virtualx-engine/servers/visual/rasterizer_rd/shaders/giprobe_lighting.glsl

242 lines
5.7 KiB
Text
Raw Normal View History

2019-09-25 21:44:44 +02:00
[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#define NO_CHILDREN 0xFFFFFFFF
#define GREY_VEC vec3(0.33333,0.33333,0.33333)
struct CellPosition {
uint children[8];
};
layout(set=0,binding=1,std140) buffer CellPositions {
CellPosition data[];
} cell_positions;
struct CellMaterial {
uint position; // xyz 10 bits
uint albedo; //rgb albedo
uint emission; //rgb normalized with e as multiplier
uint normal; //RGB normal encoded
};
layout(set=0,binding=2,std140) buffer CellMaterials {
CellMaterial data[];
} cell_materials;
#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2
struct Light {
uint type;
float energy;
float radius;
float attenuation;
vec3 color;
float spot_angle_radians;
float advance;
float max_length;
uint pad0;
uint pad2;
vec3 position;
float spot_attenuation;
vec3 direction;
bool visible;
vec4 clip_planes[3];
};
layout(set=0,binding=3,std140) buffer Lights {
Light data[];
} lights;
layout(set=0,binding=4,std140) uniform Params {
vec3 limits;
float max_length;
uint size;
uint stack_size;
uint light_count;
float emission_scale;
} params;
layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) {
uint result = NO_CHILDREN;
while (distance > -distance_adv) { //use this to avoid precision errors
uint cell = 0;
ivec3 pos = ivec3(from);
ivec3 ofs = ivec3(0);
ivec3 half_size = ivec3(params.size) / 2;
if (any(lessThan(pos,ivec3(0))) || any(greaterThanEqual(pos,ivec3(params.size)))) {
return NO_CHILDREN; //outside range
}
for (int i = 0; i < params.stack_size - 1; i++) {
bvec3 greater = greaterThanEqual(pos,ofs+half_size);
ofs += mix(ivec3(0),half_size,greater);
uint child = 0; //wonder if this can be done faster
if (greater.x) {
child|=1;
}
if (greater.y) {
child|=2;
}
if (greater.z) {
child|=4;
}
cell = cell_positions.data[cell].children[child];
if (cell == NO_CHILDREN)
break;
half_size >>= ivec3(1);
}
if ( cell != NO_CHILDREN) {
return cell; //found cell!
}
from += direction * distance_adv;
distance -= distance_adv;
}
return NO_CHILDREN;
}
bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) {
if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) {
light_pos = pos - lights.data[light].direction * params.max_length;
attenuation = 1.0;
} else {
light_pos = lights.data[light].position;
float distance = length(pos - light_pos);
if (distance >= lights.data[light].radius) {
return false;
}
attenuation = pow( distance / lights.data[light].radius + 0.0001, lights.data[light].attenuation );
if (lights.data[light].type==LIGHT_TYPE_SPOT) {
vec3 rel = normalize(pos - light_pos);
float angle = acos(dot(rel,lights.data[light].direction));
if (angle > lights.data[light].spot_angle_radians) {
return false;
}
float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1);
attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation);
}
}
return true;
}
void main() {
uint cell_index = gl_GlobalInvocationID.x;
uvec3 posu = uvec3(cell_materials.data[cell_index].position&0x3FF,(cell_materials.data[cell_index].position>>10)&0x3FF,cell_materials.data[cell_index].position>>20);
vec3 pos = vec3(posu);
vec3 emission = vec3(ivec3(cell_materials.data[cell_index].emission&0x3FF,(cell_materials.data[cell_index].emission>>10)&0x7FF,cell_materials.data[cell_index].emission>>21)) * params.emission_scale;
vec4 albedo = unpackUnorm4x8(cell_materials.data[cell_index].albedo);
vec4 normal = unpackSnorm4x8(cell_materials.data[cell_index].normal); //w >0.5 means, all directions
#ifdef MODE_ANISOTROPIC
vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
#else
vec3 accum = vec3(0);
#endif
for(uint i=0;i<params.light_count;i++) {
float attenuation;
vec3 light_pos;
if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) {
continue;
}
float distance_adv = lights.data[i].advance;
vec3 light_dir = pos - light_pos;
float distance = length(light_dir);
light_dir=normalize(light_dir);
distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
vec3 from = pos - light_dir * distance; //approximate
if (normal.w < 0.5 && dot(normal.xyz,light_dir)>=0) {
continue; //not facing the light
}
uint result = raymarch(distance,distance_adv,from,lights.data[i].direction);
if (result != cell_index) {
continue; //was occluded
}
vec3 light = lights.data[i].color * albedo.rgb * attenuation;
#ifdef MODE_ANISOTROPIC
for(uint j=0;j<6;j++) {
accum[j]+=max(0.0,dot(accum_dir,-light_dir))*light+emission;
}
#else
if (normal.w < 0.5) {
accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission;
} else {
//all directions
accum+=light+emission;
}
#endif
}
#ifdef MODE_ANISOTROPIC
vec3 accum_total = accum[0]+accum[1]+accum[2]+accum[3]+accum[4]+accum[5];
float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001);
vec3 iso_positive = vec3(dot(aniso[0],GREY_VEC),dot(aniso[2],GREY_VEC),dot(aniso[4],GREY_VEC))/vec3(accum_total_energy);
vec3 iso_negative = vec3(dot(aniso[1],GREY_VEC),dot(aniso[3],GREY_VEC),dot(aniso[5],GREY_VEC))/vec3(accum_total_energy);
//store in 3D textures, total color, and isotropic magnitudes
#else
//store in 3D texture pos, accum
imageStore(color_tex,ivec3(posu),vec4(accum,albedo.a));
#endif
}