virtualx-engine/thirdparty/libvpx/vp9/common/vp9_onyxc_int.h
Błażej Szczygieł 5268443fdf Add libvpx thirdparty library
Only necessary files
2016-10-19 13:34:28 +02:00

446 lines
14 KiB
C++

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_COMMON_VP9_ONYXC_INT_H_
#define VP9_COMMON_VP9_ONYXC_INT_H_
#include "./vpx_config.h"
#include "vpx/internal/vpx_codec_internal.h"
#include "vpx_util/vpx_thread.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_loopfilter.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_frame_buffers.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_tile_common.h"
#if CONFIG_VP9_POSTPROC
#include "vp9/common/vp9_postproc.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define REFS_PER_FRAME 3
#define REF_FRAMES_LOG2 3
#define REF_FRAMES (1 << REF_FRAMES_LOG2)
// 4 scratch frames for the new frames to support a maximum of 4 cores decoding
// in parallel, 3 for scaled references on the encoder.
// TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
// of framebuffers.
// TODO(jkoleszar): These 3 extra references could probably come from the
// normal reference pool.
#define FRAME_BUFFERS (REF_FRAMES + 7)
#define FRAME_CONTEXTS_LOG2 2
#define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
#define NUM_PING_PONG_BUFFERS 2
extern const struct {
PARTITION_CONTEXT above;
PARTITION_CONTEXT left;
} partition_context_lookup[BLOCK_SIZES];
typedef enum {
SINGLE_REFERENCE = 0,
COMPOUND_REFERENCE = 1,
REFERENCE_MODE_SELECT = 2,
REFERENCE_MODES = 3,
} REFERENCE_MODE;
typedef struct {
int_mv mv[2];
MV_REFERENCE_FRAME ref_frame[2];
} MV_REF;
typedef struct {
int ref_count;
MV_REF *mvs;
int mi_rows;
int mi_cols;
vpx_codec_frame_buffer_t raw_frame_buffer;
YV12_BUFFER_CONFIG buf;
// The Following variables will only be used in frame parallel decode.
// frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
// that no FrameWorker owns, or is decoding, this buffer.
VPxWorker *frame_worker_owner;
// row and col indicate which position frame has been decoded to in real
// pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
// when the frame is fully decoded.
int row;
int col;
} RefCntBuffer;
typedef struct BufferPool {
// Protect BufferPool from being accessed by several FrameWorkers at
// the same time during frame parallel decode.
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
#if CONFIG_MULTITHREAD
pthread_mutex_t pool_mutex;
#endif
// Private data associated with the frame buffer callbacks.
void *cb_priv;
vpx_get_frame_buffer_cb_fn_t get_fb_cb;
vpx_release_frame_buffer_cb_fn_t release_fb_cb;
RefCntBuffer frame_bufs[FRAME_BUFFERS];
// Frame buffers allocated internally by the codec.
InternalFrameBufferList int_frame_buffers;
} BufferPool;
typedef struct VP9Common {
struct vpx_internal_error_info error;
vpx_color_space_t color_space;
vpx_color_range_t color_range;
int width;
int height;
int render_width;
int render_height;
int last_width;
int last_height;
// TODO(jkoleszar): this implies chroma ss right now, but could vary per
// plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
// support additional planes.
int subsampling_x;
int subsampling_y;
#if CONFIG_VP9_HIGHBITDEPTH
int use_highbitdepth; // Marks if we need to use 16bit frame buffers.
#endif
YV12_BUFFER_CONFIG *frame_to_show;
RefCntBuffer *prev_frame;
// TODO(hkuang): Combine this with cur_buf in macroblockd.
RefCntBuffer *cur_frame;
int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
// Prepare ref_frame_map for the next frame.
// Only used in frame parallel decode.
int next_ref_frame_map[REF_FRAMES];
// TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
// roll new_fb_idx into it.
// Each frame can reference REFS_PER_FRAME buffers
RefBuffer frame_refs[REFS_PER_FRAME];
int new_fb_idx;
#if CONFIG_VP9_POSTPROC
YV12_BUFFER_CONFIG post_proc_buffer;
YV12_BUFFER_CONFIG post_proc_buffer_int;
#endif
FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
FRAME_TYPE frame_type;
int show_frame;
int last_show_frame;
int show_existing_frame;
// Flag signaling that the frame is encoded using only INTRA modes.
uint8_t intra_only;
uint8_t last_intra_only;
int allow_high_precision_mv;
// Flag signaling that the frame context should be reset to default values.
// 0 or 1 implies don't reset, 2 reset just the context specified in the
// frame header, 3 reset all contexts.
int reset_frame_context;
// MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
// MODE_INFO (8-pixel) units.
int MBs;
int mb_rows, mi_rows;
int mb_cols, mi_cols;
int mi_stride;
/* profile settings */
TX_MODE tx_mode;
int base_qindex;
int y_dc_delta_q;
int uv_dc_delta_q;
int uv_ac_delta_q;
int16_t y_dequant[MAX_SEGMENTS][2];
int16_t uv_dequant[MAX_SEGMENTS][2];
/* We allocate a MODE_INFO struct for each macroblock, together with
an extra row on top and column on the left to simplify prediction. */
int mi_alloc_size;
MODE_INFO *mip; /* Base of allocated array */
MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
// TODO(agrange): Move prev_mi into encoder structure.
// prev_mip and prev_mi will only be allocated in VP9 encoder.
MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
// Separate mi functions between encoder and decoder.
int (*alloc_mi)(struct VP9Common *cm, int mi_size);
void (*free_mi)(struct VP9Common *cm);
void (*setup_mi)(struct VP9Common *cm);
// Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
// area will be NULL.
MODE_INFO **mi_grid_base;
MODE_INFO **mi_grid_visible;
MODE_INFO **prev_mi_grid_base;
MODE_INFO **prev_mi_grid_visible;
// Whether to use previous frame's motion vectors for prediction.
int use_prev_frame_mvs;
// Persistent mb segment id map used in prediction.
int seg_map_idx;
int prev_seg_map_idx;
uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
uint8_t *last_frame_seg_map;
uint8_t *current_frame_seg_map;
int seg_map_alloc_size;
INTERP_FILTER interp_filter;
loop_filter_info_n lf_info;
int refresh_frame_context; /* Two state 0 = NO, 1 = YES */
int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */
struct loopfilter lf;
struct segmentation seg;
// TODO(hkuang): Remove this as it is the same as frame_parallel_decode
// in pbi.
int frame_parallel_decode; // frame-based threading.
// Context probabilities for reference frame prediction
MV_REFERENCE_FRAME comp_fixed_ref;
MV_REFERENCE_FRAME comp_var_ref[2];
REFERENCE_MODE reference_mode;
FRAME_CONTEXT *fc; /* this frame entropy */
FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
unsigned int frame_context_idx; /* Context to use/update */
FRAME_COUNTS counts;
unsigned int current_video_frame;
BITSTREAM_PROFILE profile;
// VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3.
vpx_bit_depth_t bit_depth;
vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
#if CONFIG_VP9_POSTPROC
struct postproc_state postproc_state;
#endif
int error_resilient_mode;
int frame_parallel_decoding_mode;
int log2_tile_cols, log2_tile_rows;
int byte_alignment;
int skip_loop_filter;
// Private data associated with the frame buffer callbacks.
void *cb_priv;
vpx_get_frame_buffer_cb_fn_t get_fb_cb;
vpx_release_frame_buffer_cb_fn_t release_fb_cb;
// Handles memory for the codec.
InternalFrameBufferList int_frame_buffers;
// External BufferPool passed from outside.
BufferPool *buffer_pool;
PARTITION_CONTEXT *above_seg_context;
ENTROPY_CONTEXT *above_context;
int above_context_alloc_cols;
} VP9_COMMON;
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
// frame reference count.
void lock_buffer_pool(BufferPool *const pool);
void unlock_buffer_pool(BufferPool *const pool);
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP9_COMMON *cm, int index) {
if (index < 0 || index >= REF_FRAMES)
return NULL;
if (cm->ref_frame_map[index] < 0)
return NULL;
assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
}
static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) {
return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
}
static INLINE int get_free_fb(VP9_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
for (i = 0; i < FRAME_BUFFERS; ++i)
if (frame_bufs[i].ref_count == 0)
break;
if (i != FRAME_BUFFERS) {
frame_bufs[i].ref_count = 1;
} else {
// Reset i to be INVALID_IDX to indicate no free buffer found.
i = INVALID_IDX;
}
unlock_buffer_pool(cm->buffer_pool);
return i;
}
static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
const int ref_index = *idx;
if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
bufs[ref_index].ref_count--;
*idx = new_idx;
bufs[new_idx].ref_count++;
}
static INLINE int mi_cols_aligned_to_sb(int n_mis) {
return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2);
}
static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) {
return cm->frame_type == KEY_FRAME || cm->intra_only;
}
static INLINE void set_partition_probs(const VP9_COMMON *const cm,
MACROBLOCKD *const xd) {
xd->partition_probs =
frame_is_intra_only(cm) ?
&vp9_kf_partition_probs[0] :
(const vpx_prob (*)[PARTITION_TYPES - 1])cm->fc->partition_prob;
}
static INLINE void vp9_init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd,
tran_low_t *dqcoeff) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
xd->plane[i].dqcoeff = dqcoeff;
xd->above_context[i] = cm->above_context +
i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols);
if (get_plane_type(i) == PLANE_TYPE_Y) {
memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
} else {
memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
}
xd->fc = cm->fc;
}
xd->above_seg_context = cm->above_seg_context;
xd->mi_stride = cm->mi_stride;
xd->error_info = &cm->error;
set_partition_probs(cm, xd);
}
static INLINE const vpx_prob* get_partition_probs(const MACROBLOCKD *xd,
int ctx) {
return xd->partition_probs[ctx];
}
static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
const int above_idx = mi_col * 2;
const int left_idx = (mi_row * 2) & 15;
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
}
}
static INLINE int calc_mi_size(int len) {
// len is in mi units.
return len + MI_BLOCK_SIZE;
}
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
int mi_row, int bh,
int mi_col, int bw,
int mi_rows, int mi_cols) {
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
// Are edges available for intra prediction?
xd->above_mi = (mi_row != 0) ? xd->mi[-xd->mi_stride] : NULL;
xd->left_mi = (mi_col > tile->mi_col_start) ? xd->mi[-1] : NULL;
}
static INLINE void update_partition_context(MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE subsize,
BLOCK_SIZE bsize) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
// num_4x4_blocks_wide_lookup[bsize] / 2
const int bs = num_8x8_blocks_wide_lookup[bsize];
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bs);
memset(left_ctx, partition_context_lookup[subsize].left, bs);
}
static INLINE int partition_plane_context(const MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
const int bsl = mi_width_log2_lookup[bsize];
int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1;
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // VP9_COMMON_VP9_ONYXC_INT_H_