virtualx-engine/thirdparty/basis_universal/transcoder/basisu_containers.h
K. S. Ernest (iFire) Lee 3529141b4b Update basis universal to version 1.16.3.
Enable basis universal uastc internal storage instead of etc1s for better quality.
2022-03-24 22:41:23 -07:00

1983 lines
54 KiB
C++

// basisu_containers.h
#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <assert.h>
#include <algorithm>
#if defined(__linux__) && !defined(ANDROID)
// Only for malloc_usable_size() in basisu_containers_impl.h
#include <malloc.h>
#define HAS_MALLOC_USABLE_SIZE 1
#endif
// Set to 1 to always check vector operator[], front(), and back() even in release.
#define BASISU_VECTOR_FORCE_CHECKING 0
// If 1, the vector container will not query the CRT to get the size of resized memory blocks.
#define BASISU_VECTOR_DETERMINISTIC 1
#ifdef _MSC_VER
#define BASISU_FORCE_INLINE __forceinline
#else
#define BASISU_FORCE_INLINE inline
#endif
namespace basisu
{
enum { cInvalidIndex = -1 };
namespace helpers
{
inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); }
inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); }
template<class T> const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; }
template<class T> const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; }
inline uint32_t floor_log2i(uint32_t v)
{
uint32_t l = 0;
while (v > 1U)
{
v >>= 1;
l++;
}
return l;
}
inline uint32_t next_pow2(uint32_t val)
{
val--;
val |= val >> 16;
val |= val >> 8;
val |= val >> 4;
val |= val >> 2;
val |= val >> 1;
return val + 1;
}
inline uint64_t next_pow2(uint64_t val)
{
val--;
val |= val >> 32;
val |= val >> 16;
val |= val >> 8;
val |= val >> 4;
val |= val >> 2;
val |= val >> 1;
return val + 1;
}
} // namespace helpers
template <typename T>
inline T* construct(T* p)
{
return new (static_cast<void*>(p)) T;
}
template <typename T, typename U>
inline T* construct(T* p, const U& init)
{
return new (static_cast<void*>(p)) T(init);
}
template <typename T>
inline void construct_array(T* p, size_t n)
{
T* q = p + n;
for (; p != q; ++p)
new (static_cast<void*>(p)) T;
}
template <typename T, typename U>
inline void construct_array(T* p, size_t n, const U& init)
{
T* q = p + n;
for (; p != q; ++p)
new (static_cast<void*>(p)) T(init);
}
template <typename T>
inline void destruct(T* p)
{
(void)p;
p->~T();
}
template <typename T> inline void destruct_array(T* p, size_t n)
{
T* q = p + n;
for (; p != q; ++p)
p->~T();
}
template<typename T> struct int_traits { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; };
template<> struct int_traits<int8_t> { enum { cMin = INT8_MIN, cMax = INT8_MAX, cSigned = true }; };
template<> struct int_traits<int16_t> { enum { cMin = INT16_MIN, cMax = INT16_MAX, cSigned = true }; };
template<> struct int_traits<int32_t> { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; };
template<> struct int_traits<uint8_t> { enum { cMin = 0, cMax = UINT8_MAX, cSigned = false }; };
template<> struct int_traits<uint16_t> { enum { cMin = 0, cMax = UINT16_MAX, cSigned = false }; };
template<> struct int_traits<uint32_t> { enum { cMin = 0, cMax = UINT32_MAX, cSigned = false }; };
template<typename T>
struct scalar_type
{
enum { cFlag = false };
static inline void construct(T* p) { basisu::construct(p); }
static inline void construct(T* p, const T& init) { basisu::construct(p, init); }
static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); }
static inline void destruct(T* p) { basisu::destruct(p); }
static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); }
};
template<typename T> struct scalar_type<T*>
{
enum { cFlag = true };
static inline void construct(T** p) { memset(p, 0, sizeof(T*)); }
static inline void construct(T** p, T* init) { *p = init; }
static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); }
static inline void destruct(T** p) { p; }
static inline void destruct_array(T** p, size_t n) { p, n; }
};
#define BASISU_DEFINE_BUILT_IN_TYPE(X) \
template<> struct scalar_type<X> { \
enum { cFlag = true }; \
static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \
static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \
static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \
static inline void destruct(X* p) { p; } \
static inline void destruct_array(X* p, size_t n) { p, n; } };
BASISU_DEFINE_BUILT_IN_TYPE(bool)
BASISU_DEFINE_BUILT_IN_TYPE(char)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned char)
BASISU_DEFINE_BUILT_IN_TYPE(short)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned short)
BASISU_DEFINE_BUILT_IN_TYPE(int)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned int)
BASISU_DEFINE_BUILT_IN_TYPE(long)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned long)
#ifdef __GNUC__
BASISU_DEFINE_BUILT_IN_TYPE(long long)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long)
#else
BASISU_DEFINE_BUILT_IN_TYPE(__int64)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64)
#endif
BASISU_DEFINE_BUILT_IN_TYPE(float)
BASISU_DEFINE_BUILT_IN_TYPE(double)
BASISU_DEFINE_BUILT_IN_TYPE(long double)
#undef BASISU_DEFINE_BUILT_IN_TYPE
template<typename T>
struct bitwise_movable { enum { cFlag = false }; };
#define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable<Q> { enum { cFlag = true }; };
template<typename T>
struct bitwise_copyable { enum { cFlag = false }; };
#define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable<Q> { enum { cFlag = true }; };
#define BASISU_IS_POD(T) __is_pod(T)
#define BASISU_IS_SCALAR_TYPE(T) (scalar_type<T>::cFlag)
#if defined(__GNUC__) && __GNUC__<5
#define BASISU_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
#else
#define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
#endif
// TODO: clean this up
#define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || (bitwise_copyable<T>::cFlag))
#define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable<T>::cFlag))
#define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type<T>::cFlag) && (!__is_pod(T)))
typedef char(&yes_t)[1];
typedef char(&no_t)[2];
template <class U> yes_t class_test(int U::*);
template <class U> no_t class_test(...);
template <class T> struct is_class
{
enum { value = (sizeof(class_test<T>(0)) == sizeof(yes_t)) };
};
template <typename T> struct is_pointer
{
enum { value = false };
};
template <typename T> struct is_pointer<T*>
{
enum { value = true };
};
struct empty_type { };
BASISU_DEFINE_BITWISE_COPYABLE(empty_type);
BASISU_DEFINE_BITWISE_MOVABLE(empty_type);
template<typename T> struct rel_ops
{
friend bool operator!=(const T& x, const T& y) { return (!(x == y)); }
friend bool operator> (const T& x, const T& y) { return (y < x); }
friend bool operator<=(const T& x, const T& y) { return (!(y < x)); }
friend bool operator>=(const T& x, const T& y) { return (!(x < y)); }
};
struct elemental_vector
{
void* m_p;
uint32_t m_size;
uint32_t m_capacity;
typedef void (*object_mover)(void* pDst, void* pSrc, uint32_t num);
bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, uint32_t element_size, object_mover pRelocate, bool nofail);
};
template<typename T>
class vector : public rel_ops< vector<T> >
{
public:
typedef T* iterator;
typedef const T* const_iterator;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
inline vector() :
m_p(NULL),
m_size(0),
m_capacity(0)
{
}
inline vector(uint32_t n, const T& init) :
m_p(NULL),
m_size(0),
m_capacity(0)
{
increase_capacity(n, false);
construct_array(m_p, n, init);
m_size = n;
}
inline vector(const vector& other) :
m_p(NULL),
m_size(0),
m_capacity(0)
{
increase_capacity(other.m_size, false);
m_size = other.m_size;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
if ((m_p) && (other.m_p))
memcpy(m_p, other.m_p, m_size * sizeof(T));
}
else
{
T* pDst = m_p;
const T* pSrc = other.m_p;
for (uint32_t i = m_size; i > 0; i--)
construct(pDst++, *pSrc++);
}
}
inline explicit vector(size_t size) :
m_p(NULL),
m_size(0),
m_capacity(0)
{
resize(size);
}
inline ~vector()
{
if (m_p)
{
scalar_type<T>::destruct_array(m_p, m_size);
free(m_p);
}
}
inline vector& operator= (const vector& other)
{
if (this == &other)
return *this;
if (m_capacity >= other.m_size)
resize(0);
else
{
clear();
increase_capacity(other.m_size, false);
}
if (BASISU_IS_BITWISE_COPYABLE(T))
{
if ((m_p) && (other.m_p))
memcpy(m_p, other.m_p, other.m_size * sizeof(T));
}
else
{
T* pDst = m_p;
const T* pSrc = other.m_p;
for (uint32_t i = other.m_size; i > 0; i--)
construct(pDst++, *pSrc++);
}
m_size = other.m_size;
return *this;
}
BASISU_FORCE_INLINE const T* begin() const { return m_p; }
BASISU_FORCE_INLINE T* begin() { return m_p; }
BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; }
BASISU_FORCE_INLINE T* end() { return m_p + m_size; }
BASISU_FORCE_INLINE bool empty() const { return !m_size; }
BASISU_FORCE_INLINE uint32_t size() const { return m_size; }
BASISU_FORCE_INLINE uint32_t size_in_bytes() const { return m_size * sizeof(T); }
BASISU_FORCE_INLINE uint32_t capacity() const { return m_capacity; }
// operator[] will assert on out of range indices, but in final builds there is (and will never be) any range checking on this method.
//BASISU_FORCE_INLINE const T& operator[] (uint32_t i) const { assert(i < m_size); return m_p[i]; }
//BASISU_FORCE_INLINE T& operator[] (uint32_t i) { assert(i < m_size); return m_p[i]; }
#if !BASISU_VECTOR_FORCE_CHECKING
BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; }
BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; }
#else
BASISU_FORCE_INLINE const T& operator[] (size_t i) const
{
if (i >= m_size)
{
fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n", (uint32_t)i, m_size, (uint32_t)sizeof(T));
abort();
}
return m_p[i];
}
BASISU_FORCE_INLINE T& operator[] (size_t i)
{
if (i >= m_size)
{
fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n", (uint32_t)i, m_size, (uint32_t)sizeof(T));
abort();
}
return m_p[i];
}
#endif
// at() always includes range checking, even in final builds, unlike operator [].
// The first element is returned if the index is out of range.
BASISU_FORCE_INLINE const T& at(size_t i) const { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; }
BASISU_FORCE_INLINE T& at(size_t i) { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; }
#if !BASISU_VECTOR_FORCE_CHECKING
BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; }
BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; }
BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; }
BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; }
#else
BASISU_FORCE_INLINE const T& front() const
{
if (!m_size)
{
fprintf(stderr, "front: vector is empty, type size %u\n", (uint32_t)sizeof(T));
abort();
}
return m_p[0];
}
BASISU_FORCE_INLINE T& front()
{
if (!m_size)
{
fprintf(stderr, "front: vector is empty, type size %u\n", (uint32_t)sizeof(T));
abort();
}
return m_p[0];
}
BASISU_FORCE_INLINE const T& back() const
{
if(!m_size)
{
fprintf(stderr, "back: vector is empty, type size %u\n", (uint32_t)sizeof(T));
abort();
}
return m_p[m_size - 1];
}
BASISU_FORCE_INLINE T& back()
{
if (!m_size)
{
fprintf(stderr, "back: vector is empty, type size %u\n", (uint32_t)sizeof(T));
abort();
}
return m_p[m_size - 1];
}
#endif
BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; }
BASISU_FORCE_INLINE T* get_ptr() { return m_p; }
BASISU_FORCE_INLINE const T* data() const { return m_p; }
BASISU_FORCE_INLINE T* data() { return m_p; }
// clear() sets the container to empty, then frees the allocated block.
inline void clear()
{
if (m_p)
{
scalar_type<T>::destruct_array(m_p, m_size);
free(m_p);
m_p = NULL;
m_size = 0;
m_capacity = 0;
}
}
inline void clear_no_destruction()
{
if (m_p)
{
free(m_p);
m_p = NULL;
m_size = 0;
m_capacity = 0;
}
}
inline void reserve(size_t new_capacity_size_t)
{
if (new_capacity_size_t > UINT32_MAX)
{
assert(0);
return;
}
uint32_t new_capacity = (uint32_t)new_capacity_size_t;
if (new_capacity > m_capacity)
increase_capacity(new_capacity, false);
else if (new_capacity < m_capacity)
{
// Must work around the lack of a "decrease_capacity()" method.
// This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize.
vector tmp;
tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false);
tmp = *this;
swap(tmp);
}
}
inline bool try_reserve(size_t new_capacity_size_t)
{
if (new_capacity_size_t > UINT32_MAX)
{
assert(0);
return false;
}
uint32_t new_capacity = (uint32_t)new_capacity_size_t;
if (new_capacity > m_capacity)
{
if (!increase_capacity(new_capacity, false))
return false;
}
else if (new_capacity < m_capacity)
{
// Must work around the lack of a "decrease_capacity()" method.
// This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize.
vector tmp;
tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false);
tmp = *this;
swap(tmp);
}
return true;
}
// resize(0) sets the container to empty, but does not free the allocated block.
inline void resize(size_t new_size_size_t, bool grow_hint = false)
{
if (new_size_size_t > UINT32_MAX)
{
assert(0);
return;
}
uint32_t new_size = (uint32_t)new_size_size_t;
if (m_size != new_size)
{
if (new_size < m_size)
scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
else
{
if (new_size > m_capacity)
increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint);
scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
}
m_size = new_size;
}
}
inline bool try_resize(size_t new_size_size_t, bool grow_hint = false)
{
if (new_size_size_t > UINT32_MAX)
{
assert(0);
return false;
}
uint32_t new_size = (uint32_t)new_size_size_t;
if (m_size != new_size)
{
if (new_size < m_size)
scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
else
{
if (new_size > m_capacity)
{
if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true))
return false;
}
scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
}
m_size = new_size;
}
return true;
}
// If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future).
// Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494
inline void reset()
{
if (m_size >= (m_capacity >> 1))
resize(0);
else
clear();
}
inline T* enlarge(uint32_t i)
{
uint32_t cur_size = m_size;
resize(cur_size + i, true);
return get_ptr() + cur_size;
}
inline T* try_enlarge(uint32_t i)
{
uint32_t cur_size = m_size;
if (!try_resize(cur_size + i, true))
return NULL;
return get_ptr() + cur_size;
}
BASISU_FORCE_INLINE void push_back(const T& obj)
{
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
if (m_size >= m_capacity)
increase_capacity(m_size + 1, true);
scalar_type<T>::construct(m_p + m_size, obj);
m_size++;
}
inline bool try_push_back(const T& obj)
{
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
if (m_size >= m_capacity)
{
if (!increase_capacity(m_size + 1, true, true))
return false;
}
scalar_type<T>::construct(m_p + m_size, obj);
m_size++;
return true;
}
inline void push_back_value(T obj)
{
if (m_size >= m_capacity)
increase_capacity(m_size + 1, true);
scalar_type<T>::construct(m_p + m_size, obj);
m_size++;
}
inline void pop_back()
{
assert(m_size);
if (m_size)
{
m_size--;
scalar_type<T>::destruct(&m_p[m_size]);
}
}
inline void insert(uint32_t index, const T* p, uint32_t n)
{
assert(index <= m_size);
if (!n)
return;
const uint32_t orig_size = m_size;
resize(m_size + n, true);
const uint32_t num_to_move = orig_size - index;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
// This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction.
memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move);
}
else
{
const T* pSrc = m_p + orig_size - 1;
T* pDst = const_cast<T*>(pSrc) + n;
for (uint32_t i = 0; i < num_to_move; i++)
{
assert((pDst - m_p) < (int)m_size);
*pDst-- = *pSrc--;
}
}
T* pDst = m_p + index;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
// This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction.
memcpy(pDst, p, sizeof(T) * n);
}
else
{
for (uint32_t i = 0; i < n; i++)
{
assert((pDst - m_p) < (int)m_size);
*pDst++ = *p++;
}
}
}
inline void insert(T* p, const T& obj)
{
int64_t ofs = p - begin();
if ((ofs < 0) || (ofs > UINT32_MAX))
{
assert(0);
return;
}
insert((uint32_t)ofs, &obj, 1);
}
// push_front() isn't going to be very fast - it's only here for usability.
inline void push_front(const T& obj)
{
insert(0, &obj, 1);
}
vector& append(const vector& other)
{
if (other.m_size)
insert(m_size, &other[0], other.m_size);
return *this;
}
vector& append(const T* p, uint32_t n)
{
if (n)
insert(m_size, p, n);
return *this;
}
inline void erase(uint32_t start, uint32_t n)
{
assert((start + n) <= m_size);
if ((start + n) > m_size)
return;
if (!n)
return;
const uint32_t num_to_move = m_size - (start + n);
T* pDst = m_p + start;
const T* pSrc = m_p + start + n;
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T))
{
// This test is overly cautious.
if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T)))
{
// Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed.
// First destroy the erased objects.
scalar_type<T>::destruct_array(pDst, n);
}
// Copy "down" the objects to preserve, filling in the empty slots.
memmove(pDst, pSrc, num_to_move * sizeof(T));
}
else
{
// Type is not bitwise copyable or movable.
// Move them down one at a time by using the equals operator, and destroying anything that's left over at the end.
T* pDst_end = pDst + num_to_move;
while (pDst != pDst_end)
*pDst++ = *pSrc++;
scalar_type<T>::destruct_array(pDst_end, n);
}
m_size -= n;
}
inline void erase(uint32_t index)
{
erase(index, 1);
}
inline void erase(T* p)
{
assert((p >= m_p) && (p < (m_p + m_size)));
erase(static_cast<uint32_t>(p - m_p));
}
inline void erase(T *pFirst, T *pEnd)
{
assert(pFirst <= pEnd);
assert(pFirst >= begin() && pFirst <= end());
assert(pEnd >= begin() && pEnd <= end());
int64_t ofs = pFirst - begin();
if ((ofs < 0) || (ofs > UINT32_MAX))
{
assert(0);
return;
}
int64_t n = pEnd - pFirst;
if ((n < 0) || (n > UINT32_MAX))
{
assert(0);
return;
}
erase((uint32_t)ofs, (uint32_t)n);
}
void erase_unordered(uint32_t index)
{
assert(index < m_size);
if ((index + 1) < m_size)
(*this)[index] = back();
pop_back();
}
inline bool operator== (const vector& rhs) const
{
if (m_size != rhs.m_size)
return false;
else if (m_size)
{
if (scalar_type<T>::cFlag)
return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0;
else
{
const T* pSrc = m_p;
const T* pDst = rhs.m_p;
for (uint32_t i = m_size; i; i--)
if (!(*pSrc++ == *pDst++))
return false;
}
}
return true;
}
inline bool operator< (const vector& rhs) const
{
const uint32_t min_size = helpers::minimum(m_size, rhs.m_size);
const T* pSrc = m_p;
const T* pSrc_end = m_p + min_size;
const T* pDst = rhs.m_p;
while ((pSrc < pSrc_end) && (*pSrc == *pDst))
{
pSrc++;
pDst++;
}
if (pSrc < pSrc_end)
return *pSrc < *pDst;
return m_size < rhs.m_size;
}
inline void swap(vector& other)
{
std::swap(m_p, other.m_p);
std::swap(m_size, other.m_size);
std::swap(m_capacity, other.m_capacity);
}
inline void sort()
{
std::sort(begin(), end());
}
inline void unique()
{
if (!empty())
{
sort();
resize(std::unique(begin(), end()) - begin());
}
}
inline void reverse()
{
uint32_t j = m_size >> 1;
for (uint32_t i = 0; i < j; i++)
std::swap(m_p[i], m_p[m_size - 1 - i]);
}
inline int find(const T& key) const
{
const T* p = m_p;
const T* p_end = m_p + m_size;
uint32_t index = 0;
while (p != p_end)
{
if (key == *p)
return index;
p++;
index++;
}
return cInvalidIndex;
}
inline int find_sorted(const T& key) const
{
if (m_size)
{
// Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice.
int i = ((m_size + 1) >> 1) - 1;
int m = m_size;
for (; ; )
{
assert(i >= 0 && i < (int)m_size);
const T* pKey_i = m_p + i;
int cmp = key < *pKey_i;
#if defined(_DEBUG) || defined(DEBUG)
int cmp2 = *pKey_i < key;
assert((cmp != cmp2) || (key == *pKey_i));
#endif
if ((!cmp) && (key == *pKey_i)) return i;
m >>= 1;
if (!m) break;
cmp = -cmp;
i += (((m + 1) >> 1) ^ cmp) - cmp;
if (i < 0)
break;
assert(i >= 0 && i < (int)m_size);
pKey_i = m_p + i;
cmp = key < *pKey_i;
#if defined(_DEBUG) || defined(DEBUG)
cmp2 = *pKey_i < key;
assert((cmp != cmp2) || (key == *pKey_i));
#endif
if ((!cmp) && (key == *pKey_i)) return i;
m >>= 1;
if (!m) break;
cmp = -cmp;
i += (((m + 1) >> 1) ^ cmp) - cmp;
if (i < 0)
break;
}
}
return cInvalidIndex;
}
template<typename Q>
inline int find_sorted(const T& key, Q less_than) const
{
if (m_size)
{
// Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice.
int i = ((m_size + 1) >> 1) - 1;
int m = m_size;
for (; ; )
{
assert(i >= 0 && i < (int)m_size);
const T* pKey_i = m_p + i;
int cmp = less_than(key, *pKey_i);
if ((!cmp) && (!less_than(*pKey_i, key))) return i;
m >>= 1;
if (!m) break;
cmp = -cmp;
i += (((m + 1) >> 1) ^ cmp) - cmp;
if (i < 0)
break;
assert(i >= 0 && i < (int)m_size);
pKey_i = m_p + i;
cmp = less_than(key, *pKey_i);
if ((!cmp) && (!less_than(*pKey_i, key))) return i;
m >>= 1;
if (!m) break;
cmp = -cmp;
i += (((m + 1) >> 1) ^ cmp) - cmp;
if (i < 0)
break;
}
}
return cInvalidIndex;
}
inline uint32_t count_occurences(const T& key) const
{
uint32_t c = 0;
const T* p = m_p;
const T* p_end = m_p + m_size;
while (p != p_end)
{
if (key == *p)
c++;
p++;
}
return c;
}
inline void set_all(const T& o)
{
if ((sizeof(T) == 1) && (scalar_type<T>::cFlag))
memset(m_p, *reinterpret_cast<const uint8_t*>(&o), m_size);
else
{
T* pDst = m_p;
T* pDst_end = pDst + m_size;
while (pDst != pDst_end)
*pDst++ = o;
}
}
// Caller assumes ownership of the heap block associated with the container. Container is cleared.
inline void* assume_ownership()
{
T* p = m_p;
m_p = NULL;
m_size = 0;
m_capacity = 0;
return p;
}
// Caller is granting ownership of the indicated heap block.
// Block must have size constructed elements, and have enough room for capacity elements.
// The block must have been allocated using malloc().
// Important: This method is used in Basis Universal. If you change how this container allocates memory, you'll need to change any users of this method.
inline bool grant_ownership(T* p, uint32_t size, uint32_t capacity)
{
// To to prevent the caller from obviously shooting themselves in the foot.
if (((p + capacity) > m_p) && (p < (m_p + m_capacity)))
{
// Can grant ownership of a block inside the container itself!
assert(0);
return false;
}
if (size > capacity)
{
assert(0);
return false;
}
if (!p)
{
if (capacity)
{
assert(0);
return false;
}
}
else if (!capacity)
{
assert(0);
return false;
}
clear();
m_p = p;
m_size = size;
m_capacity = capacity;
return true;
}
private:
T* m_p;
uint32_t m_size;
uint32_t m_capacity;
template<typename Q> struct is_vector { enum { cFlag = false }; };
template<typename Q> struct is_vector< vector<Q> > { enum { cFlag = true }; };
static void object_mover(void* pDst_void, void* pSrc_void, uint32_t num)
{
T* pSrc = static_cast<T*>(pSrc_void);
T* const pSrc_end = pSrc + num;
T* pDst = static_cast<T*>(pDst_void);
while (pSrc != pSrc_end)
{
// placement new
new (static_cast<void*>(pDst)) T(*pSrc);
pSrc->~T();
++pSrc;
++pDst;
}
}
inline bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, bool nofail = false)
{
return reinterpret_cast<elemental_vector*>(this)->increase_capacity(
min_new_capacity, grow_hint, sizeof(T),
(BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector<T>::cFlag)) ? NULL : object_mover, nofail);
}
};
template<typename T> struct bitwise_movable< vector<T> > { enum { cFlag = true }; };
// Hash map
template <typename T>
struct hasher
{
inline size_t operator() (const T& key) const { return static_cast<size_t>(key); }
};
template <typename T>
struct equal_to
{
inline bool operator()(const T& a, const T& b) const { return a == b; }
};
// Important: The Hasher and Equals objects must be bitwise movable!
template<typename Key, typename Value = empty_type, typename Hasher = hasher<Key>, typename Equals = equal_to<Key> >
class hash_map
{
public:
class iterator;
class const_iterator;
private:
friend class iterator;
friend class const_iterator;
enum state
{
cStateInvalid = 0,
cStateValid = 1
};
enum
{
cMinHashSize = 4U
};
public:
typedef hash_map<Key, Value, Hasher, Equals> hash_map_type;
typedef std::pair<Key, Value> value_type;
typedef Key key_type;
typedef Value referent_type;
typedef Hasher hasher_type;
typedef Equals equals_type;
hash_map() :
m_hash_shift(32), m_num_valid(0), m_grow_threshold(0)
{
}
hash_map(const hash_map& other) :
m_values(other.m_values),
m_hash_shift(other.m_hash_shift),
m_hasher(other.m_hasher),
m_equals(other.m_equals),
m_num_valid(other.m_num_valid),
m_grow_threshold(other.m_grow_threshold)
{
}
hash_map& operator= (const hash_map& other)
{
if (this == &other)
return *this;
clear();
m_values = other.m_values;
m_hash_shift = other.m_hash_shift;
m_num_valid = other.m_num_valid;
m_grow_threshold = other.m_grow_threshold;
m_hasher = other.m_hasher;
m_equals = other.m_equals;
return *this;
}
inline ~hash_map()
{
clear();
}
const Equals& get_equals() const { return m_equals; }
Equals& get_equals() { return m_equals; }
void set_equals(const Equals& equals) { m_equals = equals; }
const Hasher& get_hasher() const { return m_hasher; }
Hasher& get_hasher() { return m_hasher; }
void set_hasher(const Hasher& hasher) { m_hasher = hasher; }
inline void clear()
{
if (!m_values.empty())
{
if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
{
node* p = &get_node(0);
node* p_end = p + m_values.size();
uint32_t num_remaining = m_num_valid;
while (p != p_end)
{
if (p->state)
{
destruct_value_type(p);
num_remaining--;
if (!num_remaining)
break;
}
p++;
}
}
m_values.clear_no_destruction();
m_hash_shift = 32;
m_num_valid = 0;
m_grow_threshold = 0;
}
}
inline void reset()
{
if (!m_num_valid)
return;
if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
{
node* p = &get_node(0);
node* p_end = p + m_values.size();
uint32_t num_remaining = m_num_valid;
while (p != p_end)
{
if (p->state)
{
destruct_value_type(p);
p->state = cStateInvalid;
num_remaining--;
if (!num_remaining)
break;
}
p++;
}
}
else if (sizeof(node) <= 32)
{
memset(&m_values[0], 0, m_values.size_in_bytes());
}
else
{
node* p = &get_node(0);
node* p_end = p + m_values.size();
uint32_t num_remaining = m_num_valid;
while (p != p_end)
{
if (p->state)
{
p->state = cStateInvalid;
num_remaining--;
if (!num_remaining)
break;
}
p++;
}
}
m_num_valid = 0;
}
inline uint32_t size()
{
return m_num_valid;
}
inline uint32_t get_table_size()
{
return m_values.size();
}
inline bool empty()
{
return !m_num_valid;
}
inline void reserve(uint32_t new_capacity)
{
uint64_t new_hash_size = helpers::maximum(1U, new_capacity);
new_hash_size = new_hash_size * 2ULL;
if (!helpers::is_power_of_2(new_hash_size))
new_hash_size = helpers::next_pow2(new_hash_size);
new_hash_size = helpers::maximum<uint64_t>(cMinHashSize, new_hash_size);
new_hash_size = helpers::minimum<uint64_t>(0x80000000UL, new_hash_size);
if (new_hash_size > m_values.size())
rehash((uint32_t)new_hash_size);
}
class iterator
{
friend class hash_map<Key, Value, Hasher, Equals>;
friend class hash_map<Key, Value, Hasher, Equals>::const_iterator;
public:
inline iterator() : m_pTable(NULL), m_index(0) { }
inline iterator(hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { }
inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
inline iterator& operator= (const iterator& other)
{
m_pTable = other.m_pTable;
m_index = other.m_index;
return *this;
}
// post-increment
inline iterator operator++(int)
{
iterator result(*this);
++*this;
return result;
}
// pre-increment
inline iterator& operator++()
{
probe();
return *this;
}
inline value_type& operator*() const { return *get_cur(); }
inline value_type* operator->() const { return get_cur(); }
inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const iterator& b) const { return !(*this == b); }
inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const const_iterator& b) const { return !(*this == b); }
private:
hash_map_type* m_pTable;
uint32_t m_index;
inline value_type* get_cur() const
{
assert(m_pTable && (m_index < m_pTable->m_values.size()));
assert(m_pTable->get_node_state(m_index) == cStateValid);
return &m_pTable->get_node(m_index);
}
inline void probe()
{
assert(m_pTable);
m_index = m_pTable->find_next(m_index);
}
};
class const_iterator
{
friend class hash_map<Key, Value, Hasher, Equals>;
friend class hash_map<Key, Value, Hasher, Equals>::iterator;
public:
inline const_iterator() : m_pTable(NULL), m_index(0) { }
inline const_iterator(const hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { }
inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
inline const_iterator& operator= (const const_iterator& other)
{
m_pTable = other.m_pTable;
m_index = other.m_index;
return *this;
}
inline const_iterator& operator= (const iterator& other)
{
m_pTable = other.m_pTable;
m_index = other.m_index;
return *this;
}
// post-increment
inline const_iterator operator++(int)
{
const_iterator result(*this);
++*this;
return result;
}
// pre-increment
inline const_iterator& operator++()
{
probe();
return *this;
}
inline const value_type& operator*() const { return *get_cur(); }
inline const value_type* operator->() const { return get_cur(); }
inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const const_iterator& b) const { return !(*this == b); }
inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const iterator& b) const { return !(*this == b); }
private:
const hash_map_type* m_pTable;
uint32_t m_index;
inline const value_type* get_cur() const
{
assert(m_pTable && (m_index < m_pTable->m_values.size()));
assert(m_pTable->get_node_state(m_index) == cStateValid);
return &m_pTable->get_node(m_index);
}
inline void probe()
{
assert(m_pTable);
m_index = m_pTable->find_next(m_index);
}
};
inline const_iterator begin() const
{
if (!m_num_valid)
return end();
return const_iterator(*this, find_next(UINT32_MAX));
}
inline const_iterator end() const
{
return const_iterator(*this, m_values.size());
}
inline iterator begin()
{
if (!m_num_valid)
return end();
return iterator(*this, find_next(UINT32_MAX));
}
inline iterator end()
{
return iterator(*this, m_values.size());
}
// insert_result.first will always point to inserted key/value (or the already existing key/value).
// insert_resutt.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value).
typedef std::pair<iterator, bool> insert_result;
inline insert_result insert(const Key& k, const Value& v = Value())
{
insert_result result;
if (!insert_no_grow(result, k, v))
{
grow();
// This must succeed.
if (!insert_no_grow(result, k, v))
{
fprintf(stderr, "insert() failed");
abort();
}
}
return result;
}
inline insert_result insert(const value_type& v)
{
return insert(v.first, v.second);
}
inline const_iterator find(const Key& k) const
{
return const_iterator(*this, find_index(k));
}
inline iterator find(const Key& k)
{
return iterator(*this, find_index(k));
}
inline bool erase(const Key& k)
{
uint32_t i = find_index(k);
if (i >= m_values.size())
return false;
node* pDst = &get_node(i);
destruct_value_type(pDst);
pDst->state = cStateInvalid;
m_num_valid--;
for (; ; )
{
uint32_t r, j = i;
node* pSrc = pDst;
do
{
if (!i)
{
i = m_values.size() - 1;
pSrc = &get_node(i);
}
else
{
i--;
pSrc--;
}
if (!pSrc->state)
return true;
r = hash_key(pSrc->first);
} while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r));
move_node(pDst, pSrc);
pDst = pSrc;
}
}
inline void swap(hash_map_type& other)
{
m_values.swap(other.m_values);
std::swap(m_hash_shift, other.m_hash_shift);
std::swap(m_num_valid, other.m_num_valid);
std::swap(m_grow_threshold, other.m_grow_threshold);
std::swap(m_hasher, other.m_hasher);
std::swap(m_equals, other.m_equals);
}
private:
struct node : public value_type
{
uint8_t state;
};
static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v)
{
if (BASISU_IS_BITWISE_COPYABLE(Key))
memcpy(&pDst->first, &k, sizeof(Key));
else
scalar_type<Key>::construct(&pDst->first, k);
if (BASISU_IS_BITWISE_COPYABLE(Value))
memcpy(&pDst->second, &v, sizeof(Value));
else
scalar_type<Value>::construct(&pDst->second, v);
}
static inline void construct_value_type(value_type* pDst, const value_type* pSrc)
{
if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value)))
{
memcpy(pDst, pSrc, sizeof(value_type));
}
else
{
if (BASISU_IS_BITWISE_COPYABLE(Key))
memcpy(&pDst->first, &pSrc->first, sizeof(Key));
else
scalar_type<Key>::construct(&pDst->first, pSrc->first);
if (BASISU_IS_BITWISE_COPYABLE(Value))
memcpy(&pDst->second, &pSrc->second, sizeof(Value));
else
scalar_type<Value>::construct(&pDst->second, pSrc->second);
}
}
static inline void destruct_value_type(value_type* p)
{
scalar_type<Key>::destruct(&p->first);
scalar_type<Value>::destruct(&p->second);
}
// Moves *pSrc to *pDst efficiently.
// pDst should NOT be constructed on entry.
static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true)
{
assert(!pDst->state);
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
{
memcpy(pDst, pSrc, sizeof(node));
}
else
{
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key))
memcpy(&pDst->first, &pSrc->first, sizeof(Key));
else
{
scalar_type<Key>::construct(&pDst->first, pSrc->first);
scalar_type<Key>::destruct(&pSrc->first);
}
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
memcpy(&pDst->second, &pSrc->second, sizeof(Value));
else
{
scalar_type<Value>::construct(&pDst->second, pSrc->second);
scalar_type<Value>::destruct(&pSrc->second);
}
pDst->state = cStateValid;
}
if (update_src_state)
pSrc->state = cStateInvalid;
}
struct raw_node
{
inline raw_node()
{
node* p = reinterpret_cast<node*>(this);
p->state = cStateInvalid;
}
inline ~raw_node()
{
node* p = reinterpret_cast<node*>(this);
if (p->state)
hash_map_type::destruct_value_type(p);
}
inline raw_node(const raw_node& other)
{
node* pDst = reinterpret_cast<node*>(this);
const node* pSrc = reinterpret_cast<const node*>(&other);
if (pSrc->state)
{
hash_map_type::construct_value_type(pDst, pSrc);
pDst->state = cStateValid;
}
else
pDst->state = cStateInvalid;
}
inline raw_node& operator= (const raw_node& rhs)
{
if (this == &rhs)
return *this;
node* pDst = reinterpret_cast<node*>(this);
const node* pSrc = reinterpret_cast<const node*>(&rhs);
if (pSrc->state)
{
if (pDst->state)
{
pDst->first = pSrc->first;
pDst->second = pSrc->second;
}
else
{
hash_map_type::construct_value_type(pDst, pSrc);
pDst->state = cStateValid;
}
}
else if (pDst->state)
{
hash_map_type::destruct_value_type(pDst);
pDst->state = cStateInvalid;
}
return *this;
}
uint8_t m_bits[sizeof(node)];
};
typedef basisu::vector<raw_node> node_vector;
node_vector m_values;
uint32_t m_hash_shift;
Hasher m_hasher;
Equals m_equals;
uint32_t m_num_valid;
uint32_t m_grow_threshold;
inline uint32_t hash_key(const Key& k) const
{
assert((1U << (32U - m_hash_shift)) == m_values.size());
uint32_t hash = static_cast<uint32_t>(m_hasher(k));
// Fibonacci hashing
hash = (2654435769U * hash) >> m_hash_shift;
assert(hash < m_values.size());
return hash;
}
inline const node& get_node(uint32_t index) const
{
return *reinterpret_cast<const node*>(&m_values[index]);
}
inline node& get_node(uint32_t index)
{
return *reinterpret_cast<node*>(&m_values[index]);
}
inline state get_node_state(uint32_t index) const
{
return static_cast<state>(get_node(index).state);
}
inline void set_node_state(uint32_t index, bool valid)
{
get_node(index).state = valid;
}
inline void grow()
{
uint64_t n = m_values.size() * 3ULL; // was * 2
if (!helpers::is_power_of_2(n))
n = helpers::next_pow2(n);
if (n > 0x80000000UL)
n = 0x80000000UL;
rehash(helpers::maximum<uint32_t>(cMinHashSize, (uint32_t)n));
}
inline void rehash(uint32_t new_hash_size)
{
assert(new_hash_size >= m_num_valid);
assert(helpers::is_power_of_2(new_hash_size));
if ((new_hash_size < m_num_valid) || (new_hash_size == m_values.size()))
return;
hash_map new_map;
new_map.m_values.resize(new_hash_size);
new_map.m_hash_shift = 32U - helpers::floor_log2i(new_hash_size);
assert(new_hash_size == (1U << (32U - new_map.m_hash_shift)));
new_map.m_grow_threshold = UINT_MAX;
node* pNode = reinterpret_cast<node*>(m_values.begin());
node* pNode_end = pNode + m_values.size();
while (pNode != pNode_end)
{
if (pNode->state)
{
new_map.move_into(pNode);
if (new_map.m_num_valid == m_num_valid)
break;
}
pNode++;
}
new_map.m_grow_threshold = (new_hash_size + 1U) >> 1U;
m_values.clear_no_destruction();
m_hash_shift = 32;
swap(new_map);
}
inline uint32_t find_next(uint32_t index) const
{
index++;
if (index >= m_values.size())
return index;
const node* pNode = &get_node(index);
for (; ; )
{
if (pNode->state)
break;
if (++index >= m_values.size())
break;
pNode++;
}
return index;
}
inline uint32_t find_index(const Key& k) const
{
if (m_num_valid)
{
uint32_t index = hash_key(k);
const node* pNode = &get_node(index);
if (pNode->state)
{
if (m_equals(pNode->first, k))
return index;
const uint32_t orig_index = index;
for (; ; )
{
if (!index)
{
index = m_values.size() - 1;
pNode = &get_node(index);
}
else
{
index--;
pNode--;
}
if (index == orig_index)
break;
if (!pNode->state)
break;
if (m_equals(pNode->first, k))
return index;
}
}
}
return m_values.size();
}
inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v = Value())
{
if (!m_values.size())
return false;
uint32_t index = hash_key(k);
node* pNode = &get_node(index);
if (pNode->state)
{
if (m_equals(pNode->first, k))
{
result.first = iterator(*this, index);
result.second = false;
return true;
}
const uint32_t orig_index = index;
for (; ; )
{
if (!index)
{
index = m_values.size() - 1;
pNode = &get_node(index);
}
else
{
index--;
pNode--;
}
if (orig_index == index)
return false;
if (!pNode->state)
break;
if (m_equals(pNode->first, k))
{
result.first = iterator(*this, index);
result.second = false;
return true;
}
}
}
if (m_num_valid >= m_grow_threshold)
return false;
construct_value_type(pNode, k, v);
pNode->state = cStateValid;
m_num_valid++;
assert(m_num_valid <= m_values.size());
result.first = iterator(*this, index);
result.second = true;
return true;
}
inline void move_into(node* pNode)
{
uint32_t index = hash_key(pNode->first);
node* pDst_node = &get_node(index);
if (pDst_node->state)
{
const uint32_t orig_index = index;
for (; ; )
{
if (!index)
{
index = m_values.size() - 1;
pDst_node = &get_node(index);
}
else
{
index--;
pDst_node--;
}
if (index == orig_index)
{
assert(false);
return;
}
if (!pDst_node->state)
break;
}
}
move_node(pDst_node, pNode, false);
m_num_valid++;
}
};
template<typename Key, typename Value, typename Hasher, typename Equals>
struct bitwise_movable< hash_map<Key, Value, Hasher, Equals> > { enum { cFlag = true }; };
#if BASISU_HASHMAP_TEST
extern void hash_map_test();
#endif
} // namespace basisu
namespace std
{
template<typename T>
inline void swap(basisu::vector<T>& a, basisu::vector<T>& b)
{
a.swap(b);
}
template<typename Key, typename Value, typename Hasher, typename Equals>
inline void swap(basisu::hash_map<Key, Value, Hasher, Equals>& a, basisu::hash_map<Key, Value, Hasher, Equals>& b)
{
a.swap(b);
}
} // namespace std