I/O submission requests were already handled outside of the stripe lock in
handle_stripe. Now that handle_stripe is only tasked with finding work,
this logic belongs in raid5_run_ops.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
When a stripe is being expanded bulk copying takes place to move the data
from the old stripe to the new. Since raid5_run_ops only operates on one
stripe at a time these bulk copies are handled in-line under the stripe
lock. In the dma offload case we poll for the completion of the operation.
After the data has been copied into the new stripe the parity needs to be
recalculated across the new disks. We reuse the existing postxor
functionality to carry out this calculation. By setting STRIPE_OP_POSTXOR
without setting STRIPE_OP_BIODRAIN the completion path in handle stripe
can differentiate expand operations from normal write operations.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
When a read bio is attached to the stripe and the corresponding block is
marked R5_UPTODATE, then a read (biofill) operation is scheduled to copy
the data from the stripe cache to the bio buffer. handle_stripe flags the
blocks to be operated on with the R5_Wantfill flag. If new read requests
arrive while raid5_run_ops is running they will not be handled until
handle_stripe is scheduled to run again.
Changelog:
* cleanup to_read and to_fill accounting
* do not fail reads that have reached the cache
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
Check operations are scheduled when the array is being resynced or an
explicit 'check/repair' command was sent to the array. Previously check
operations would destroy the parity block in the cache such that even if
parity turned out to be correct the parity block would be marked
!R5_UPTODATE at the completion of the check. When the operation can be
carried out by a dma engine the assumption is that it can check parity as a
read-only operation. If raid5_run_ops notices that the check was handled
by hardware it will preserve the R5_UPTODATE status of the parity disk.
When a check operation determines that the parity needs to be repaired we
reuse the existing compute block infrastructure to carry out the operation.
Repair operations imply an immediate write back of the data, so to
differentiate a repair from a normal compute operation the
STRIPE_OP_MOD_REPAIR_PD flag is added.
Changelog:
* remove test_and_set/test_and_clear BUG_ONs, Neil Brown
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
handle_stripe will compute a block when a backing disk has failed, or when
it determines it can save a disk read by computing the block from all the
other up-to-date blocks.
Previously a block would be computed under the lock and subsequent logic in
handle_stripe could use the newly up-to-date block. With the raid5_run_ops
implementation the compute operation is carried out a later time outside
the lock. To preserve the old functionality we take advantage of the
dependency chain feature of async_tx to flag the block as R5_Wantcompute
and then let other parts of handle_stripe operate on the block as if it
were up-to-date. raid5_run_ops guarantees that the block will be ready
before it is used in another operation.
However, this only works in cases where the compute and the dependent
operation are scheduled at the same time. If a previous call to
handle_stripe sets the R5_Wantcompute flag there is no facility to pass the
async_tx dependency chain across successive calls to raid5_run_ops. The
req_compute variable protects against this case.
Changelog:
* remove the req_compute BUG_ON
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
After handle_stripe5 decides whether it wants to perform a
read-modify-write, or a reconstruct write it calls
handle_write_operations5. A read-modify-write operation will perform an
xor subtraction of the blocks marked with the R5_Wantprexor flag, copy the
new data into the stripe (biodrain) and perform a postxor operation across
all up-to-date blocks to generate the new parity. A reconstruct write is run
when all blocks are already up-to-date in the cache so all that is needed
is a biodrain and postxor.
On the completion path STRIPE_OP_PREXOR will be set if the operation was a
read-modify-write. The STRIPE_OP_BIODRAIN flag is used in the completion
path to differentiate write-initiated postxor operations versus
expansion-initiated postxor operations. Completion of a write triggers i/o
to the drives.
Changelog:
* make the 'rcw' parameter to handle_write_operations5 a simple flag, Neil Brown
* remove test_and_set/test_and_clear BUG_ONs, Neil Brown
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
All the handle_stripe operations that are to be transitioned to use
raid5_run_ops need a method to coherently gather work under the stripe-lock
and hand that work off to raid5_run_ops. The 'get_stripe_work' routine
runs under the lock to read all the bits in sh->ops.pending that do not
have the corresponding bit set in sh->ops.ack. This modified 'pending'
bitmap is then passed to raid5_run_ops for processing.
The transition from 'ack' to 'completion' does not need similar protection
as the existing release_stripe infrastructure will guarantee that
handle_stripe will run again after a completion bit is set, and
handle_stripe can tolerate a sh->ops.completed bit being set while the lock
is held.
A call to async_tx_issue_pending_all() is added to raid5d to kick the
offload engines once all pending stripe operations work has been submitted.
This enables batching of the submission and completion of operations.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
When the raid acceleration work was proposed, Neil laid out the following
attack plan:
1/ move the xor and copy operations outside spin_lock(&sh->lock)
2/ find/implement an asynchronous offload api
The raid5_run_ops routine uses the asynchronous offload api (async_tx) and
the stripe_operations member of a stripe_head to carry out xor+copy
operations asynchronously, outside the lock.
To perform operations outside the lock a new set of state flags is needed
to track new requests, in-flight requests, and completed requests. In this
new model handle_stripe is tasked with scanning the stripe_head for work,
updating the stripe_operations structure, and finally dropping the lock and
calling raid5_run_ops for processing. The following flags outline the
requests that handle_stripe can make of raid5_run_ops:
STRIPE_OP_BIOFILL
- copy data into request buffers to satisfy a read request
STRIPE_OP_COMPUTE_BLK
- generate a missing block in the cache from the other blocks
STRIPE_OP_PREXOR
- subtract existing data as part of the read-modify-write process
STRIPE_OP_BIODRAIN
- copy data out of request buffers to satisfy a write request
STRIPE_OP_POSTXOR
- recalculate parity for new data that has entered the cache
STRIPE_OP_CHECK
- verify that the parity is correct
STRIPE_OP_IO
- submit i/o to the member disks (note this was already performed outside
the stripe lock, but it made sense to add it as an operation type
The flow is:
1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending
2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the
operation to the async_tx api
3/ async_tx triggers the completion callback routine to set
sh->ops.complete and release the stripe
4/ handle_stripe runs again to finish the operation and optionally submit
new operations that were previously blocked
Note this patch just defines raid5_run_ops, subsequent commits (one per
major operation type) modify handle_stripe to take advantage of this
routine.
Changelog:
* removed ops_complete_biodrain in favor of ops_complete_postxor and
ops_complete_write.
* removed the raid5_run_ops workqueue
* call bi_end_io for reads in ops_complete_biofill, saves a call to
handle_stripe
* explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown
* fix race between async engines and bi_end_io call for reads, Neil Brown
* remove unnecessary spin_lock from ops_complete_biofill
* remove test_and_set/test_and_clear BUG_ONs, Neil Brown
* remove explicit interrupt handling for channel switching, this feature
was absorbed (i.e. it is now implicit) by the async_tx api
* use return_io in ops_complete_biofill
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
Replaces PRINTK with pr_debug, and kills the RAID5_DEBUG definition in
favor of the global DEBUG definition. To get local debug messages just add
'#define DEBUG' to the top of the file.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
handle_stripe5 and handle_stripe6 have very deep logic paths handling the
various states of a stripe_head. By introducing the 'stripe_head_state'
and 'r6_state' objects, large portions of the logic can be moved to
sub-routines.
'struct stripe_head_state' consumes all of the automatic variables that previously
stood alone in handle_stripe5,6. 'struct r6_state' contains the handle_stripe6
specific variables like p_failed and q_failed.
One of the nice side effects of the 'stripe_head_state' change is that it
allows for further reductions in code duplication between raid5 and raid6.
The following new routines are shared between raid5 and raid6:
handle_completed_write_requests
handle_requests_to_failed_array
handle_stripe_expansion
Changes:
* v2: fixed 'conf->raid_disk-1' for the raid6 'handle_stripe_expansion' path
* v3: removed the unused 'dirty' field from struct stripe_head_state
* v3: coalesced open coded bi_end_io routines into return_io()
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
The async_tx api provides methods for describing a chain of asynchronous
bulk memory transfers/transforms with support for inter-transactional
dependencies. It is implemented as a dmaengine client that smooths over
the details of different hardware offload engine implementations. Code
that is written to the api can optimize for asynchronous operation and the
api will fit the chain of operations to the available offload resources.
I imagine that any piece of ADMA hardware would register with the
'async_*' subsystem, and a call to async_X would be routed as
appropriate, or be run in-line. - Neil Brown
async_tx exploits the capabilities of struct dma_async_tx_descriptor to
provide an api of the following general format:
struct dma_async_tx_descriptor *
async_<operation>(..., struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
struct dma_chan *chan = async_tx_find_channel(depend_tx, <operation>);
struct dma_device *device = chan ? chan->device : NULL;
int int_en = cb_fn ? 1 : 0;
struct dma_async_tx_descriptor *tx = device ?
device->device_prep_dma_<operation>(chan, len, int_en) : NULL;
if (tx) { /* run <operation> asynchronously */
...
tx->tx_set_dest(addr, tx, index);
...
tx->tx_set_src(addr, tx, index);
...
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
} else { /* run <operation> synchronously */
...
<operation>
...
async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param);
}
return tx;
}
async_tx_find_channel() returns a capable channel from its pool. The
channel pool is organized as a per-cpu array of channel pointers. The
async_tx_rebalance() routine is tasked with managing these arrays. In the
uniprocessor case async_tx_rebalance() tries to spread responsibility
evenly over channels of similar capabilities. For example if there are two
copy+xor channels, one will handle copy operations and the other will
handle xor. In the SMP case async_tx_rebalance() attempts to spread the
operations evenly over the cpus, e.g. cpu0 gets copy channel0 and xor
channel0 while cpu1 gets copy channel 1 and xor channel 1. When a
dependency is specified async_tx_find_channel defaults to keeping the
operation on the same channel. A xor->copy->xor chain will stay on one
channel if it supports both operation types, otherwise the transaction will
transition between a copy and a xor resource.
Currently the raid5 implementation in the MD raid456 driver has been
converted to the async_tx api. A driver for the offload engines on the
Intel Xscale series of I/O processors, iop-adma, is provided in a later
commit. With the iop-adma driver and async_tx, raid456 is able to offload
copy, xor, and xor-zero-sum operations to hardware engines.
On iop342 tiobench showed higher throughput for sequential writes (20 - 30%
improvement) and sequential reads to a degraded array (40 - 55%
improvement). For the other cases performance was roughly equal, +/- a few
percentage points. On a x86-smp platform the performance of the async_tx
implementation (in synchronous mode) was also +/- a few percentage points
of the original implementation. According to 'top' on iop342 CPU
utilization drops from ~50% to ~15% during a 'resync' while the speed
according to /proc/mdstat doubles from ~25 MB/s to ~50 MB/s.
The tiobench command line used for testing was: tiobench --size 2048
--block 4096 --block 131072 --dir /mnt/raid --numruns 5
* iop342 had 1GB of memory available
Details:
* if CONFIG_DMA_ENGINE=n the asynchronous path is compiled away by making
async_tx_find_channel a static inline routine that always returns NULL
* when a callback is specified for a given transaction an interrupt will
fire at operation completion time and the callback will occur in a
tasklet. if the the channel does not support interrupts then a live
polling wait will be performed
* the api is written as a dmaengine client that requests all available
channels
* In support of dependencies the api implicitly schedules channel-switch
interrupts. The interrupt triggers the cleanup tasklet which causes
pending operations to be scheduled on the next channel
* Xor engines treat an xor destination address differently than a software
xor routine. To the software routine the destination address is an implied
source, whereas engines treat it as a write-only destination. This patch
modifies the xor_blocks routine to take a an explicit destination address
to mirror the hardware.
Changelog:
* fixed a leftover debug print
* don't allow callbacks in async_interrupt_cond
* fixed xor_block changes
* fixed usage of ASYNC_TX_XOR_DROP_DEST
* drop dma mapping methods, suggested by Chris Leech
* printk warning fixups from Andrew Morton
* don't use inline in C files, Adrian Bunk
* select the API when MD is enabled
* BUG_ON xor source counts <= 1
* implicitly handle hardware concerns like channel switching and
interrupts, Neil Brown
* remove the per operation type list, and distribute operation capabilities
evenly amongst the available channels
* simplify async_tx_find_channel to optimize the fast path
* introduce the channel_table_initialized flag to prevent early calls to
the api
* reorganize the code to mimic crypto
* include mm.h as not all archs include it in dma-mapping.h
* make the Kconfig options non-user visible, Adrian Bunk
* move async_tx under crypto since it is meant as 'core' functionality, and
the two may share algorithms in the future
* move large inline functions into c files
* checkpatch.pl fixes
* gpl v2 only correction
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
The async_tx api tries to use a dma engine for an operation, but will fall
back to an optimized software routine otherwise. Xor support is
implemented using the raid5 xor routines. For organizational purposes this
routine is moved to a common area.
The following fixes are also made:
* rename xor_block => xor_blocks, suggested by Adrian Bunk
* ensure that xor.o initializes before md.o in the built-in case
* checkpatch.pl fixes
* mark calibrate_xor_blocks __init, Adrian Bunk
Cc: Adrian Bunk <bunk@stusta.de>
Cc: NeilBrown <neilb@suse.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The current implementation assumes that a channel will only be used by one
client at a time. In order to enable channel sharing the dmaengine core is
changed to a model where clients subscribe to channel-available-events.
Instead of tracking how many channels a client wants and how many it has
received the core just broadcasts the available channels and lets the
clients optionally take a reference. The core learns about the clients'
needs at dma_event_callback time.
In support of multiple operation types, clients can specify a capability
mask to only be notified of channels that satisfy a certain set of
capabilities.
Changelog:
* removed DMA_TX_ARRAY_INIT, no longer needed
* dma_client_chan_free -> dma_chan_release: switch to global reference
counting only at device unregistration time, before it was also happening
at client unregistration time
* clients now return dma_state_client to dmaengine (ack, dup, nak)
* checkpatch.pl fixes
* fixup merge with git-ioat
Cc: Chris Leech <christopher.leech@intel.com>
Signed-off-by: Shannon Nelson <shannon.nelson@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
The current dmaengine interface defines mutliple routines per operation,
i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding
more operation types (xor, crc, etc) to this model would result in an
unmanageable number of method permutations.
Are we really going to add a set of hooks for each DMA engine
whizbang feature?
- Jeff Garzik
The descriptor creation process is refactored using the new common
dma_async_tx_descriptor structure. Instead of per driver
do_<operation>_<dest>_to_<src> methods, drivers integrate
dma_async_tx_descriptor into their private software descriptor and then
define a 'prep' routine per operation. The prep routine allocates a
descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines
are valid. Descriptor creation and submission becomes:
struct dma_device *dev;
struct dma_chan *chan;
struct dma_async_tx_descriptor *tx;
tx = dev->device_prep_dma_<operation>(chan, len, int_flag)
tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */)
tx->tx_set_dest(dma_addr_t, tx, index)
tx->tx_submit(tx)
In addition to the refactoring, dma_async_tx_descriptor also lays the
groundwork for definining cross-channel-operation dependencies, and a
callback facility for asynchronous notification of operation completion.
Changelog:
* drop dma mapping methods, suggested by Chris Leech
* fix ioat_dma_dependency_added, also caught by Andrew Morton
* fix dma_sync_wait, change from Andrew Morton
* uninline large functions, change from Andrew Morton
* add tx->callback = NULL to dmaengine calls to interoperate with async_tx
calls
* hookup ioat_tx_submit
* convert channel capabilities to a 'cpumask_t like' bitmap
* removed DMA_TX_ARRAY_INIT, no longer needed
* checkpatch.pl fixes
* make set_src, set_dest, and tx_submit descriptor specific methods
* fixup git-ioat merge
* move group_list and phys to dma_async_tx_descriptor
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Chris Leech <christopher.leech@intel.com>
Signed-off-by: Shannon Nelson <shannon.nelson@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
If the output actor doesn't transfer the full amount of data, we will
increment ppos too much. Two related bugs in there:
- We need to break out and return actor() retval if it is shorted than
what we spliced into the pipe.
- Adjust ppos only according to actor() return.
Also fix loop problem in generic_file_splice_read(), it should not keep
going when data has already been transferred.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Revalidate read/write permissions for splice(2) and vmslice(2), in case
security policy has changed since the files were opened.
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The current code that sets the read position in subbuf_splice_actor may
give erroneous results if the buffer size isn't a power of 2. This
patch fixes the problem.
Signed-off-by: Tom Zanussi <zanussi@us.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Based on a patch from Joachim which didn't apply, so I fixed
it up by hand, and also corrected the surrounding indentation
a little.
Signed-off-by: Joachim.Deguara <joachim.deguara@amd.com>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Negative side effect: needs NR_CPUs pointer array of memory in
CONFIG_HOTPLUG_CPU case.
Still needs userspace track keeping and rewriting of governors if governors
change while a CPU is not active (always the governor at CPU remove time is
restored).
Move of policy->user_policy.governor assignment is just a minor cleanup.
http://bugzilla.kernel.org/show_bug.cgi?id=8671
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Mattia Dongili <malattia@linux.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
There is a frequency scaling issue that I encountered with the performance
governor in combination with CPU hotplug.
In cpufreq.c CPU frequency is reduced to its minimum before the CPU gets
unregistered and set offline. Does that have a particular reason?
Since the (k8-)governor does not monitor CPU frequency that setting also
applies then to the remaining CPU as well and lets the system run on the
lowest frequency although performance is chose as the policy.
Signed-off-by: Peter Oruba <peter.oruba@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
This patch contains the overdue removal of X86_SPEEDSTEP_CENTRINO_ACPI.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
On some motherboards ACPI C3 is available, but it isn't
causing frequency transition on VIA Nehemiah. Longhaul
wasn't working at all earlier, but due to
scaling_cur_speed returning true CPU frequency now, it
looks like CPU is getting stuck at highest frequency
since 2.6.21. I didn't find a reason. Halt is causing
frequency transition.
Signed-off-by: Rafal Bilski <rafalbilski@interia.pl>
Signed-off-by: Dave Jones <davej@redhat.com>
This reverts commit acb11c8b80.
It was broken. We most certainly *do* want the default to be the old
behaviour (and the common case!), instead of breaking everybodys
configuration and making 99% of all people have to override the default.
What were you guys thinking?
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* master.kernel.org:/pub/scm/linux/kernel/git/gregkh/usb-2.6: (149 commits)
USB: ohci-pnx4008: Remove unnecessary cast of return value of kzalloc
USB: additions to the quirk list
usb-storage: implement autosuspend
USB: cdc-acm: add new device id to option driver
USB: goku_udc trivial cleanups
USB: usb gadget stack can now -DDEBUG with Kconfig
usb gadget stack: remove usb_ep_*_buffer(), part 2
usb gadget stack: remove usb_ep_*_buffer(), part 1
USB: pxa2xx_udc -- cleanups, mostly removing dma hooks
USB: pxa2xx_udc: use generic gpio layer
USB: quirk for samsung printer
USB: usb/dma doc updates
USB: drivers/usb/storage/unusual_devs.h whitespace cleanup
USB: remove Makefile reference to obsolete OHCI_AT91
USB: io_*: remove bogus termios no change checks
USB: mos7720: remove bogus no termios change check
USB: visor and whiteheat: remove bogus termios change checks
USB: pl2303: remove bogus checks and fix speed support to use tty_get_baud_rate()
USB: mos7840.c: turn this into a serial driver
USB: make the usb_device numa_node get assigned from controller
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband: (76 commits)
IB: Update MAINTAINERS with Hal's new email address
IB/mlx4: Implement query SRQ
IB/mlx4: Implement query QP
IB/cm: Send no match if a SIDR REQ does not match a listen
IB/cm: Fix handling of duplicate SIDR REQs
IB/cm: cm_msgs.h should include ib_cm.h
IB/cm: Include HCA ACK delay in local ACK timeout
IB/cm: Use spin_lock_irq() instead of spin_lock_irqsave() when possible
IB/sa: Make sure SA queries use default P_Key
IPoIB: Recycle loopback skbs instead of freeing and reallocating
IB/mthca: Replace memset(<addr>, 0, PAGE_SIZE) with clear_page(<addr>)
IPoIB/cm: Fix warning if IPV6 is not enabled
IB/core: Take sizeof the correct pointer when calling kmalloc()
IB/ehca: Improve latency by unlocking after triggering the hardware
IB/ehca: Notify consumers of LID/PKEY/SM changes after nondisruptive events
IB/ehca: Return QP pointer in poll_cq()
IB/ehca: Change idr spinlocks into rwlocks
IB/ehca: Refactor sync between completions and destroy_cq using atomic_t
IB/ehca: Lock renaming, static initializers
IB/ehca: Report RDMA atomic attributes in query_qp()
...
This reverts commit 963bd949b1. The
driver _does_ need the networking header files;
CC [M] drivers/net/bnx2.o
drivers/net/bnx2.c: In function 'bnx2_start_xmit':
drivers/net/bnx2.c:5177: warning: implicit declaration of function 'tcp_optlen'
drivers/net/bnx2.c:5181: error: invalid application of 'sizeof' to incomplete type 'struct ipv6hdr'
drivers/net/bnx2.c:5202: error: invalid application of 'sizeof' to incomplete type 'struct tcphdr'
drivers/net/bnx2.c:5207: warning: implicit declaration of function 'tcp_hdr'
drivers/net/bnx2.c:5207: error: invalid type argument of '->'
make[2]: *** [drivers/net/bnx2.o] Error 1
make[1]: *** [drivers/net] Error 2
make: *** [drivers] Error 2
Cc: Ilpo Jävinen <ilpo.jarvinen@helsinki.fi>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove unnecessary cast of return value of kzalloc() in
usb/host/ohci-pnx4008.c
Signed-off-by: Suresh Jayaraman <sjayaraman@novell.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
this adds some scanners reported to be crashed by autosuspend to
the quirk list.
Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as930) implements autosuspend for usb-storage. It is
adapted from a patch by Oliver Neukum. Autosuspend is allowed except
during LUN scanning, resets, and command execution.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
USB: add new device id to option driver
device is Samsung X180 China cellphone
Signed-off-by: Andrey Arapov <andrey.arapov@gmail.com>
Acked-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Minor fixes to goku_udc ... whitespace, let -DDEBUG do its thing,
check the return value of device_register(), sparse tweaks.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Although the other USB driver directories got taught how use Kconfig
and the Makefile to enable the debugging messages enabled by -DDEBUG,
the gadget stack was overlooked.
This patch remedies that omission, but doesn't update any drivers to
remove previous idiosyncracies in this area ... other than the RNDIS
code, which defined its own DEBUG() macro in a broken way.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch removes controller driver infrastructure which supported
the now-removed usb_ep_{alloc,free}_buffer() calls.
As can be seen, many of the implementations of this were broken to
various degrees. Many didn't properly return dma-coherent mappings;
those which did so were necessarily ugly because of bogosity in the
underlying dma_free_coherent() calls ... which on many platforms
can't be called from the same contexts (notably in_irq) from which
their dma_alloc_coherent() sibling can be called.
The main potential downside of removing this is that gadget drivers
wouldn't have specific knowledge that the controller drivers have:
endpoints that aren't dma-capable don't need any dma mappings at all.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Remove usb_ep_{alloc,free}_buffer() calls, for small dma-coherent buffers.
This patch just removes the interface and its users; later patches will
remove controller driver support.
- This interface is invariably not implemented correctly in the
controller drivers (e.g. using dma pools, a mechanism which
post-dates the interface by several years).
- At this point no gadget driver really *needs* to use it. In
current kernels, any driver that needs such a mechanism could
allocate a dma pool themselves.
Removing this interface is thus a simplification and improvement.
Note that the gmidi.c driver had a bug in this area; fixed.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Cleanups to the pxa2xx_udc code:
- Primarily removing unused DMA hooks.
- One "sparse" warning removed
- Remove some Lubbock-only LED hooks (for debugging)
That DMA code was never really completed. It worked, mostly, for IN
transfers (to the host) if they were fortuitously aligned, but that
code was never fully tested. And it was never coded for OUT transfers
(which is where DMA would really help) ... because of chip errata on
essentially every chip other than the pxa255, and because of design
botches (nothing automated data toggle). So it's effectively been
dead code for several years now ... no point in keeping it around.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch lets the pxa2xx_udc use the generic gpio layer,
on the relevant PXA and IXP systems.
Signed-off-by: Milan Svoboda <msvoboda@ra.rockwell.com>
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch updates some of the documentation about DMA buffer management
for USB, and ways to avoid extra copying. Our understanding of the issues
has improved over time.
- Most drivers should *avoid* the dma-coherent allocators. There are
a few exceptions (like the HID driver).
- Some methods are currently commented out; it seems folk writing
USB drivers aren't doing performance tuning at that level yet.
- Just avoid highmem; there's no good way to pass an "I can do highmem
DMA" capability through a driver stack. This is easy, everything
already avoids highmem. But it'd be nice if x86_32 systems with much
physical memory could use it directly with network adapters and mass
storage devices. (Patch, anyone?)
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Following patch removes trailing whitespaces at the ends of lines and converts
smarttabs/whitespaces into real tabs.
Signed-off-by: S.Caglar Onur <caglar@pardus.org.tr>
Signed-off-by: Phil Dibowitz <phil@ipom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The MOS driver is "interesting", in a bad kind of 'how the hell did this
get merged' kind of way
- Remove the bogus termios change check
- Remove the duplicate code for half the ioctls
- Remove the supporting code to duplicate the ioctl code
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
So we can use dev_to_node(&usb_dev->dev) later in kmalloc_node to dma buffer
Signed-off-by: Yinghai Lu <yinghai.lu@sun.com>
Cc: Andi Kleen <ak@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Fix an oops that happens in relation with applying work arounds for buggy
ftdi_sio devices. The quirks were handled too early because due to changes in
the initialisation of usb serial devices the device was not fully initialised
when the old hook was called.
Addresses bug 8564
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>