
RID texture_uniform_set = sky->get_textures(SKY_TEXTURE_SET_HALF_RES, sky_shader.default_shader_rd, p_render_buffers);
Vector<Color> clear_colors;
clear_colors.push_back(Color(0.0, 0.0, 0.0));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
_render_sky(draw_list, p_time, framebuffer, pipeline, material->uniform_set, texture_uniform_set, projection, sky_transform, sky_scene_state.cam_transform.origin, p_luminance_multiplier);
RD::get_singleton()->draw_list_end();
}
RD::get_singleton()->draw_command_end_label(); // Setup Sky resolution buffers
}
void SkyRD::draw_sky(RD::DrawListID p_draw_list, Ref<RenderSceneBuffersRD> p_render_buffers, RID p_env, RID p_fb, double p_time, float p_luminance_multiplier) {
ERR_FAIL_COND(p_render_buffers.is_null());
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
ERR_FAIL_COND(p_env.is_null());
Sky *sky = get_sky(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
SkyMaterialData *material = nullptr;
RID sky_material;
RS::EnvironmentBG background = RendererSceneRenderRD::get_singleton()->environment_get_background(p_env);
if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
ERR_FAIL_COND(!sky);
sky_material = sky_get_material(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_env));
if (sky_material.is_valid()) {
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
if (!material || !material->shader_data->valid) {
material = nullptr;
}
}
if (!material) {
sky_material = sky_shader.default_material;
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
}
}
if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
sky_material = sky_scene_state.fog_material;
material = static_cast<SkyMaterialData *>(material_storage->material_get_data(sky_material, RendererRD::MaterialStorage::SHADER_TYPE_SKY));
}
ERR_FAIL_COND(!material);
SkyShaderData *shader_data = material->shader_data;
ERR_FAIL_COND(!shader_data);
material->set_as_used();
Basis sky_transform = RendererSceneRenderRD::get_singleton()->environment_get_sky_orientation(p_env);
sky_transform.invert();
float custom_fov = RendererSceneRenderRD::get_singleton()->environment_get_sky_custom_fov(p_env);
// Camera
Projection projection = sky_scene_state.cam_projection;
if (custom_fov && sky_scene_state.view_count == 1) {
// With custom fov we don't support stereo...
float near_plane = projection.get_z_near();
float far_plane = projection.get_z_far();
float aspect = projection.get_aspect();
projection.set_perspective(custom_fov, aspect, near_plane, far_plane);
}
sky_transform = sky_transform * sky_scene_state.cam_transform.basis;
PipelineCacheRD *pipeline = &shader_data->pipelines[sky_scene_state.view_count > 1 ? SKY_VERSION_BACKGROUND_MULTIVIEW : SKY_VERSION_BACKGROUND];
RID texture_uniform_set;
if (sky) {
texture_uniform_set = sky->get_textures(SKY_TEXTURE_SET_BACKGROUND, sky_shader.default_shader_rd, p_render_buffers);
} else {
texture_uniform_set = sky_scene_state.fog_only_texture_uniform_set;
}
_render_sky(p_draw_list, p_time, p_fb, pipeline, material->uniform_set, texture_uniform_set, projection, sky_transform, sky_scene_state.cam_transform.origin, p_luminance_multiplier);
}
void SkyRD::invalidate_sky(Sky *p_sky) {
if (!p_sky->dirty) {
p_sky->dirty = true;
p_sky->dirty_list = dirty_sky_list;
dirty_sky_list = p_sky;
}
}
void SkyRD::update_dirty_skys() {
Sky *sky = dirty_sky_list;
while (sky) {
//update sky configuration if texture is missing
// TODO See if we can move this into `update_radiance_buffers` and remove our dirty_sky logic.
// As this is basically a duplicate of the logic in reflection probes we could move this logic
// into RenderSceneBuffersRD and use that from both places.
if (sky->radiance.is_null()) {
int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
uint32_t w = sky->radiance_size, h = sky->radiance_size;
int layers = roughness_layers;
if (sky->mode == RS::SKY_MODE_REALTIME) {
layers = 8;
if (roughness_layers != 8) {
WARN_PRINT("When using the Real-Time sky update mode (or Automatic with a sky shader using \"TIME\"), \"rendering/reflections/sky_reflections/roughness_layers\" should be set to 8 in the project settings for best quality reflections.");
}
}
if (sky_use_cubemap_array) {
//array (higher quality, 6 times more memory)
RD::TextureFormat tf;
tf.array_layers = layers * 6;
tf.format = texture_format;
tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
tf.mipmaps = mipmaps;
tf.width = w;
tf.height = h;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
if (RendererSceneRenderRD::get_singleton()->_render_buffers_can_be_storage()) {
tf.usage_bits |= RD::TEXTURE_USAGE_STORAGE_BIT;
}
sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
sky->reflection.update_reflection_data(sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME, roughness_layers, texture_format);
} else {
//regular cubemap, lower quality (aliasing, less memory)
RD::TextureFormat tf;
tf.array_layers = 6;
tf.format = texture_format;
tf.texture_type = RD::TEXTURE_TYPE_CUBE;
tf.mipmaps = MIN(mipmaps, layers);
tf.width = w;
tf.height = h;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
if (RendererSceneRenderRD::get_singleton()->_render_buffers_can_be_storage()) {
tf.usage_bits |= RD::TEXTURE_USAGE_STORAGE_BIT;
}
sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
sky->reflection.update_reflection_data(sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME, roughness_layers, texture_format);
}
}
sky->reflection.dirty = true;
sky->processing_layer = 0;
Sky *next = sky->dirty_list;
sky->dirty_list = nullptr;
sky->dirty = false;
sky = next;
}
dirty_sky_list = nullptr;
}
RID SkyRD::sky_get_material(RID p_sky) const {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND_V(!sky, RID());
return sky->material;
}
float SkyRD::sky_get_baked_exposure(RID p_sky) const {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND_V(!sky, 1.0);
return sky->baked_exposure;
}
RID SkyRD::allocate_sky_rid() {
return sky_owner.allocate_rid();
}
void SkyRD::initialize_sky_rid(RID p_rid) {
sky_owner.initialize_rid(p_rid, Sky());
}
SkyRD::Sky *SkyRD::get_sky(RID p_sky) const {
return sky_owner.get_or_null(p_sky);
}
void SkyRD::free_sky(RID p_sky) {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND(!sky);
sky->free();
sky_owner.free(p_sky);
}
void SkyRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND(!sky);
if (sky->set_radiance_size(p_radiance_size)) {
invalidate_sky(sky);
}
}
void SkyRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND(!sky);
if (sky->set_mode(p_mode)) {
invalidate_sky(sky);
}
}
void SkyRD::sky_set_material(RID p_sky, RID p_material) {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND(!sky);
if (sky->set_material(p_material)) {
invalidate_sky(sky);
}
}
Ref<Image> SkyRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND_V(!sky, Ref<Image>());
update_dirty_skys();
return sky->bake_panorama(p_energy, p_bake_irradiance ? roughness_layers : 0, p_size);
}
RID SkyRD::sky_get_radiance_texture_rd(RID p_sky) const {
Sky *sky = get_sky(p_sky);
ERR_FAIL_COND_V(!sky, RID());
return sky->radiance;
}