virtualx-engine/drivers/gles2/rasterizer_scene_gles2.h
Rémi Verschelde 0be6d925dc Style: clang-format: Disable KeepEmptyLinesAtTheStartOfBlocks
Which means that reduz' beloved style which we all became used to
will now be changed automatically to remove the first empty line.

This makes us lean closer to 1TBS (the one true brace style) instead
of hybridating it with some Allman-inspired spacing.

There's still the case of braces around single-statement blocks that
needs to be addressed (but clang-format can't help with that, but
clang-tidy may if we agree about it).

Part of #33027.
2020-05-14 16:54:55 +02:00

655 lines
21 KiB
C++

/*************************************************************************/
/* rasterizer_scene_gles2.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZERSCENEGLES2_H
#define RASTERIZERSCENEGLES2_H
/* Must come before shaders or the Windows build fails... */
#include "rasterizer_storage_gles2.h"
#include "shaders/cube_to_dp.glsl.gen.h"
#include "shaders/effect_blur.glsl.gen.h"
#include "shaders/scene.glsl.gen.h"
#include "shaders/tonemap.glsl.gen.h"
class RasterizerSceneGLES2 : public RasterizerScene {
public:
enum ShadowFilterMode {
SHADOW_FILTER_NEAREST,
SHADOW_FILTER_PCF5,
SHADOW_FILTER_PCF13,
};
enum {
INSTANCE_ATTRIB_BASE = 8,
INSTANCE_BONE_BASE = 13,
};
ShadowFilterMode shadow_filter_mode;
RID default_material;
RID default_material_twosided;
RID default_shader;
RID default_shader_twosided;
RID default_worldcoord_material;
RID default_worldcoord_material_twosided;
RID default_worldcoord_shader;
RID default_worldcoord_shader_twosided;
RID default_overdraw_material;
RID default_overdraw_shader;
uint64_t render_pass;
uint64_t scene_pass;
uint32_t current_material_index;
uint32_t current_geometry_index;
uint32_t current_light_index;
uint32_t current_refprobe_index;
uint32_t current_shader_index;
RasterizerStorageGLES2 *storage;
struct State {
bool texscreen_copied;
int current_blend_mode;
float current_line_width;
int current_depth_draw;
bool current_depth_test;
GLuint current_main_tex;
SceneShaderGLES2 scene_shader;
CubeToDpShaderGLES2 cube_to_dp_shader;
TonemapShaderGLES2 tonemap_shader;
EffectBlurShaderGLES2 effect_blur_shader;
GLuint sky_verts;
GLuint immediate_buffer;
Color default_ambient;
Color default_bg;
bool cull_front;
bool cull_disabled;
bool used_screen_texture;
bool shadow_is_dual_parabolloid;
float dual_parbolloid_direction;
float dual_parbolloid_zfar;
bool render_no_shadows;
Vector2 viewport_size;
Vector2 screen_pixel_size;
} state;
/* SHADOW ATLAS API */
uint64_t shadow_atlas_realloc_tolerance_msec;
struct ShadowAtlas {
enum {
QUADRANT_SHIFT = 27,
SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1,
SHADOW_INVALID = 0xFFFFFFFF,
};
struct Quadrant {
uint32_t subdivision;
struct Shadow {
RID owner;
uint64_t version;
uint64_t alloc_tick;
Shadow() {
version = 0;
alloc_tick = 0;
}
};
Vector<Shadow> shadows;
Quadrant() {
subdivision = 0;
}
} quadrants[4];
int size_order[4];
uint32_t smallest_subdiv;
int size;
GLuint fbo;
GLuint depth;
GLuint color;
Map<RID, uint32_t> shadow_owners;
};
struct ShadowCubeMap {
GLuint fbo[6];
GLuint cubemap;
uint32_t size;
};
Vector<ShadowCubeMap> shadow_cubemaps;
RID_PtrOwner<ShadowAtlas> shadow_atlas_owner;
RID shadow_atlas_create();
void shadow_atlas_set_size(RID p_atlas, int p_size);
void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision);
bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow);
bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version);
struct DirectionalShadow {
GLuint fbo;
GLuint depth;
GLuint color;
int light_count;
int size;
int current_light;
} directional_shadow;
virtual int get_directional_light_shadow_size(RID p_light_intance);
virtual void set_directional_shadow_count(int p_count);
/* REFLECTION PROBE ATLAS API */
virtual RID reflection_atlas_create();
virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_size);
virtual void reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv);
/* REFLECTION CUBEMAPS */
/* REFLECTION PROBE INSTANCE */
struct ReflectionProbeInstance {
RasterizerStorageGLES2::ReflectionProbe *probe_ptr;
RID probe;
RID self;
RID atlas;
int reflection_atlas_index;
int render_step;
int reflection_index;
GLuint fbo[6];
GLuint color[6];
GLuint depth;
GLuint cubemap;
int current_resolution;
mutable bool dirty;
uint64_t last_pass;
uint32_t index;
Transform transform;
};
mutable RID_PtrOwner<ReflectionProbeInstance> reflection_probe_instance_owner;
ReflectionProbeInstance **reflection_probe_instances;
int reflection_probe_count;
virtual RID reflection_probe_instance_create(RID p_probe);
virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform);
virtual void reflection_probe_release_atlas_index(RID p_instance);
virtual bool reflection_probe_instance_needs_redraw(RID p_instance);
virtual bool reflection_probe_instance_has_reflection(RID p_instance);
virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas);
virtual bool reflection_probe_instance_postprocess_step(RID p_instance);
/* ENVIRONMENT API */
struct Environment {
RS::EnvironmentBG bg_mode;
RID sky;
float sky_custom_fov;
Basis sky_orientation;
Color bg_color;
float bg_energy;
float sky_ambient;
int camera_feed_id;
Color ambient_color;
float ambient_energy;
float ambient_sky_contribution;
int canvas_max_layer;
bool glow_enabled;
int glow_levels;
float glow_intensity;
float glow_strength;
float glow_bloom;
RS::EnvironmentGlowBlendMode glow_blend_mode;
float glow_hdr_bleed_threshold;
float glow_hdr_bleed_scale;
float glow_hdr_luminance_cap;
bool glow_bicubic_upscale;
bool dof_blur_far_enabled;
float dof_blur_far_distance;
float dof_blur_far_transition;
float dof_blur_far_amount;
RS::EnvironmentDOFBlurQuality dof_blur_far_quality;
bool dof_blur_near_enabled;
float dof_blur_near_distance;
float dof_blur_near_transition;
float dof_blur_near_amount;
RS::EnvironmentDOFBlurQuality dof_blur_near_quality;
bool adjustments_enabled;
float adjustments_brightness;
float adjustments_contrast;
float adjustments_saturation;
RID color_correction;
bool fog_enabled;
Color fog_color;
Color fog_sun_color;
float fog_sun_amount;
bool fog_depth_enabled;
float fog_depth_begin;
float fog_depth_end;
float fog_depth_curve;
bool fog_transmit_enabled;
float fog_transmit_curve;
bool fog_height_enabled;
float fog_height_min;
float fog_height_max;
float fog_height_curve;
Environment() :
bg_mode(RS::ENV_BG_CLEAR_COLOR),
sky_custom_fov(0.0),
bg_energy(1.0),
sky_ambient(0),
camera_feed_id(0),
ambient_energy(1.0),
ambient_sky_contribution(0.0),
canvas_max_layer(0),
glow_enabled(false),
glow_levels((1 << 2) | (1 << 4)),
glow_intensity(0.8),
glow_strength(1.0),
glow_bloom(0.0),
glow_blend_mode(RS::ENV_GLOW_BLEND_MODE_SOFTLIGHT),
glow_hdr_bleed_threshold(1.0),
glow_hdr_bleed_scale(2.0),
glow_hdr_luminance_cap(12.0),
glow_bicubic_upscale(false),
dof_blur_far_enabled(false),
dof_blur_far_distance(10),
dof_blur_far_transition(5),
dof_blur_far_amount(0.1),
dof_blur_far_quality(RS::ENV_DOF_BLUR_QUALITY_MEDIUM),
dof_blur_near_enabled(false),
dof_blur_near_distance(2),
dof_blur_near_transition(1),
dof_blur_near_amount(0.1),
dof_blur_near_quality(RS::ENV_DOF_BLUR_QUALITY_MEDIUM),
adjustments_enabled(false),
adjustments_brightness(1.0),
adjustments_contrast(1.0),
adjustments_saturation(1.0),
fog_enabled(false),
fog_color(Color(0.5, 0.5, 0.5)),
fog_sun_color(Color(0.8, 0.8, 0.0)),
fog_sun_amount(0),
fog_depth_enabled(true),
fog_depth_begin(10),
fog_depth_end(0),
fog_depth_curve(1),
fog_transmit_enabled(true),
fog_transmit_curve(1),
fog_height_enabled(false),
fog_height_min(10),
fog_height_max(0),
fog_height_curve(1) {
}
};
mutable RID_PtrOwner<Environment> environment_owner;
virtual RID environment_create();
virtual void environment_set_background(RID p_env, RS::EnvironmentBG p_bg);
virtual void environment_set_sky(RID p_env, RID p_sky);
virtual void environment_set_sky_custom_fov(RID p_env, float p_scale);
virtual void environment_set_sky_orientation(RID p_env, const Basis &p_orientation);
virtual void environment_set_bg_color(RID p_env, const Color &p_color);
virtual void environment_set_bg_energy(RID p_env, float p_energy);
virtual void environment_set_canvas_max_layer(RID p_env, int p_max_layer);
virtual void environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy = 1.0, float p_sky_contribution = 0.0);
virtual void environment_set_camera_feed_id(RID p_env, int p_camera_feed_id);
virtual void environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, RS::EnvironmentDOFBlurQuality p_quality);
virtual void environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, RS::EnvironmentDOFBlurQuality p_quality);
virtual void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale);
virtual void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture);
virtual void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness);
virtual void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, RS::EnvironmentSSAOQuality p_quality, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness);
virtual void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale);
virtual void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp);
virtual void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount);
virtual void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve);
virtual void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve);
virtual bool is_environment(RID p_env);
virtual RS::EnvironmentBG environment_get_background(RID p_env);
virtual int environment_get_canvas_max_layer(RID p_env);
/* LIGHT INSTANCE */
struct LightInstance {
struct ShadowTransform {
CameraMatrix camera;
Transform transform;
float farplane;
float split;
float bias_scale;
};
ShadowTransform shadow_transform[4];
RID self;
RID light;
RasterizerStorageGLES2::Light *light_ptr;
Transform transform;
Vector3 light_vector;
Vector3 spot_vector;
float linear_att;
// TODO passes and all that stuff ?
uint64_t last_scene_pass;
uint64_t last_scene_shadow_pass;
uint16_t light_index;
uint16_t light_directional_index;
Rect2 directional_rect;
Set<RID> shadow_atlases; // atlases where this light is registered
};
mutable RID_PtrOwner<LightInstance> light_instance_owner;
virtual RID light_instance_create(RID p_light);
virtual void light_instance_set_transform(RID p_light_instance, const Transform &p_transform);
virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale = 1.0);
virtual void light_instance_mark_visible(RID p_light_instance);
virtual bool light_instances_can_render_shadow_cube() const { return storage->config.support_shadow_cubemaps; }
LightInstance **render_light_instances;
int render_directional_lights;
int render_light_instance_count;
/* REFLECTION INSTANCE */
virtual RID gi_probe_instance_create();
virtual void gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data);
virtual void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform);
virtual void gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds);
/* RENDER LIST */
enum LightMode {
LIGHTMODE_NORMAL,
LIGHTMODE_UNSHADED,
LIGHTMODE_LIGHTMAP,
LIGHTMODE_LIGHTMAP_CAPTURE,
};
struct RenderList {
enum {
MAX_LIGHTS = 255,
MAX_REFLECTION_PROBES = 255,
DEFAULT_MAX_ELEMENTS = 65536
};
int max_elements;
struct Element {
RasterizerScene::InstanceBase *instance;
RasterizerStorageGLES2::Geometry *geometry;
RasterizerStorageGLES2::Material *material;
RasterizerStorageGLES2::GeometryOwner *owner;
bool use_accum; //is this an add pass for multipass
bool *use_accum_ptr;
bool front_facing;
union {
//TODO: should be endian swapped on big endian
struct {
int32_t depth_layer : 16;
int32_t priority : 16;
};
uint32_t depth_key;
};
union {
struct {
//from least significant to most significant in sort, TODO: should be endian swapped on big endian
uint64_t geometry_index : 14;
uint64_t instancing : 1;
uint64_t skeleton : 1;
uint64_t shader_index : 10;
uint64_t material_index : 10;
uint64_t light_index : 8;
uint64_t light_type2 : 1; // if 1==0 : nolight/directional, else omni/spot
uint64_t refprobe_1_index : 8;
uint64_t refprobe_0_index : 8;
uint64_t light_type1 : 1; //no light, directional is 0, omni spot is 1
uint64_t light_mode : 2; // LightMode enum
};
uint64_t sort_key;
};
};
Element *base_elements;
Element **elements;
int element_count;
int alpha_element_count;
void clear() {
element_count = 0;
alpha_element_count = 0;
}
// sorts
struct SortByKey {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
if (A->depth_key == B->depth_key) {
return A->sort_key < B->sort_key;
} else {
return A->depth_key < B->depth_key;
}
}
};
void sort_by_key(bool p_alpha) {
SortArray<Element *, SortByKey> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count);
} else {
sorter.sort(elements, element_count);
}
}
struct SortByDepth {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
return A->instance->depth < B->instance->depth;
}
};
void sort_by_depth(bool p_alpha) { //used for shadows
SortArray<Element *, SortByDepth> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count);
} else {
sorter.sort(elements, element_count);
}
}
struct SortByReverseDepthAndPriority {
_FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const {
if (A->priority == B->priority) {
return A->instance->depth > B->instance->depth;
} else {
return A->priority < B->priority;
}
}
};
void sort_by_reverse_depth_and_priority(bool p_alpha) { //used for alpha
SortArray<Element *, SortByReverseDepthAndPriority> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count);
} else {
sorter.sort(elements, element_count);
}
}
// element adding and stuff
_FORCE_INLINE_ Element *add_element() {
if (element_count + alpha_element_count >= max_elements)
return nullptr;
elements[element_count] = &base_elements[element_count];
return elements[element_count++];
}
_FORCE_INLINE_ Element *add_alpha_element() {
if (element_count + alpha_element_count >= max_elements) {
return nullptr;
}
int idx = max_elements - alpha_element_count - 1;
elements[idx] = &base_elements[idx];
alpha_element_count++;
return elements[idx];
}
void init() {
element_count = 0;
alpha_element_count = 0;
elements = memnew_arr(Element *, max_elements);
base_elements = memnew_arr(Element, max_elements);
for (int i = 0; i < max_elements; i++) {
elements[i] = &base_elements[i];
}
}
RenderList() {
max_elements = DEFAULT_MAX_ELEMENTS;
}
~RenderList() {
memdelete_arr(elements);
memdelete_arr(base_elements);
}
};
RenderList render_list;
void _add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass);
void _add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass);
void _copy_texture_to_buffer(GLuint p_texture, GLuint p_buffer);
void _fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass);
void _render_render_list(RenderList::Element **p_elements, int p_element_count,
const Transform &p_view_transform,
const CameraMatrix &p_projection,
RID p_shadow_atlas,
Environment *p_env,
GLuint p_base_env,
float p_shadow_bias,
float p_shadow_normal_bias,
bool p_reverse_cull,
bool p_alpha_pass,
bool p_shadow);
void _draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation);
_FORCE_INLINE_ void _set_cull(bool p_front, bool p_disabled, bool p_reverse_cull);
_FORCE_INLINE_ bool _setup_material(RasterizerStorageGLES2::Material *p_material, bool p_alpha_pass, Size2i p_skeleton_tex_size = Size2i(0, 0));
_FORCE_INLINE_ void _setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton);
_FORCE_INLINE_ void _setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas);
_FORCE_INLINE_ void _setup_light(LightInstance *p_light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform, bool accum_pass);
_FORCE_INLINE_ void _setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env);
_FORCE_INLINE_ void _render_geometry(RenderList::Element *p_element);
void _post_process(Environment *env, const CameraMatrix &p_cam_projection);
virtual void render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass);
virtual void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count);
virtual bool free(RID p_rid);
virtual void set_scene_pass(uint64_t p_pass);
virtual void set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw);
void iteration();
void initialize();
void finalize();
RasterizerSceneGLES2();
};
#endif // RASTERIZERSCENEGLES2_H