alsa-utils/topology/nhlt/intel/dmic/dmic-process.c

1370 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: BSD-3-Clause
//
// Copyright(c) 2021 Intel Corporation. All rights reserved.
//
// Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
// Jaska Uimonen <jaska.uimonen@linux.intel.com>
#include "aconfig.h"
#include <stdint.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <alsa/input.h>
#include <alsa/output.h>
#include <alsa/conf.h>
#include <alsa/error.h>
#include "../intel-nhlt.h"
#include "dmic-process.h"
#include "dmic-internal.h"
#include "pdm-decim-fir.h"
#include "dmic-debug.h"
/* Note 1: Higher spec filter must be before lower spec filter if there are multiple filters for a
* decimation factor. The first filter is skipped if the length is too much vs. overrun limit. If
* other order the better filter would be never selected.
*
* Note 2: The introduction order of FIR decimation factors is the selection preference order.
* The decimation factor 5 and 10 (2*5) cause a often less compatible output sample rate for CIC so
* they are not used if there other suitable nearby values.
*
* The naming scheme of coefficients set is:
* <type>_<decim factor>_<rel passband>_<rel stopband>_<ripple>_<attenuation>
*/
struct pdm_decim *fir_list[] = {
&pdm_decim_int32_02_4375_5100_010_095,
&pdm_decim_int32_02_4323_5100_010_095,
&pdm_decim_int32_03_4375_5100_010_095,
&pdm_decim_int32_04_4318_5100_010_095,
&pdm_decim_int32_06_4172_5100_010_095,
&pdm_decim_int32_05_4325_5100_010_095,
&pdm_decim_int32_08_4156_5301_010_090,
&pdm_decim_int32_12_4156_5345_010_090,
&pdm_decim_int32_10_4156_5345_010_090,
NULL, /* This marks the end of coefficients */
};
/* This is a divide function that returns ceil of the quotient. E.g. ceil_divide(9, 3) returns 3,
* ceil_divide(10, 3) returns 4.
*/
static int ceil_divide(int a, int b)
{
int c;
c = a / b;
if (!((a ^ b) & (1U << ((sizeof(int) * 8) - 1))) && c * b != a)
c++;
return c;
}
/* This function searches from vec[] (of length vec_length) integer values of n. The indices to
* equal values is returned in idx[]. The function returns the number of found matches.
* The max_results should be set to 0 (or negative) or vec_length to get all matches. The
* max_result can be set to 1 to receive only the first match in ascending order. It avoids need for
* an array for idx.
*/
static int find_equal_int16(int16_t idx[], int16_t vec[], int n, int vec_length,
int max_results)
{
int nresults = 0;
int i;
for (i = 0; i < vec_length; i++) {
if (vec[i] == n) {
idx[nresults++] = i;
if (nresults == max_results)
break;
}
}
return nresults;
}
/* Return the largest absolute value found in the vector. Note that smallest negative value need to
* be saturated to preset as int32_t.
*/
static int32_t find_max_abs_int32(int32_t vec[], int vec_length)
{
int i;
int64_t amax = (vec[0] > 0) ? vec[0] : -vec[0];
for (i = 1; i < vec_length; i++) {
amax = (vec[i] > amax) ? vec[i] : amax;
amax = (-vec[i] > amax) ? -vec[i] : amax;
}
return SATP_INT32(amax); /* Amax is always a positive value */
}
/* Count the left shift amount to normalize a 32 bit signed integer value without causing overflow.
* Input value 0 will result to 31.
*/
static int norm_int32(int32_t val)
{
int c = 0;
/* count number of bits c that val can be right-shifted arithmetically
* until there is -1 (if val is negative) or 0 (if val is positive)
* norm of val will be 31-c
*/
for (; val != -1 && val != 0; c++)
val >>= 1;
return 31 - c;
}
/* This function returns a raw list of potential microphone clock and decimation modes for achieving
* requested sample rates. The search is constrained by decimation HW capabililies and setup
* parameters. The parameters such as microphone clock min/max and duty cycle requirements need be
* checked from used microphone component datasheet.
*/
static void find_modes(struct intel_dmic_params *dmic, struct dmic_calc_decim_modes *modes,
uint32_t fs)
{
int di = dmic->dmic_dai_index;
int clkdiv_min;
int clkdiv_max;
int clkdiv;
int c1;
int du_min;
int du_max;
int pdmclk;
int osr;
int mfir;
int mcic;
unsigned int ioclk_test;
int osr_min = DMIC_MIN_OSR;
int j;
int i = 0;
/* Defaults, empty result */
modes->num_of_modes = 0;
/* The FIFO is not requested if sample rate is set to zero. Just return in such case with
* num_of_modes as zero.
*/
if (fs == 0) {
return;
}
/* Override DMIC_MIN_OSR for very high sample rates, use as minimum the nominal clock for
* the high rates.
*/
if (fs >= DMIC_HIGH_RATE_MIN_FS)
osr_min = DMIC_HIGH_RATE_OSR_MIN;
/* Check for sane pdm clock, min 100 kHz, max ioclk/2 */
if (dmic->dmic_prm[di].pdmclk_max < DMIC_HW_PDM_CLK_MIN ||
dmic->dmic_prm[di].pdmclk_max > dmic->dmic_prm[di].io_clk / 2) {
fprintf(stderr, "%s: pdm clock max %d not in range\n", __func__,
dmic->dmic_prm[di].pdmclk_max);
return;
}
if (dmic->dmic_prm[di].pdmclk_min < DMIC_HW_PDM_CLK_MIN ||
dmic->dmic_prm[di].pdmclk_min > dmic->dmic_prm[di].pdmclk_max) {
fprintf(stderr, "%s: pdm clock min %d not in range\n", __func__,
dmic->dmic_prm[di].pdmclk_min);
return;
}
/* Check for sane duty cycle */
if (dmic->dmic_prm[di].duty_min > dmic->dmic_prm[di].duty_max) {
fprintf(stderr, "%s: duty cycle min > max: %d > %d\n", __func__,
dmic->dmic_prm[di].duty_min, dmic->dmic_prm[di].duty_max);
return;
}
if (dmic->dmic_prm[di].duty_min < DMIC_HW_DUTY_MIN ||
dmic->dmic_prm[di].duty_min > DMIC_HW_DUTY_MAX) {
fprintf(stderr, "%s: pdm clock min %d not in range\n", __func__,
dmic->dmic_prm[di].duty_min);
return;
}
if (dmic->dmic_prm[di].duty_max < DMIC_HW_DUTY_MIN ||
dmic->dmic_prm[di].duty_max > DMIC_HW_DUTY_MAX) {
fprintf(stderr, "%s: pdm clock max %d not in range\n", __func__,
dmic->dmic_prm[di].duty_max);
return;
}
/* Min and max clock dividers */
clkdiv_min = ceil_divide(dmic->dmic_prm[di].io_clk, dmic->dmic_prm[di].pdmclk_max);
clkdiv_min = MAX(clkdiv_min, DMIC_HW_CIC_DECIM_MIN);
clkdiv_max = dmic->dmic_prm[di].io_clk / dmic->dmic_prm[di].pdmclk_min;
/* Loop possible clock dividers and check based on resulting oversampling ratio that CIC and
* FIR decimation ratios are feasible. The ratios need to be integers. Also the mic clock
* duty cycle need to be within limits.
*/
for (clkdiv = clkdiv_min; clkdiv <= clkdiv_max; clkdiv++) {
/* Calculate duty cycle for this clock divider. Note that odd dividers cause non-50%
* duty cycle.
*/
c1 = clkdiv >> 1;
du_min = 100 * c1 / clkdiv;
du_max = 100 - du_min;
/* Calculate PDM clock rate and oversampling ratio. */
pdmclk = dmic->dmic_prm[di].io_clk / clkdiv;
osr = pdmclk / fs;
/* Check that OSR constraints is met and clock duty cycle does not exceed microphone
* specification. If exceed proceed to next clkdiv.
*/
if (osr < osr_min || du_min < dmic->dmic_prm[di].duty_min ||
du_max > dmic->dmic_prm[di].duty_max)
continue;
/* Loop FIR decimation factors candidates. If the integer divided decimation factors
* and clock dividers as multiplied with sample rate match the IO clock rate the
* division was exact and such decimation mode is possible. Then check that CIC
* decimation constraints are met. The passed decimation modes are added to array.
*/
for (j = 0; fir_list[j]; j++) {
mfir = fir_list[j]->decim_factor;
/* Skip if previous decimation factor was the same */
if (j > 1 && fir_list[j - 1]->decim_factor == mfir)
continue;
mcic = osr / mfir;
ioclk_test = fs * mfir * mcic * clkdiv;
if (ioclk_test == dmic->dmic_prm[di].io_clk &&
mcic >= DMIC_HW_CIC_DECIM_MIN &&
mcic <= DMIC_HW_CIC_DECIM_MAX &&
i < DMIC_MAX_MODES) {
modes->clkdiv[i] = clkdiv;
modes->mcic[i] = mcic;
modes->mfir[i] = mfir;
i++;
}
}
}
modes->num_of_modes = i;
}
/* The previous raw modes list contains sane configuration possibilities. When there is request for
* both FIFOs A and B operation this function returns list of compatible settings.
*/
static void match_modes(struct dmic_calc_matched_modes *c, struct dmic_calc_decim_modes *a,
struct dmic_calc_decim_modes *b)
{
int16_t idx[DMIC_MAX_MODES];
int idx_length;
int i;
int n;
int m;
/* Check if previous search got results. */
c->num_of_modes = 0;
if (a->num_of_modes == 0 && b->num_of_modes == 0) {
/* Nothing to do */
return;
}
/* Ensure that num_of_modes is sane. */
if (a->num_of_modes > DMIC_MAX_MODES ||
b->num_of_modes > DMIC_MAX_MODES)
return;
/* Check for request only for FIFO A or B. In such case pass list for A or B as such. */
if (b->num_of_modes == 0) {
c->num_of_modes = a->num_of_modes;
for (i = 0; i < a->num_of_modes; i++) {
c->clkdiv[i] = a->clkdiv[i];
c->mcic[i] = a->mcic[i];
c->mfir_a[i] = a->mfir[i];
c->mfir_b[i] = 0; /* Mark FIR B as non-used */
}
return;
}
if (a->num_of_modes == 0) {
c->num_of_modes = b->num_of_modes;
for (i = 0; i < b->num_of_modes; i++) {
c->clkdiv[i] = b->clkdiv[i];
c->mcic[i] = b->mcic[i];
c->mfir_b[i] = b->mfir[i];
c->mfir_a[i] = 0; /* Mark FIR A as non-used */
}
return;
}
/* Merge a list of compatible modes */
i = 0;
for (n = 0; n < a->num_of_modes; n++) {
/* Find all indices of values a->clkdiv[n] in b->clkdiv[] */
idx_length = find_equal_int16(idx, b->clkdiv, a->clkdiv[n],
b->num_of_modes, 0);
for (m = 0; m < idx_length; m++) {
if (b->mcic[idx[m]] == a->mcic[n]) {
c->clkdiv[i] = a->clkdiv[n];
c->mcic[i] = a->mcic[n];
c->mfir_a[i] = a->mfir[n];
c->mfir_b[i] = b->mfir[idx[m]];
i++;
}
}
c->num_of_modes = i;
}
}
/* Finds a suitable FIR decimation filter from the included set */
static struct pdm_decim *get_fir(struct intel_dmic_params *dmic,
struct dmic_calc_configuration *cfg, int mfir)
{
int i = 0;
int fs;
int cic_fs;
int fir_max_length;
struct pdm_decim *fir = NULL;
int di = dmic->dmic_dai_index;
if (mfir <= 0)
return fir;
cic_fs = dmic->dmic_prm[di].io_clk / cfg->clkdiv / cfg->mcic;
fs = cic_fs / mfir;
/* FIR max. length depends on available cycles and coef RAM length. Exceeding this length
* sets HW overrun status and overwrite of other register.
*/
fir_max_length = MIN(DMIC_HW_FIR_LENGTH_MAX,
(int)dmic->dmic_prm[di].io_clk / fs / 2 -
DMIC_FIR_PIPELINE_OVERHEAD);
/* Loop until NULL */
while (fir_list[i]) {
if (fir_list[i]->decim_factor == mfir) {
if (fir_list[i]->length <= fir_max_length) {
/* Store pointer, break from loop to avoid a possible other mode
* with lower FIR length.
*/
fir = fir_list[i];
break;
}
}
i++;
}
return fir;
}
/* Calculate scale and shift to use for FIR coefficients. Scale is applied before write to HW coef
* RAM. Shift will be programmed to HW register.
*/
static int fir_coef_scale(int32_t *fir_scale, int *fir_shift, int add_shift,
const int32_t coef[], int coef_length, int32_t gain)
{
int32_t amax;
int32_t new_amax;
int32_t fir_gain;
int shift;
/* Multiply gain passed from CIC with output full scale. */
fir_gain = Q_MULTSR_32X32((int64_t)gain, DMIC_HW_SENS_Q28,
DMIC_FIR_SCALE_Q, 28, DMIC_FIR_SCALE_Q);
/* Find the largest FIR coefficient value. */
amax = find_max_abs_int32((int32_t *)coef, coef_length);
/* Scale max. tap value with FIR gain. */
new_amax = Q_MULTSR_32X32((int64_t)amax, fir_gain, 31,
DMIC_FIR_SCALE_Q, DMIC_FIR_SCALE_Q);
if (new_amax <= 0)
return -EINVAL;
/* Get left shifts count to normalize the fractional value as 32 bit. We need right shifts
* count for scaling so need to invert. The difference of Q31 vs. used Q format is added to
* get the correct normalization right shift value.
*/
shift = 31 - DMIC_FIR_SCALE_Q - norm_int32(new_amax);
/* Add to shift for coef raw Q31 format shift and store to configuration. Ensure range (fail
* should not happen with OK coefficient set).
*/
*fir_shift = -shift + add_shift;
if (*fir_shift < DMIC_HW_FIR_SHIFT_MIN ||
*fir_shift > DMIC_HW_FIR_SHIFT_MAX)
return -EINVAL;
/* Compensate shift into FIR coef scaler and store as Q4.20. */
if (shift < 0)
*fir_scale = fir_gain << -shift;
else
*fir_scale = fir_gain >> shift;
return 0;
}
/* This function selects with a simple criteria one mode to set up the decimator. For the settings
* chosen for FIFOs A and B output a lookup is done for FIR coefficients from the included
* coefficients tables. For some decimation factors there may be several length coefficient sets. It
* is due to possible restruction of decimation engine cycles per given sample rate. If the
* coefficients length is exceeded the lookup continues. Therefore the list of coefficient set must
* present the filters for a decimation factor in decreasing length order.
*
* Note: If there is no filter available an error is returned. The parameters should be reviewed for
* such case. If still a filter is missing it should be added into the included set. FIR decimation
* with a high factor usually needs compromizes into specifications and is not desirable.
*/
static int select_mode(struct intel_dmic_params *dmic, struct dmic_calc_configuration *cfg,
struct dmic_calc_matched_modes *modes)
{
int32_t g_cic;
int32_t fir_in_max;
int32_t cic_out_max;
int32_t gain_to_fir;
int16_t idx[DMIC_MAX_MODES];
int16_t *mfir;
int mcic;
int bits_cic;
int ret;
int n;
int found = 0;
/* If there are more than one possibilities select a mode with a preferred FIR decimation
* factor. If there are several select mode with highest ioclk divider to minimize
* microphone power consumption. The highest clock divisors are in the end of list so select
* the last of list. The minimum OSR criteria used in previous ensures that quality in the
* candidates should be sufficient.
*/
if (modes->num_of_modes == 0) {
fprintf(stderr, "%s: no modes available\n", __func__);
return -EINVAL;
}
/* Valid modes presence is indicated with non-zero decimation factor in 1st element. If FIR
* A is not used get decimation factors from FIR B instead.
*/
if (modes->mfir_a[0] > 0)
mfir = modes->mfir_a;
else
mfir = modes->mfir_b;
/* Search fir_list[] decimation factors from start towards end. The found last configuration
* entry with searched decimation factor will be used.
*/
for (n = 0; fir_list[n]; n++) {
found = find_equal_int16(idx, mfir, fir_list[n]->decim_factor,
modes->num_of_modes, 0);
if (found)
break;
}
if (!found) {
fprintf(stderr, "%s: No filter for decimation found\n", __func__);
return -EINVAL;
}
n = idx[found - 1]; /* Option with highest clock divisor and lowest mic clock rate */
/* Get microphone clock and decimation parameters for used mode from the list. */
cfg->clkdiv = modes->clkdiv[n];
cfg->mfir_a = modes->mfir_a[n];
cfg->mfir_b = modes->mfir_b[n];
cfg->mcic = modes->mcic[n];
cfg->fir_a = NULL;
cfg->fir_b = NULL;
/* Find raw FIR coefficients to match the decimation factors of FIR A and B. */
if (cfg->mfir_a > 0) {
cfg->fir_a = get_fir(dmic, cfg, cfg->mfir_a);
if (!cfg->fir_a) {
fprintf(stderr, "%s: can't find FIR coefficients, mfir_a = %d\n",
__func__, cfg->mfir_a);
return -EINVAL;
}
}
if (cfg->mfir_b > 0) {
cfg->fir_b = get_fir(dmic, cfg, cfg->mfir_b);
if (!cfg->fir_b) {
fprintf(stderr, "%s: can't find FIR coefficients, mfir_b = %d\n",
__func__, cfg->mfir_b);
return -EINVAL;
}
}
/* Calculate CIC shift from the decimation factor specific gain. The gain of HW decimator
* equals decimation factor to power of 5.
*/
mcic = cfg->mcic;
g_cic = mcic * mcic * mcic * mcic * mcic;
if (g_cic < 0) {
/* Erroneous decimation factor and CIC gain */
fprintf(stderr, "%s: erroneous decimation factor and CIC gain\n", __func__);
return -EINVAL;
}
bits_cic = 32 - norm_int32(g_cic);
cfg->cic_shift = bits_cic - DMIC_HW_BITS_FIR_INPUT;
/* Calculate remaining gain to FIR in Q format used for gain values. */
fir_in_max = INT_MAX(DMIC_HW_BITS_FIR_INPUT);
if (cfg->cic_shift >= 0)
cic_out_max = g_cic >> cfg->cic_shift;
else
cic_out_max = g_cic << -cfg->cic_shift;
gain_to_fir = (int32_t)((((int64_t)fir_in_max) << DMIC_FIR_SCALE_Q) /
cic_out_max);
/* Calculate FIR scale and shift */
if (cfg->mfir_a > 0) {
cfg->fir_a_length = cfg->fir_a->length;
ret = fir_coef_scale(&cfg->fir_a_scale, &cfg->fir_a_shift,
cfg->fir_a->shift, cfg->fir_a->coef,
cfg->fir_a->length, gain_to_fir);
if (ret < 0) {
/* Invalid coefficient set found, should not happen. */
fprintf(stderr, "%s: invalid coefficient set found\n", __func__);
return -EINVAL;
}
} else {
cfg->fir_a_scale = 0;
cfg->fir_a_shift = 0;
cfg->fir_a_length = 0;
}
if (cfg->mfir_b > 0) {
cfg->fir_b_length = cfg->fir_b->length;
ret = fir_coef_scale(&cfg->fir_b_scale, &cfg->fir_b_shift,
cfg->fir_b->shift, cfg->fir_b->coef,
cfg->fir_b->length, gain_to_fir);
if (ret < 0) {
/* Invalid coefficient set found, should not happen. */
fprintf(stderr, "%s: invalid coefficient set found\n", __func__);
return -EINVAL;
}
} else {
cfg->fir_b_scale = 0;
cfg->fir_b_shift = 0;
cfg->fir_b_length = 0;
}
return 0;
}
/* The FIFO input packer mode (IPM) settings are somewhat different in HW versions. This helper
* function returns a suitable IPM bit field value to use.
*/
static void ipm_helper1(struct intel_dmic_params *dmic, int *ipm)
{
int di = dmic->dmic_dai_index;
int pdm[DMIC_HW_CONTROLLERS];
int i;
/* Loop number of PDM controllers in the configuration. If mic A or B is enabled then a pdm
* controller is marked as active for this DAI.
*/
for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
if (dmic->dmic_prm[di].pdm[i].enable_mic_a ||
dmic->dmic_prm[di].pdm[i].enable_mic_b)
pdm[i] = 1;
else
pdm[i] = 0;
}
/* Set IPM to match active pdm controllers. */
*ipm = 0;
if (pdm[0] == 0 && pdm[1] > 0)
*ipm = 1;
if (pdm[0] > 0 && pdm[1] > 0)
*ipm = 2;
}
static void ipm_helper2(struct intel_dmic_params *dmic, int source[], int *ipm)
{
int di = dmic->dmic_dai_index;
int pdm[DMIC_HW_CONTROLLERS];
int i;
int n = 0;
for (i = 0; i < OUTCONTROLX_IPM_NUMSOURCES; i++)
source[i] = 0;
/* Loop number of PDM controllers in the configuration. If mic A or B is enabled then a pdm
* controller is marked as active. The function returns in array source[] the indice of
* enabled pdm controllers to be used for IPM configuration.
*/
for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
if (dmic->dmic_prm[di].pdm[i].enable_mic_a ||
dmic->dmic_prm[di].pdm[i].enable_mic_b) {
pdm[i] = 1;
source[n] = i;
n++;
} else {
pdm[i] = 0;
}
}
/* IPM bit field is set to count of active pdm controllers. */
*ipm = pdm[0];
for (i = 1; i < DMIC_HW_CONTROLLERS; i++)
*ipm += pdm[i];
}
/* Loop number of PDM controllers in the configuration. The function checks if the controller should
* operate as stereo or mono left (A) or mono right (B) mode. Mono right mode is setup as channel
* swapped mono left.
*/
static int stereo_helper(struct intel_dmic_params *dmic, int stereo[], int swap[])
{
int cnt;
int i;
int swap_check;
int ret = 0;
for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
cnt = 0;
if (dmic->dmic_prm[0].pdm[i].enable_mic_a ||
dmic->dmic_prm[1].pdm[i].enable_mic_a)
cnt++;
if (dmic->dmic_prm[0].pdm[i].enable_mic_b ||
dmic->dmic_prm[1].pdm[i].enable_mic_b)
cnt++;
/* Set stereo mode if both mic A anc B are enabled. */
cnt >>= 1;
stereo[i] = cnt;
/* Swap channels if only mic B is used for mono processing. */
swap[i] = (dmic->dmic_prm[0].pdm[i].enable_mic_b ||
dmic->dmic_prm[1].pdm[i].enable_mic_b) && !cnt;
/* Check that swap does not conflict with other DAI request */
swap_check = (dmic->dmic_prm[1].pdm[i].enable_mic_a ||
dmic->dmic_prm[0].pdm[i].enable_mic_a);
if (swap_check && swap[i]) {
ret = -EINVAL;
break;
}
}
return ret;
}
static int configure_registers(struct intel_dmic_params *dmic, struct dmic_calc_configuration *cfg)
{
int stereo[DMIC_HW_CONTROLLERS];
int swap[DMIC_HW_CONTROLLERS];
uint32_t val = 0;
int32_t ci;
uint32_t cu;
int ipm;
int of0;
int of1;
int fir_decim;
int fir_length;
int length;
int edge;
int soft_reset;
int cic_mute;
int fir_mute;
unsigned int i;
int j;
int ret;
int mic;
int chmap_bits;
int di = dmic->dmic_dai_index;
int dccomp = 1;
int array_a = 0;
int array_b = 0;
int bfth = 3; /* Should be 3 for 8 entries, 1 is 2 entries */
int th = 3; /* Used with TIE=1 */
int source[OUTCONTROLX_IPM_NUMSOURCES];
/*
* ts_group value describes which audio channels in the hw fifo are enabled. A 32 bit
* value is divided into 8 x 4 bit nibbles corresponding to 8 audio channels. Hex value 0xF
* means "not in use", any other value means the channel is enabled. For example 0xFFFFFFFF
* means no channels are enabled, 0xFFFFFF10 means channels 1 and 2 are enabled.
*
* ts_group array index corresponds to dmic hw fifos, that gather audio samples from pdm
* controllers. 1 pdm controller can host 2 mono dmics and usually pdm controllers are
* connected to 2 hw fifos -> we can for example run the dmics simultaneously with different
* sampling rates.
*
* Currently there is no evidence we would ever have more than 2 hw fifos, so ts_group[2]
* and ts_group[3] are not used for anything. Also the nibbles could be used for channel
* mapping the pdm channels arbitrarely into hw fifos, however currently it is used as
* binary not_enabled/enabled setting.
*
* if we have 2 dmics (stereo) it means we are using 1 pdm controller with possibly 2 hw
* fifos:
* mic1 fifo0(2ch)
* \ /
* pdm0
* / \
* mic2 fifo1(2ch)
*
* So in this case it makes only sense to control ts_group indexes 0 and 1 and their last 2
* nibbles (as we have only 2 channels).
*
* if we have 4 dmics, it means we are using 2 pdm controller with possibly 2 x 4 channel hw
* fifos:
*
* mic1 fifo0(4ch)
* \ / /
* pdm0 /
* / \ /
* mic2 \/
* mic3 /\
* \ / \
* pdm1 \
* / \ \
* mic4 fifo1(4ch)
*
* So it makes sense to control ts_group indexes 0 and 1 and their last 4 nibbles.
*
* channel_pdm_mask defines which existing pdm controllers will be taken into use. So if
* either of mic a or b is enabled -> that particular pdm controller is in use. For example
* pdm0 in use/not_in_use is defined by setting bit 0 in channel_pdm_mask to 1/0.
*
* channel_ctrl_mask defines what mic channels are available in hw for a pdm controller. in
* theory pdm controller could have only 1 channel enabled, in practice there's always 2
* channels which are both enabled -> set bits 0 and 1.
*/
for (i = 0, mic = 0, chmap_bits = 4; i < DMIC_HW_CONTROLLERS; i++) {
/* enable fifo channels (ts_group) based on mic_enable in dai definition */
if (dmic->dmic_prm[di].pdm[i].enable_mic_a) {
dmic->dmic_blob.ts_group[di] &= ~(0xF << (chmap_bits * mic));
dmic->dmic_blob.ts_group[di] |= 0x0 << (chmap_bits * mic);
}
mic++;
if (dmic->dmic_prm[di].pdm[i].enable_mic_b) {
dmic->dmic_blob.ts_group[di] &= ~(0xF << (chmap_bits * mic));
dmic->dmic_blob.ts_group[di] |= 0x1 << (chmap_bits * mic);
}
mic++;
}
/* set channel_pdm_mask to describe what pdm controllers are in use */
for (i = 0; i < dmic->dmic_prm[di].num_pdm_active; i++)
dmic->dmic_blob.channel_pdm_mask |= 1 << i;
/* set always both mic channels enabled */
dmic->dmic_blob.channel_ctrl_mask = 0x3;
/* Normal start sequence */
soft_reset = 0;
cic_mute = 0;
fir_mute = 0;
/* OUTCONTROL0 and OUTCONTROL1 */
of0 = (dmic->dmic_prm[0].fifo_bits == 32) ? 2 : 0;
of1 = (dmic->dmic_prm[1].fifo_bits == 32) ? 2 : 0;
if (dmic->dmic_prm[di].driver_version == 1) {
if (di == 0) {
ipm_helper1(dmic, &ipm);
val = OUTCONTROL0_TIE(0) |
OUTCONTROL0_SIP(0) |
OUTCONTROL0_FINIT(0) |
OUTCONTROL0_FCI(0) |
OUTCONTROL0_BFTH(bfth) |
OUTCONTROL0_OF(of0) |
OUTCONTROL0_IPM_VER1(ipm) |
OUTCONTROL0_TH(th);
} else {
ipm_helper1(dmic, &ipm);
val = OUTCONTROL1_TIE(0) |
OUTCONTROL1_SIP(0) |
OUTCONTROL1_FINIT(0) |
OUTCONTROL1_FCI(0) |
OUTCONTROL1_BFTH(bfth) |
OUTCONTROL1_OF(of1) |
OUTCONTROL1_IPM_VER1(ipm) |
OUTCONTROL1_TH(th);
}
}
if (dmic->dmic_prm[di].driver_version >= 2) {
if (dmic->dmic_prm[di].driver_version >= 4)
bfth = 0;
if (di == 0) {
ipm_helper2(dmic, source, &ipm);
val = OUTCONTROL0_TIE(0) |
OUTCONTROL0_SIP(0) |
OUTCONTROL0_FINIT(0) |
OUTCONTROL0_FCI(0) |
OUTCONTROL0_BFTH(bfth) |
OUTCONTROL0_OF(of0) |
OUTCONTROL0_IPM_VER2(ipm) |
OUTCONTROL0_IPM_SOURCE_1(source[0]) |
OUTCONTROL0_IPM_SOURCE_2(source[1]) |
OUTCONTROL0_IPM_SOURCE_3(source[2]) |
OUTCONTROL0_IPM_SOURCE_4(source[3]) |
OUTCONTROL0_IPM_SOURCE_MODE(1) |
OUTCONTROL0_TH(th);
} else {
ipm_helper2(dmic, source, &ipm);
val = OUTCONTROL1_TIE(0) |
OUTCONTROL1_SIP(0) |
OUTCONTROL1_FINIT(0) |
OUTCONTROL1_FCI(0) |
OUTCONTROL1_BFTH(bfth) |
OUTCONTROL1_OF(of1) |
OUTCONTROL1_IPM_VER2(ipm) |
OUTCONTROL1_IPM_SOURCE_1(source[0]) |
OUTCONTROL1_IPM_SOURCE_2(source[1]) |
OUTCONTROL1_IPM_SOURCE_3(source[2]) |
OUTCONTROL1_IPM_SOURCE_4(source[3]) |
OUTCONTROL1_IPM_SOURCE_MODE(1) |
OUTCONTROL1_TH(th);
}
}
dmic->dmic_blob.chan_ctrl_cfg[di] = val;
ret = stereo_helper(dmic, stereo, swap);
if (ret < 0) {
fprintf(stderr, "%s: enable conflict\n", __func__);
return ret;
}
for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
/* CIC */
val = CIC_CONTROL_SOFT_RESET(soft_reset) |
CIC_CONTROL_CIC_START_B(1) |
CIC_CONTROL_CIC_START_A(1) |
CIC_CONTROL_MIC_B_POLARITY(dmic->dmic_prm[di].pdm[i].polarity_mic_b) |
CIC_CONTROL_MIC_A_POLARITY(dmic->dmic_prm[di].pdm[i].polarity_mic_a) |
CIC_CONTROL_MIC_MUTE(cic_mute);
if (dmic->dmic_prm[di].driver_version == 1)
val |= CIC_CONTROL_STEREO_MODE(stereo[i]);
dmic->dmic_blob_pdm[i].cic_control = val;
val = CIC_CONFIG_CIC_SHIFT(cfg->cic_shift + 8) |
CIC_CONFIG_COMB_COUNT(cfg->mcic - 1);
dmic->dmic_blob_pdm[i].cic_config = val;
/* Mono right channel mic usage requires swap of PDM channels
* since the mono decimation is done with only left channel
* processing active.
*/
edge = dmic->dmic_prm[di].pdm[i].clk_edge;
if (swap[i])
edge = !edge;
val = MIC_CONTROL_PDM_CLKDIV(cfg->clkdiv - 2) |
MIC_CONTROL_PDM_SKEW(dmic->dmic_prm[di].pdm[i].skew) |
MIC_CONTROL_CLK_EDGE(edge) |
MIC_CONTROL_PDM_EN_B(1) |
MIC_CONTROL_PDM_EN_A(1);
dmic->dmic_blob_pdm[i].mic_control = val;
/*
* Here we have to check the both FIRs if they are
* configured as the later configured DAI may have changed
* the configuration of the DAI configured earlier.
*/
if (cfg->mfir_a) {
/* FIR A */
fir_decim = MAX(cfg->mfir_a - 1, 0);
fir_length = MAX(cfg->fir_a_length - 1, 0);
val = FIR_CONTROL_A_START(1) |
FIR_CONTROL_A_ARRAY_START_EN(array_a) |
FIR_CONTROL_A_DCCOMP(dccomp) |
FIR_CONTROL_A_MUTE(fir_mute) |
FIR_CONTROL_A_STEREO(stereo[i]);
dmic->dmic_blob_fir[i][0].fir_control = val;
val = FIR_CONFIG_A_FIR_DECIMATION(fir_decim) |
FIR_CONFIG_A_FIR_SHIFT(cfg->fir_a_shift) |
FIR_CONFIG_A_FIR_LENGTH(fir_length);
dmic->dmic_blob_fir[i][0].fir_config = val;
val = DC_OFFSET_LEFT_A_DC_OFFS(DCCOMP_TC0);
dmic->dmic_blob_fir[i][0].dc_offset_left = val;
val = DC_OFFSET_RIGHT_A_DC_OFFS(DCCOMP_TC0);
dmic->dmic_blob_fir[i][0].dc_offset_right = val;
val = OUT_GAIN_LEFT_A_GAIN(0);
dmic->dmic_blob_fir[i][0].out_gain_left = val;
val = OUT_GAIN_RIGHT_A_GAIN(0);
dmic->dmic_blob_fir[i][0].out_gain_right = val;
/* Write coef RAM A with scaled coefficient in reverse order */
length = cfg->fir_a_length;
for (j = 0; j < length; j++) {
ci = (int32_t)Q_MULTSR_32X32((int64_t)cfg->fir_a->coef[j],
cfg->fir_a_scale, 31,
DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q);
cu = FIR_COEF_A(ci);
/* blob_pdm[i].fir_coeffs[0][j] = cu; */
dmic->dmic_fir_array.fir_coeffs[i][0][j] = cu;
}
dmic->dmic_fir_array.fir_len[0] = length;
} else {
dmic->dmic_fir_array.fir_len[0] = 0;
}
if (cfg->mfir_b) {
/* FIR B */
fir_decim = MAX(cfg->mfir_b - 1, 0);
fir_length = MAX(cfg->fir_b_length - 1, 0);
val = FIR_CONTROL_B_START(1) |
FIR_CONTROL_B_ARRAY_START_EN(array_b) |
FIR_CONTROL_B_DCCOMP(dccomp) |
FIR_CONTROL_B_MUTE(fir_mute) |
FIR_CONTROL_B_STEREO(stereo[i]);
dmic->dmic_blob_fir[i][1].fir_control = val;
val = FIR_CONFIG_B_FIR_DECIMATION(fir_decim) |
FIR_CONFIG_B_FIR_SHIFT(cfg->fir_b_shift) |
FIR_CONFIG_B_FIR_LENGTH(fir_length);
dmic->dmic_blob_fir[i][1].fir_config = val;
val = DC_OFFSET_LEFT_B_DC_OFFS(DCCOMP_TC0);
dmic->dmic_blob_fir[i][1].dc_offset_left = val;
val = DC_OFFSET_RIGHT_B_DC_OFFS(DCCOMP_TC0);
dmic->dmic_blob_fir[i][1].dc_offset_right = val;
val = OUT_GAIN_LEFT_B_GAIN(0);
dmic->dmic_blob_fir[i][1].out_gain_left = val;
val = OUT_GAIN_RIGHT_B_GAIN(0);
dmic->dmic_blob_fir[i][1].out_gain_right = val;
/* Write coef RAM B with scaled coefficient in reverse order */
length = cfg->fir_b_length;
for (j = 0; j < length; j++) {
ci = (int32_t)Q_MULTSR_32X32((int64_t)cfg->fir_b->coef[j],
cfg->fir_b_scale, 31,
DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q);
cu = FIR_COEF_B(ci);
/* blob_pdm[i].fir_coeffs[1][j] = cu; */
dmic->dmic_fir_array.fir_coeffs[i][1][j] = cu;
}
dmic->dmic_fir_array.fir_len[1] = length;
} else {
dmic->dmic_fir_array.fir_len[1] = 0;
}
}
return 0;
}
/* The decimation for PDM (pulse density modulation) stream is done in a programmable HW filter
* engine. The input to configuration algorithm is needed sample rate, channels/enabled microphones,
* microphone clock range, microphone clock duty cycle range, and system clock rate.
*
* The PDM bus clock divider, CIC and FIR decimation ratios are searched and configuration for
* optimal power consumption, filtering requirements, and HW constraints is chosen. The FIR filter
* for the chosen decimation is looked up from table and scaled to match the other decimation path
* sensitivity.
*/
int dmic_calculate(struct intel_nhlt_params *nhlt)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
struct dmic_calc_matched_modes modes_ab;
struct dmic_calc_decim_modes modes_a;
struct dmic_calc_decim_modes modes_b;
struct dmic_calc_configuration cfg;
int ret = 0;
int di;
if (!dmic)
return -EINVAL;
di = dmic->dmic_dai_index;
if (di >= DMIC_HW_FIFOS) {
fprintf(stderr, "%s: dai->index %d exceeds number of FIFOs\n", __func__, di);
ret = -EINVAL;
goto out;
}
if (dmic->dmic_prm[di].num_pdm_active > DMIC_HW_CONTROLLERS) {
fprintf(stderr, "%s: controller count %d exceeds platform capability\n",
__func__, dmic->dmic_prm[di].num_pdm_active);
ret = -EINVAL;
goto out;
}
/* fifo bits 0 means fifo disabled */
switch (dmic->dmic_prm[di].fifo_bits) {
case 0:
case 16:
case 32:
break;
default:
fprintf(stderr, "%s: Bad fifo_bits %d\n", __func__,
dmic->dmic_prm[di].fifo_bits);
ret = -EINVAL;
goto out;
}
/* Match and select optimal decimators configuration for FIFOs A and B paths. This setup
* phase is still abstract. Successful completion points struct cfg to FIR coefficients and
* contains the scale value to use for FIR coefficient RAM write as well as the CIC and FIR
* shift values.
*/
find_modes(dmic, &modes_a, dmic->dmic_prm[0].fifo_fs);
if (modes_a.num_of_modes == 0 && dmic->dmic_prm[0].fifo_fs > 0) {
fprintf(stderr, "%s: No modes found for FIFO A\n", __func__);
ret = -EINVAL;
goto out;
}
find_modes(dmic, &modes_b, dmic->dmic_prm[1].fifo_fs);
if (modes_b.num_of_modes == 0 && dmic->dmic_prm[1].fifo_fs > 0) {
fprintf(stderr, "%s: No modes found for FIFO B\n", __func__);
ret = -EINVAL;
goto out;
}
match_modes(&modes_ab, &modes_a, &modes_b);
ret = select_mode(dmic, &cfg, &modes_ab);
if (ret < 0) {
fprintf(stderr, "%s: select_mode() failed %d\n", __func__, ret);
ret = -EINVAL;
goto out;
}
/* Struct reg contains a mirror of actual HW registers. Determine register bits
* configuration from decimator configuration and the requested parameters.
*/
ret = configure_registers(dmic, &cfg);
if (ret < 0) {
fprintf(stderr, "%s: cannot configure registers %d\n", __func__, ret);
ret = -EINVAL;
goto out;
}
dmic_print_internal(dmic);
dmic->dmic_count++;
out:
return ret;
}
int dmic_get_params(struct intel_nhlt_params *nhlt, int index, uint32_t *sample_rate,
uint16_t *channel_count, uint32_t *bits_per_sample, uint8_t *array_type,
uint8_t *num_mics, uint8_t *extension, uint32_t *snr, uint32_t *sensitivity)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
uint32_t channels = 0;
if (!dmic)
return -EINVAL;
/* check all pdm's for enabled mics */
*channel_count = 0;
if (dmic->dmic_prm[index].pdm[0].enable_mic_a)
channels++;
if (dmic->dmic_prm[index].pdm[0].enable_mic_b)
channels++;
if (dmic->dmic_prm[index].pdm[1].enable_mic_a)
channels++;
if (dmic->dmic_prm[index].pdm[1].enable_mic_b)
channels++;
*sample_rate = dmic->dmic_prm[index].fifo_fs;
*channel_count = channels;
*bits_per_sample = dmic->dmic_prm[index].fifo_bits;
*num_mics = dmic->dmic_mic_config.num_mics;
*extension = dmic->dmic_mic_config.extension;
*array_type = dmic->dmic_mic_config.array_type;
*snr = dmic->dmic_mic_config.snr;
*sensitivity = dmic->dmic_mic_config.sensitivity;
return 0;
}
int dmic_get_mic_params(struct intel_nhlt_params *nhlt, int index,
uint8_t *type, uint8_t *panel, uint32_t *speaker_position_distance,
uint32_t *horizontal_offset, uint32_t *vertical_offset,
uint8_t *frequency_low_band, uint8_t *frequency_high_band,
uint16_t *direction_angle, uint16_t *elevation_angle,
uint16_t *vertical_angle_begin, uint16_t *vertical_angle_end,
uint16_t *horizontal_angle_begin, uint16_t *horizontal_angle_end)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
if (!dmic)
return -EINVAL;
*type = dmic->dmic_mic_config.vendor[index].type;
*panel = dmic->dmic_mic_config.vendor[index].panel;
*speaker_position_distance = dmic->dmic_mic_config.vendor[index].speaker_position_distance;
*horizontal_offset = dmic->dmic_mic_config.vendor[index].horizontal_offset;
*vertical_offset = dmic->dmic_mic_config.vendor[index].vertical_offset;
*frequency_low_band = dmic->dmic_mic_config.vendor[index].frequency_low_band;
*frequency_high_band = dmic->dmic_mic_config.vendor[index].frequency_high_band;
*direction_angle = dmic->dmic_mic_config.vendor[index].direction_angle;
*elevation_angle = dmic->dmic_mic_config.vendor[index].elevation_angle;
*vertical_angle_begin = dmic->dmic_mic_config.vendor[index].vertical_angle_begin;
*vertical_angle_end = dmic->dmic_mic_config.vendor[index].vertical_angle_end;
*horizontal_angle_begin = dmic->dmic_mic_config.vendor[index].horizontal_angle_begin;
*horizontal_angle_end = dmic->dmic_mic_config.vendor[index].horizontal_angle_end;
return 0;
}
int dmic_get_vendor_blob_size(struct intel_nhlt_params *nhlt, size_t *size)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
int i, fir_index_0, fir_index_1;
if (!dmic || !dmic->dmic_count)
return -EINVAL;
*size = sizeof(struct dmic_intel_config_data);
/* if either of the fir is 0 length, copy the existing fir twice */
fir_index_0 = 0;
fir_index_1 = 1;
if (dmic->dmic_fir_array.fir_len[0] == 0) {
fir_index_0 = 1;
fir_index_1 = 1;
}
if (dmic->dmic_fir_array.fir_len[1] == 0) {
fir_index_0 = 0;
fir_index_1 = 0;
}
/* variable amount of pdm's */
for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
/* only copy the pdm data if it is enabled */
if ((dmic->dmic_blob.channel_pdm_mask & BIT(i)) == 0)
continue;
*size += sizeof(struct dmic_intel_pdm_ctrl_cfg);
*size += sizeof(struct dmic_intel_fir_config) * DMIC_HW_FIFOS;
*size += dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t);
*size += dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t);
}
return 0;
}
int dmic_get_vendor_blob_count(struct intel_nhlt_params *nhlt)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
if (!dmic || !dmic->dmic_count)
return 0;
return dmic->dmic_count;
}
int dmic_get_vendor_blob(struct intel_nhlt_params *nhlt, uint8_t *vendor_blob)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
int i, fir_index_0, fir_index_1;
uint8_t *orig_blob = vendor_blob;
size_t blob_size;
if (!dmic || !dmic->dmic_count)
return -EINVAL;
/* top level struct */
memcpy(vendor_blob, &dmic->dmic_blob, sizeof(struct dmic_intel_config_data));
vendor_blob += sizeof(struct dmic_intel_config_data);
/* if either of the fir is 0 length, copy the existing fir twice */
fir_index_0 = 0;
fir_index_1 = 1;
if (dmic->dmic_fir_array.fir_len[0] == 0) {
fir_index_0 = 1;
fir_index_1 = 1;
}
if (dmic->dmic_fir_array.fir_len[1] == 0) {
fir_index_0 = 0;
fir_index_1 = 0;
}
/* variable amount of pdm's */
for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
/* only copy the pdm data if it is enabled */
if ((dmic->dmic_blob.channel_pdm_mask & BIT(i)) == 0)
continue;
/* top level struct first pdm data */
memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_pdm[i],
sizeof(struct dmic_intel_pdm_ctrl_cfg));
vendor_blob += sizeof(struct dmic_intel_pdm_ctrl_cfg);
/* top level struct first pdm data first fir */
memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_fir[i][fir_index_0],
sizeof(struct dmic_intel_fir_config));
vendor_blob += sizeof(struct dmic_intel_fir_config);
/* top level struct first pdm data second fir */
memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_fir[i][fir_index_1],
sizeof(struct dmic_intel_fir_config));
vendor_blob += sizeof(struct dmic_intel_fir_config);
/* fir coeffs a */
memcpy(vendor_blob, (uint8_t *)&dmic->dmic_fir_array.fir_coeffs[i][fir_index_0][0],
dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t));
vendor_blob += dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t);
/* fir coeffs b */
memcpy(vendor_blob, (uint8_t *)&dmic->dmic_fir_array.fir_coeffs[i][fir_index_1][0],
dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t));
vendor_blob += dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t);
}
dmic_get_vendor_blob_size(nhlt, &blob_size);
dmic_print_bytes_as_hex((uint8_t *)orig_blob, blob_size);
dmic_print_integers_as_hex((uint32_t *)orig_blob, blob_size / 4);
return 0;
}
int dmic_set_params(struct intel_nhlt_params *nhlt, int dai_index, int driver_version,
int io_clk, int num_pdm_active, int fifo_word_length, int clk_min, int clk_max,
int duty_min, int duty_max, int sample_rate, int unmute_ramp_time)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
if (!dmic)
return -EINVAL;
if (dai_index >= DMIC_HW_FIFOS) {
fprintf(stderr, "%s: illegal dai index %d \n", __func__, dai_index);
return -EINVAL;
}
if (driver_version < 1 || driver_version > 5) {
fprintf(stderr, "%s: illegal driver version %d\n", __func__, driver_version);
return -EINVAL;
}
dmic->dmic_dai_index = dai_index;
dmic->dmic_prm[dai_index].driver_version = driver_version;
dmic->dmic_prm[dai_index].io_clk = io_clk;
dmic->dmic_prm[dai_index].num_pdm_active = num_pdm_active;
dmic->dmic_prm[dai_index].fifo_bits = fifo_word_length;
dmic->dmic_prm[dai_index].pdmclk_min = clk_min;
dmic->dmic_prm[dai_index].pdmclk_max = clk_max;
dmic->dmic_prm[dai_index].duty_min = duty_min;
dmic->dmic_prm[dai_index].duty_max = duty_max;
dmic->dmic_prm[dai_index].fifo_fs = sample_rate;
dmic->dmic_prm[dai_index].unmute_ramp_time = unmute_ramp_time;
return 0;
}
int dmic_set_pdm_params(struct intel_nhlt_params *nhlt, int pdm_index, int enable_a,
int enable_b, int polarity_a, int polarity_b, int clk_edge, int skew)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
int di;
if (!dmic)
return -EINVAL;
if (pdm_index >= DMIC_HW_CONTROLLERS) {
fprintf(stderr, "%s: illegal pdm_index %d\n", __func__, pdm_index);
return -EINVAL;
}
di = dmic->dmic_dai_index;
dmic->dmic_prm[di].pdm[pdm_index].enable_mic_a = enable_a;
dmic->dmic_prm[di].pdm[pdm_index].enable_mic_b = enable_b;
dmic->dmic_prm[di].pdm[pdm_index].polarity_mic_a = polarity_a;
dmic->dmic_prm[di].pdm[pdm_index].polarity_mic_b = polarity_b;
dmic->dmic_prm[di].pdm[pdm_index].clk_edge = clk_edge;
dmic->dmic_prm[di].pdm[pdm_index].skew = skew;
return 0;
}
int dmic_set_ext_params(struct intel_nhlt_params *nhlt, uint32_t snr, uint32_t sensitivity)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
if (!dmic)
return -EINVAL;
dmic->dmic_mic_config.extension = 1;
dmic->dmic_mic_config.snr = snr;
dmic->dmic_mic_config.sensitivity = sensitivity;
return 0;
}
int dmic_set_mic_params(struct intel_nhlt_params *nhlt, int index,
uint8_t type, uint8_t panel, uint32_t speaker_position_distance,
uint32_t horizontal_offset, uint32_t vertical_offset,
uint8_t frequency_low_band, uint8_t frequency_high_band,
uint16_t direction_angle, uint16_t elevation_angle,
uint16_t vertical_angle_begin, uint16_t vertical_angle_end,
uint16_t horizontal_angle_begin, uint16_t horizontal_angle_end)
{
struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
if (!dmic)
return -EINVAL;
dmic->dmic_mic_config.vendor[index].type = type;
dmic->dmic_mic_config.vendor[index].panel = panel;
dmic->dmic_mic_config.vendor[index].speaker_position_distance = speaker_position_distance;
dmic->dmic_mic_config.vendor[index].horizontal_offset = horizontal_offset;
dmic->dmic_mic_config.vendor[index].vertical_offset = vertical_offset;
dmic->dmic_mic_config.vendor[index].frequency_low_band = frequency_low_band;
dmic->dmic_mic_config.vendor[index].frequency_high_band = frequency_high_band;
dmic->dmic_mic_config.vendor[index].direction_angle = direction_angle;
dmic->dmic_mic_config.vendor[index].elevation_angle = elevation_angle;
dmic->dmic_mic_config.vendor[index].vertical_angle_begin = vertical_angle_begin;
dmic->dmic_mic_config.vendor[index].vertical_angle_end = vertical_angle_end;
dmic->dmic_mic_config.vendor[index].horizontal_angle_begin = horizontal_angle_begin;
dmic->dmic_mic_config.vendor[index].horizontal_angle_end = horizontal_angle_end;
dmic->dmic_mic_config.num_mics++;
return 0;
}
/* init dmic parameters, should be called before parsing dais */
int dmic_init_params(struct intel_nhlt_params *nhlt)
{
struct intel_dmic_params *dmic;
int i;
dmic = calloc(1, sizeof(struct intel_dmic_params));
if (!dmic)
return -ENOMEM;
nhlt->dmic_params = dmic;
/* set always to 1, some fw variants use this for choosing memory type */
dmic->dmic_blob.gateway_attributes = 1;
/* delay in ms to unmute mics after clock is started */
dmic->dmic_blob.clock_on_delay = 16;
for (i = 0; i < DMIC_TS_GROUP_SIZE; i++)
dmic->dmic_blob.ts_group[i] = 0xFFFFFFFF; /* not enabled */
dmic->dmic_count = 0;
dmic->dmic_mic_config.num_mics = 0;
dmic->dmic_mic_config.extension = 0;
dmic->dmic_mic_config.array_type = 0;
dmic->dmic_mic_config.snr = 0;
dmic->dmic_mic_config.sensitivity = 0;
return 0;
}