241 lines
5.7 KiB
GLSL
241 lines
5.7 KiB
GLSL
[compute]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
#define NO_CHILDREN 0xFFFFFFFF
|
|
#define GREY_VEC vec3(0.33333,0.33333,0.33333)
|
|
|
|
struct CellPosition {
|
|
uint children[8];
|
|
};
|
|
|
|
|
|
layout(set=0,binding=1,std140) buffer CellPositions {
|
|
CellPosition data[];
|
|
} cell_positions;
|
|
|
|
struct CellMaterial {
|
|
uint position; // xyz 10 bits
|
|
uint albedo; //rgb albedo
|
|
uint emission; //rgb normalized with e as multiplier
|
|
uint normal; //RGB normal encoded
|
|
};
|
|
|
|
layout(set=0,binding=2,std140) buffer CellMaterials {
|
|
CellMaterial data[];
|
|
} cell_materials;
|
|
|
|
#define LIGHT_TYPE_DIRECTIONAL 0
|
|
#define LIGHT_TYPE_OMNI 1
|
|
#define LIGHT_TYPE_SPOT 2
|
|
|
|
struct Light {
|
|
|
|
uint type;
|
|
float energy;
|
|
float radius;
|
|
float attenuation;
|
|
|
|
vec3 color;
|
|
float spot_angle_radians;
|
|
|
|
float advance;
|
|
float max_length;
|
|
uint pad0;
|
|
uint pad2;
|
|
|
|
vec3 position;
|
|
float spot_attenuation;
|
|
|
|
|
|
vec3 direction;
|
|
bool visible;
|
|
|
|
vec4 clip_planes[3];
|
|
};
|
|
|
|
layout(set=0,binding=3,std140) buffer Lights {
|
|
Light data[];
|
|
} lights;
|
|
|
|
|
|
layout(set=0,binding=4,std140) uniform Params {
|
|
vec3 limits;
|
|
float max_length;
|
|
uint size;
|
|
uint stack_size;
|
|
uint light_count;
|
|
float emission_scale;
|
|
} params;
|
|
|
|
|
|
layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
|
|
|
|
|
|
uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) {
|
|
|
|
uint result = NO_CHILDREN;
|
|
|
|
while (distance > -distance_adv) { //use this to avoid precision errors
|
|
|
|
uint cell = 0;
|
|
|
|
ivec3 pos = ivec3(from);
|
|
ivec3 ofs = ivec3(0);
|
|
ivec3 half_size = ivec3(params.size) / 2;
|
|
if (any(lessThan(pos,ivec3(0))) || any(greaterThanEqual(pos,ivec3(params.size)))) {
|
|
return NO_CHILDREN; //outside range
|
|
}
|
|
|
|
for (int i = 0; i < params.stack_size - 1; i++) {
|
|
|
|
bvec3 greater = greaterThanEqual(pos,ofs+half_size);
|
|
|
|
ofs += mix(ivec3(0),half_size,greater);
|
|
|
|
uint child = 0; //wonder if this can be done faster
|
|
if (greater.x) {
|
|
child|=1;
|
|
}
|
|
if (greater.y) {
|
|
child|=2;
|
|
}
|
|
if (greater.z) {
|
|
child|=4;
|
|
}
|
|
|
|
cell = cell_positions.data[cell].children[child];
|
|
if (cell == NO_CHILDREN)
|
|
break;
|
|
|
|
half_size >>= ivec3(1);
|
|
}
|
|
|
|
if ( cell != NO_CHILDREN) {
|
|
return cell; //found cell!
|
|
}
|
|
|
|
from += direction * distance_adv;
|
|
distance -= distance_adv;
|
|
}
|
|
|
|
return NO_CHILDREN;
|
|
}
|
|
|
|
bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) {
|
|
|
|
if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) {
|
|
|
|
light_pos = pos - lights.data[light].direction * params.max_length;
|
|
attenuation = 1.0;
|
|
|
|
} else {
|
|
|
|
light_pos = lights.data[light].position;
|
|
float distance = length(pos - light_pos);
|
|
if (distance >= lights.data[light].radius) {
|
|
return false;
|
|
}
|
|
|
|
attenuation = pow( distance / lights.data[light].radius + 0.0001, lights.data[light].attenuation );
|
|
|
|
|
|
if (lights.data[light].type==LIGHT_TYPE_SPOT) {
|
|
|
|
vec3 rel = normalize(pos - light_pos);
|
|
float angle = acos(dot(rel,lights.data[light].direction));
|
|
if (angle > lights.data[light].spot_angle_radians) {
|
|
return false;
|
|
}
|
|
|
|
float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1);
|
|
attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void main() {
|
|
|
|
uint cell_index = gl_GlobalInvocationID.x;
|
|
|
|
uvec3 posu = uvec3(cell_materials.data[cell_index].position&0x3FF,(cell_materials.data[cell_index].position>>10)&0x3FF,cell_materials.data[cell_index].position>>20);
|
|
vec3 pos = vec3(posu);
|
|
|
|
vec3 emission = vec3(ivec3(cell_materials.data[cell_index].emission&0x3FF,(cell_materials.data[cell_index].emission>>10)&0x7FF,cell_materials.data[cell_index].emission>>21)) * params.emission_scale;
|
|
vec4 albedo = unpackUnorm4x8(cell_materials.data[cell_index].albedo);
|
|
vec4 normal = unpackSnorm4x8(cell_materials.data[cell_index].normal); //w >0.5 means, all directions
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
|
|
const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
|
|
#else
|
|
vec3 accum = vec3(0);
|
|
#endif
|
|
|
|
for(uint i=0;i<params.light_count;i++) {
|
|
|
|
float attenuation;
|
|
vec3 light_pos;
|
|
|
|
if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) {
|
|
continue;
|
|
}
|
|
|
|
float distance_adv = lights.data[i].advance;
|
|
|
|
vec3 light_dir = pos - light_pos;
|
|
float distance = length(light_dir);
|
|
|
|
light_dir=normalize(light_dir);
|
|
|
|
distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
|
|
|
|
vec3 from = pos - light_dir * distance; //approximate
|
|
|
|
if (normal.w < 0.5 && dot(normal.xyz,light_dir)>=0) {
|
|
continue; //not facing the light
|
|
}
|
|
|
|
uint result = raymarch(distance,distance_adv,from,lights.data[i].direction);
|
|
|
|
if (result != cell_index) {
|
|
continue; //was occluded
|
|
}
|
|
|
|
vec3 light = lights.data[i].color * albedo.rgb * attenuation;
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
for(uint j=0;j<6;j++) {
|
|
accum[j]+=max(0.0,dot(accum_dir,-light_dir))*light+emission;
|
|
}
|
|
#else
|
|
if (normal.w < 0.5) {
|
|
accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission;
|
|
} else {
|
|
//all directions
|
|
accum+=light+emission;
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
vec3 accum_total = accum[0]+accum[1]+accum[2]+accum[3]+accum[4]+accum[5];
|
|
float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001);
|
|
vec3 iso_positive = vec3(dot(aniso[0],GREY_VEC),dot(aniso[2],GREY_VEC),dot(aniso[4],GREY_VEC))/vec3(accum_total_energy);
|
|
vec3 iso_negative = vec3(dot(aniso[1],GREY_VEC),dot(aniso[3],GREY_VEC),dot(aniso[5],GREY_VEC))/vec3(accum_total_energy);
|
|
|
|
//store in 3D textures, total color, and isotropic magnitudes
|
|
#else
|
|
//store in 3D texture pos, accum
|
|
imageStore(color_tex,ivec3(posu),vec4(accum,albedo.a));
|
|
#endif
|
|
|
|
}
|