virtualx-engine/scene/3d/voxel_light_baker.cpp

1599 lines
47 KiB
C++
Raw Normal View History

/**************************************************************************/
/* voxel_light_baker.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "voxel_light_baker.h"
2020-01-21 21:32:27 +01:00
#include "core/os/os.h"
#include "core/os/threaded_array_processor.h"
#include <stdlib.h>
#define FINDMINMAX(x0, x1, x2, min, max) \
min = max = x0; \
if (x1 < min) \
min = x1; \
if (x1 > max) \
max = x1; \
if (x2 < min) \
min = x2; \
if (x2 > max) \
max = x2;
static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
int q;
Vector3 vmin, vmax;
for (q = 0; q <= 2; q++) {
if (normal[q] > 0.0f) {
vmin[q] = -maxbox[q];
vmax[q] = maxbox[q];
} else {
vmin[q] = maxbox[q];
vmax[q] = -maxbox[q];
}
}
if (normal.dot(vmin) + d > 0.0f) {
return false;
}
if (normal.dot(vmax) + d >= 0.0f) {
return true;
}
return false;
}
/*======================== X-tests ========================*/
#define AXISTEST_X01(a, b, fa, fb) \
p0 = a * v0.y - b * v0.z; \
p2 = a * v2.y - b * v2.z; \
if (p0 < p2) { \
min = p0; \
max = p2; \
} else { \
min = p2; \
max = p0; \
} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if (min > rad || max < -rad) \
return false;
#define AXISTEST_X2(a, b, fa, fb) \
p0 = a * v0.y - b * v0.z; \
p1 = a * v1.y - b * v1.z; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if (min > rad || max < -rad) \
return false;
/*======================== Y-tests ========================*/
#define AXISTEST_Y02(a, b, fa, fb) \
p0 = -a * v0.x + b * v0.z; \
p2 = -a * v2.x + b * v2.z; \
if (p0 < p2) { \
min = p0; \
max = p2; \
} else { \
min = p2; \
max = p0; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if (min > rad || max < -rad) \
return false;
#define AXISTEST_Y1(a, b, fa, fb) \
p0 = -a * v0.x + b * v0.z; \
p1 = -a * v1.x + b * v1.z; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if (min > rad || max < -rad) \
return false;
/*======================== Z-tests ========================*/
#define AXISTEST_Z12(a, b, fa, fb) \
p1 = a * v1.x - b * v1.y; \
p2 = a * v2.x - b * v2.y; \
if (p2 < p1) { \
min = p2; \
max = p1; \
} else { \
min = p1; \
max = p2; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if (min > rad || max < -rad) \
return false;
#define AXISTEST_Z0(a, b, fa, fb) \
p0 = a * v0.x - b * v0.y; \
p1 = a * v1.x - b * v1.y; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if (min > rad || max < -rad) \
return false;
static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
/* use separating axis theorem to test overlap between triangle and box */
/* need to test for overlap in these directions: */
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
/* we do not even need to test these) */
/* 2) normal of the triangle */
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
/* this gives 3x3=9 more tests */
Vector3 v0, v1, v2;
float min, max, d, p0, p1, p2, rad, fex, fey, fez;
Vector3 normal, e0, e1, e2;
/* This is the fastest branch on Sun */
/* move everything so that the boxcenter is in (0,0,0) */
v0 = triverts[0] - boxcenter;
v1 = triverts[1] - boxcenter;
v2 = triverts[2] - boxcenter;
/* compute triangle edges */
e0 = v1 - v0; /* tri edge 0 */
e1 = v2 - v1; /* tri edge 1 */
e2 = v0 - v2; /* tri edge 2 */
/* Bullet 3: */
/* test the 9 tests first (this was faster) */
fex = Math::abs(e0.x);
fey = Math::abs(e0.y);
fez = Math::abs(e0.z);
AXISTEST_X01(e0.z, e0.y, fez, fey);
AXISTEST_Y02(e0.z, e0.x, fez, fex);
AXISTEST_Z12(e0.y, e0.x, fey, fex);
fex = Math::abs(e1.x);
fey = Math::abs(e1.y);
fez = Math::abs(e1.z);
AXISTEST_X01(e1.z, e1.y, fez, fey);
AXISTEST_Y02(e1.z, e1.x, fez, fex);
AXISTEST_Z0(e1.y, e1.x, fey, fex);
fex = Math::abs(e2.x);
fey = Math::abs(e2.y);
fez = Math::abs(e2.z);
AXISTEST_X2(e2.z, e2.y, fez, fey);
AXISTEST_Y1(e2.z, e2.x, fez, fex);
AXISTEST_Z12(e2.y, e2.x, fey, fex);
/* Bullet 1: */
/* first test overlap in the {x,y,z}-directions */
/* find min, max of the triangle each direction, and test for overlap in */
/* that direction -- this is equivalent to testing a minimal AABB around */
/* the triangle against the AABB */
/* test in X-direction */
FINDMINMAX(v0.x, v1.x, v2.x, min, max);
if (min > boxhalfsize.x || max < -boxhalfsize.x) {
return false;
}
/* test in Y-direction */
FINDMINMAX(v0.y, v1.y, v2.y, min, max);
if (min > boxhalfsize.y || max < -boxhalfsize.y) {
return false;
}
/* test in Z-direction */
FINDMINMAX(v0.z, v1.z, v2.z, min, max);
if (min > boxhalfsize.z || max < -boxhalfsize.z) {
return false;
}
/* Bullet 2: */
/* test if the box intersects the plane of the triangle */
/* compute plane equation of triangle: normal*x+d=0 */
normal = e0.cross(e1);
d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
2019-06-26 15:08:25 +02:00
return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */
}
2017-12-19 19:04:24 +01:00
static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) {
if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) {
r_uv = p_uv[0];
r_normal = p_normal[0];
return;
}
if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) {
r_uv = p_uv[1];
r_normal = p_normal[1];
return;
}
if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) {
r_uv = p_uv[2];
r_normal = p_normal[2];
return;
}
Vector3 v0 = p_vtx[1] - p_vtx[0];
Vector3 v1 = p_vtx[2] - p_vtx[0];
Vector3 v2 = p_pos - p_vtx[0];
float d00 = v0.dot(v0);
float d01 = v0.dot(v1);
float d11 = v1.dot(v1);
float d20 = v2.dot(v0);
float d21 = v2.dot(v1);
float denom = (d00 * d11 - d01 * d01);
2017-12-19 19:04:24 +01:00
if (denom == 0) {
r_uv = p_uv[0];
r_normal = p_normal[0];
return;
}
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
2017-12-19 19:04:24 +01:00
r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized();
}
2017-12-19 19:04:24 +01:00
void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) {
if (p_level == cell_subdiv - 1) {
//plot the face by guessing its albedo and emission value
//find best axis to map to, for scanning values
int closest_axis = 0;
float closest_dot = 0;
Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
Vector3 normal = plane.normal;
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
float dot = ABS(normal.dot(axis));
if (i == 0 || dot > closest_dot) {
closest_axis = i;
closest_dot = dot;
}
}
Vector3 axis;
axis[closest_axis] = 1.0;
Vector3 t1;
t1[(closest_axis + 1) % 3] = 1.0;
Vector3 t2;
t2[(closest_axis + 2) % 3] = 1.0;
t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
Color albedo_accum;
Color emission_accum;
Vector3 normal_accum;
float alpha = 0.0;
//map to a grid average in the best axis for this face
for (int i = 0; i < color_scan_cell_width; i++) {
Vector3 ofs_i = float(i) * t1;
for (int j = 0; j < color_scan_cell_width; j++) {
Vector3 ofs_j = float(j) * t2;
Vector3 from = p_aabb.position + ofs_i + ofs_j;
Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
Vector3 half = (to - from) * 0.5;
//is in this cell?
if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
continue; //face does not span this cell
}
//go from -size to +size*2 to avoid skipping collisions
Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
if (normal.dot(ray_from - ray_to) < 0) {
SWAP(ray_from, ray_to);
}
Vector3 intersection;
if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
intersection = plane.project(ray_from);
} else {
intersection = plane.project(ray_to);
}
}
intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
2017-12-19 19:04:24 +01:00
Vector2 uv;
Vector3 lnormal;
get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal);
if (lnormal == Vector3()) { //just in case normal as nor provided
2017-12-19 19:04:24 +01:00
lnormal = normal;
}
int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1);
int ofs = uv_y * bake_texture_size + uv_x;
albedo_accum.r += p_material.albedo[ofs].r;
albedo_accum.g += p_material.albedo[ofs].g;
albedo_accum.b += p_material.albedo[ofs].b;
albedo_accum.a += p_material.albedo[ofs].a;
emission_accum.r += p_material.emission[ofs].r;
emission_accum.g += p_material.emission[ofs].g;
emission_accum.b += p_material.emission[ofs].b;
2017-12-19 19:04:24 +01:00
normal_accum += lnormal;
alpha += 1.0;
}
}
if (alpha == 0) {
//could not in any way get texture information.. so use closest point to center
Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
2017-12-19 19:04:24 +01:00
Vector3 lnormal;
Vector2 uv;
get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal);
if (lnormal == Vector3()) { //just in case normal as nor provided
2017-12-19 19:04:24 +01:00
lnormal = normal;
}
int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
int ofs = uv_y * bake_texture_size + uv_x;
alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
albedo_accum.r = p_material.albedo[ofs].r * alpha;
albedo_accum.g = p_material.albedo[ofs].g * alpha;
albedo_accum.b = p_material.albedo[ofs].b * alpha;
albedo_accum.a = p_material.albedo[ofs].a * alpha;
emission_accum.r = p_material.emission[ofs].r * alpha;
emission_accum.g = p_material.emission[ofs].g * alpha;
emission_accum.b = p_material.emission[ofs].b * alpha;
2017-12-19 19:04:24 +01:00
normal_accum = lnormal * alpha;
} else {
float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
alpha *= accdiv;
albedo_accum.r *= accdiv;
albedo_accum.g *= accdiv;
albedo_accum.b *= accdiv;
albedo_accum.a *= accdiv;
emission_accum.r *= accdiv;
emission_accum.g *= accdiv;
emission_accum.b *= accdiv;
normal_accum *= accdiv;
}
//put this temporarily here, corrected in a later step
bake_cells.write[p_idx].albedo[0] += albedo_accum.r;
bake_cells.write[p_idx].albedo[1] += albedo_accum.g;
bake_cells.write[p_idx].albedo[2] += albedo_accum.b;
bake_cells.write[p_idx].emission[0] += emission_accum.r;
bake_cells.write[p_idx].emission[1] += emission_accum.g;
bake_cells.write[p_idx].emission[2] += emission_accum.b;
bake_cells.write[p_idx].normal[0] += normal_accum.x;
bake_cells.write[p_idx].normal[1] += normal_accum.y;
bake_cells.write[p_idx].normal[2] += normal_accum.z;
bake_cells.write[p_idx].alpha += alpha;
} else {
//go down
int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
for (int i = 0; i < 8; i++) {
AABB aabb = p_aabb;
aabb.size *= 0.5;
int nx = p_x;
int ny = p_y;
int nz = p_z;
if (i & 1) {
aabb.position.x += aabb.size.x;
nx += half;
}
if (i & 2) {
aabb.position.y += aabb.size.y;
ny += half;
}
if (i & 4) {
aabb.position.z += aabb.size.z;
nz += half;
}
//make sure to not plot beyond limits
if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) {
continue;
}
{
AABB test_aabb = aabb;
//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
//does not fit in child, go on
continue;
}
}
if (bake_cells[p_idx].children[i] == CHILD_EMPTY) {
//sub cell must be created
uint32_t child_idx = bake_cells.size();
bake_cells.write[p_idx].children[i] = child_idx;
bake_cells.resize(bake_cells.size() + 1);
bake_cells.write[child_idx].level = p_level + 1;
}
_plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb);
}
}
}
Vector<Color> VoxelLightBaker::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
Vector<Color> ret;
if (p_image.is_null() || p_image->empty()) {
ret.resize(bake_texture_size * bake_texture_size);
for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
ret.write[i] = p_color_add;
}
return ret;
}
p_image = p_image->duplicate();
if (p_image->is_compressed()) {
p_image->decompress();
}
p_image->convert(Image::FORMAT_RGBA8);
p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
PoolVector<uint8_t>::Read r = p_image->get_data().read();
ret.resize(bake_texture_size * bake_texture_size);
for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
Color c;
c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
c.a = r[i * 4 + 3] / 255.0;
ret.write[i] = c;
}
return ret;
}
VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref<Material> p_material) {
//this way of obtaining materials is inaccurate and also does not support some compressed formats very well
Ref<SpatialMaterial> mat = p_material;
Ref<Material> material = mat; //hack for now
if (material_cache.has(material)) {
return material_cache[material];
}
MaterialCache mc;
Ref<Image> empty;
if (mat.is_valid()) {
Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO);
Ref<Image> img_albedo;
if (albedo_tex.is_valid()) {
img_albedo = albedo_tex->get_data();
mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
} else {
mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
}
if (mat->get_feature(SpatialMaterial::FEATURE_EMISSION)) {
Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION);
Color emission_col = mat->get_emission();
float emission_energy = mat->get_emission_energy();
Ref<Image> img_emission;
if (emission_tex.is_valid()) {
img_emission = emission_tex->get_data();
}
if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) {
mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
} else {
mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
}
} else {
mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
}
} else {
mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
}
material_cache[p_material] = mc;
return mc;
}
void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material) {
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue; //only triangles
}
Ref<Material> src_material;
if (p_override_material.is_valid()) {
src_material = p_override_material;
} else if (i < p_materials.size() && p_materials[i].is_valid()) {
src_material = p_materials[i];
} else {
src_material = p_mesh->surface_get_material(i);
}
MaterialCache material = _get_material_cache(src_material);
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = vertices.read();
PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
PoolVector<Vector2>::Read uvr;
2017-12-19 19:04:24 +01:00
PoolVector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
PoolVector<Vector3>::Read nr;
PoolVector<int> index = a[Mesh::ARRAY_INDEX];
bool read_uv = false;
2017-12-19 19:04:24 +01:00
bool read_normals = false;
if (uv.size()) {
uvr = uv.read();
read_uv = true;
}
2017-12-19 19:04:24 +01:00
if (normals.size()) {
read_normals = true;
nr = normals.read();
}
if (index.size()) {
int facecount = index.size() / 3;
PoolVector<int>::Read ir = index.read();
for (int j = 0; j < facecount; j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
2017-12-19 19:04:24 +01:00
Vector3 normal[3];
for (int k = 0; k < 3; k++) {
vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
}
if (read_uv) {
for (int k = 0; k < 3; k++) {
uvs[k] = uvr[ir[j * 3 + k]];
}
}
2017-12-19 19:04:24 +01:00
if (read_normals) {
for (int k = 0; k < 3; k++) {
normal[k] = nr[ir[j * 3 + k]];
}
}
//test against original bounds
if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) {
continue;
}
//plot
2017-12-19 19:04:24 +01:00
_plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
}
} else {
int facecount = vertices.size() / 3;
for (int j = 0; j < facecount; j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
2017-12-19 19:04:24 +01:00
Vector3 normal[3];
for (int k = 0; k < 3; k++) {
vtxs[k] = p_xform.xform(vr[j * 3 + k]);
}
if (read_uv) {
for (int k = 0; k < 3; k++) {
uvs[k] = uvr[j * 3 + k];
}
}
2017-12-19 19:04:24 +01:00
if (read_normals) {
for (int k = 0; k < 3; k++) {
normal[k] = nr[j * 3 + k];
}
}
//test against original bounds
if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) {
continue;
}
//plot face
2017-12-19 19:04:24 +01:00
_plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
}
}
}
max_original_cells = bake_cells.size();
}
void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) {
bake_light.write[p_idx].x = p_x;
bake_light.write[p_idx].y = p_y;
bake_light.write[p_idx].z = p_z;
if (p_level == cell_subdiv - 1) {
bake_light.write[p_idx].next_leaf = first_leaf;
first_leaf = p_idx;
} else {
//go down
int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
for (int i = 0; i < 8; i++) {
uint32_t child = bake_cells[p_idx].children[i];
if (child == CHILD_EMPTY) {
continue;
}
int nx = p_x;
int ny = p_y;
int nz = p_z;
if (i & 1) {
nx += half;
}
if (i & 2) {
ny += half;
}
if (i & 4) {
nz += half;
}
_init_light_plot(child, p_level + 1, nx, ny, nz, p_idx);
}
}
}
void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, float p_propagation) {
_check_init_light();
propagation = p_propagation;
bake_quality = p_quality;
}
void VoxelLightBaker::_check_init_light() {
if (bake_light.size() == 0) {
direct_lights_baked = false;
leaf_voxel_count = 0;
_fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting.
bake_light.resize(bake_cells.size());
//memset(bake_light.ptrw(), 0, bake_light.size() * sizeof(Light));
first_leaf = -1;
_init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY);
}
}
static float _get_normal_advance(const Vector3 &p_normal) {
Vector3 normal = p_normal;
Vector3 unorm = normal.abs();
if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
// x code
unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0);
} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
// y code
unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0);
} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
// z code
unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0);
} else {
// oh-no we messed up code
// has to be
unorm = Vector3(1.0, 0.0, 0.0);
}
return 1.0 / normal.dot(unorm);
}
static const Vector3 aniso_normal[6] = {
Vector3(-1, 0, 0),
Vector3(1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, 1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, 1)
};
uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) {
uint32_t cell = 0;
int ofs_x = 0;
int ofs_y = 0;
int ofs_z = 0;
int size = 1 << (cell_subdiv - 1);
int half = size / 2;
if (x < 0 || x >= size) {
return -1;
}
if (y < 0 || y >= size) {
return -1;
}
if (z < 0 || z >= size) {
return -1;
}
for (int i = 0; i < cell_subdiv - 1; i++) {
const Cell *bc = &cells[cell];
int child = 0;
if (x >= ofs_x + half) {
child |= 1;
ofs_x += half;
}
if (y >= ofs_y + half) {
child |= 2;
ofs_y += half;
}
if (z >= ofs_z + half) {
child |= 4;
ofs_z += half;
}
cell = bc->children[child];
if (cell == CHILD_EMPTY) {
return CHILD_EMPTY;
}
half >>= 1;
}
return cell;
}
void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) {
_check_init_light();
float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1;
if (p_direct) {
direct_lights_baked = true;
}
Vector3 light_axis = p_direction;
Plane clip[3];
int clip_planes = 0;
Light *light_data = bake_light.ptrw();
const Cell *cells = bake_cells.ptr();
for (int i = 0; i < 3; i++) {
if (Math::is_zero_approx(light_axis[i])) {
continue;
}
clip[clip_planes].normal[i] = 1.0;
if (light_axis[i] < 0) {
clip[clip_planes].d = axis_cell_size[i] + 1;
} else {
clip[clip_planes].d -= 1.0;
}
clip_planes++;
}
float distance_adv = _get_normal_advance(light_axis);
Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
int idx = first_leaf;
while (idx >= 0) {
Light *light = &light_data[idx];
Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
to += -light_axis.sign() * 0.47; //make it more likely to receive a ray
Vector3 from = to - max_len * light_axis;
for (int j = 0; j < clip_planes; j++) {
clip[j].intersects_segment(from, to, &from);
}
float distance = (to - from).length();
distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always
from = to - light_axis * distance;
uint32_t result = 0xFFFFFFFF;
while (distance > -distance_adv) { //use this to avoid precision errors
result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
if (result != 0xFFFFFFFF) {
break;
}
from += light_axis * distance_adv;
distance -= distance_adv;
}
if (result == (uint32_t)idx) {
//cell hit itself! hooray!
Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
if (normal == Vector3()) {
for (int i = 0; i < 6; i++) {
light->accum[i][0] += light_energy.x * cells[idx].albedo[0];
light->accum[i][1] += light_energy.y * cells[idx].albedo[1];
light->accum[i][2] += light_energy.z * cells[idx].albedo[2];
}
} else {
for (int i = 0; i < 6; i++) {
float s = MAX(0.0, aniso_normal[i].dot(-normal));
light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s;
light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s;
light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s;
}
}
if (p_direct) {
for (int i = 0; i < 6; i++) {
float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
light->direct_accum[i][0] += light_energy.x * s;
light->direct_accum[i][1] += light_energy.y * s;
light->direct_accum[i][2] += light_energy.z * s;
}
}
}
idx = light_data[idx].next_leaf;
}
}
void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) {
_check_init_light();
if (p_direct) {
direct_lights_baked = true;
}
Plane clip[3];
int clip_planes = 0;
// uint64_t us = OS::get_singleton()->get_ticks_usec();
Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
//Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized();
float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
Light *light_data = bake_light.ptrw();
const Cell *cells = bake_cells.ptr();
Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
int idx = first_leaf;
while (idx >= 0) {
Light *light = &light_data[idx];
Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
Vector3 light_axis = (to - light_pos).normalized();
float distance_adv = _get_normal_advance(light_axis);
Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
idx = light_data[idx].next_leaf;
continue;
}
float att = 1.0;
{
float d = light_pos.distance_to(to);
if (d + distance_adv > local_radius) {
idx = light_data[idx].next_leaf;
continue; // too far away
}
float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
att *= powf(1.0 - dt, p_attenutation);
}
clip_planes = 0;
for (int c = 0; c < 3; c++) {
if (Math::is_zero_approx(light_axis[c])) {
continue;
}
clip[clip_planes].normal[c] = 1.0;
if (light_axis[c] < 0) {
clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
} else {
clip[clip_planes].d -= 1.0;
}
clip_planes++;
}
Vector3 from = light_pos;
for (int j = 0; j < clip_planes; j++) {
clip[j].intersects_segment(from, to, &from);
}
float distance = (to - from).length();
distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
from = to - light_axis * distance;
to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
uint32_t result = 0xFFFFFFFF;
while (distance > -distance_adv) { //use this to avoid precision errors
result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
if (result != 0xFFFFFFFF) {
break;
}
from += light_axis * distance_adv;
distance -= distance_adv;
}
if (result == (uint32_t)idx) {
//cell hit itself! hooray!
if (normal == Vector3()) {
for (int i = 0; i < 6; i++) {
light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
}
} else {
for (int i = 0; i < 6; i++) {
float s = MAX(0.0, aniso_normal[i].dot(-normal));
light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
}
}
if (p_direct) {
for (int i = 0; i < 6; i++) {
float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
light->direct_accum[i][0] += light_energy.x * s * att;
light->direct_accum[i][1] += light_energy.y * s * att;
light->direct_accum[i][2] += light_energy.z * s * att;
}
}
}
idx = light_data[idx].next_leaf;
}
}
void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) {
_check_init_light();
if (p_direct) {
direct_lights_baked = true;
}
Plane clip[3];
int clip_planes = 0;
// uint64_t us = OS::get_singleton()->get_ticks_usec();
Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized();
float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
Light *light_data = bake_light.ptrw();
const Cell *cells = bake_cells.ptr();
Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
int idx = first_leaf;
while (idx >= 0) {
Light *light = &light_data[idx];
Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
Vector3 light_axis = (to - light_pos).normalized();
float distance_adv = _get_normal_advance(light_axis);
Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
idx = light_data[idx].next_leaf;
continue;
}
float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis)));
if (angle > p_spot_angle) {
idx = light_data[idx].next_leaf;
continue; // too far away
}
float att = Math::pow(1.0f - angle / p_spot_angle, p_spot_attenuation);
{
float d = light_pos.distance_to(to);
if (d + distance_adv > local_radius) {
idx = light_data[idx].next_leaf;
continue; // too far away
}
float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
att *= powf(1.0 - dt, p_attenutation);
}
clip_planes = 0;
for (int c = 0; c < 3; c++) {
if (Math::is_zero_approx(light_axis[c])) {
continue;
}
clip[clip_planes].normal[c] = 1.0;
if (light_axis[c] < 0) {
clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
} else {
clip[clip_planes].d -= 1.0;
}
clip_planes++;
}
Vector3 from = light_pos;
for (int j = 0; j < clip_planes; j++) {
clip[j].intersects_segment(from, to, &from);
}
float distance = (to - from).length();
distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
from = to - light_axis * distance;
uint32_t result = 0xFFFFFFFF;
while (distance > -distance_adv) { //use this to avoid precision errors
result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
if (result != 0xFFFFFFFF) {
break;
}
from += light_axis * distance_adv;
distance -= distance_adv;
}
if (result == (uint32_t)idx) {
//cell hit itself! hooray!
if (normal == Vector3()) {
for (int i = 0; i < 6; i++) {
light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
}
} else {
for (int i = 0; i < 6; i++) {
float s = MAX(0.0, aniso_normal[i].dot(-normal));
light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
}
}
if (p_direct) {
for (int i = 0; i < 6; i++) {
float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
light->direct_accum[i][0] += light_energy.x * s * att;
light->direct_accum[i][1] += light_energy.y * s * att;
light->direct_accum[i][2] += light_energy.z * s * att;
}
}
}
idx = light_data[idx].next_leaf;
}
}
void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) {
if (p_level == cell_subdiv - 1) {
leaf_voxel_count++;
float alpha = bake_cells[p_idx].alpha;
bake_cells.write[p_idx].albedo[0] /= alpha;
bake_cells.write[p_idx].albedo[1] /= alpha;
bake_cells.write[p_idx].albedo[2] /= alpha;
//transfer emission to light
bake_cells.write[p_idx].emission[0] /= alpha;
bake_cells.write[p_idx].emission[1] /= alpha;
bake_cells.write[p_idx].emission[2] /= alpha;
bake_cells.write[p_idx].normal[0] /= alpha;
bake_cells.write[p_idx].normal[1] /= alpha;
bake_cells.write[p_idx].normal[2] /= alpha;
Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]);
if (n.length() < 0.01) {
//too much fight over normal, zero it
bake_cells.write[p_idx].normal[0] = 0;
bake_cells.write[p_idx].normal[1] = 0;
bake_cells.write[p_idx].normal[2] = 0;
} else {
n.normalize();
bake_cells.write[p_idx].normal[0] = n.x;
bake_cells.write[p_idx].normal[1] = n.y;
bake_cells.write[p_idx].normal[2] = n.z;
}
bake_cells.write[p_idx].alpha = 1.0;
/*if (bake_light.size()) {
for(int i=0;i<6;i++) {
}
}*/
} else {
//go down
bake_cells.write[p_idx].emission[0] = 0;
bake_cells.write[p_idx].emission[1] = 0;
bake_cells.write[p_idx].emission[2] = 0;
bake_cells.write[p_idx].normal[0] = 0;
bake_cells.write[p_idx].normal[1] = 0;
bake_cells.write[p_idx].normal[2] = 0;
bake_cells.write[p_idx].albedo[0] = 0;
bake_cells.write[p_idx].albedo[1] = 0;
bake_cells.write[p_idx].albedo[2] = 0;
if (bake_light.size()) {
for (int j = 0; j < 6; j++) {
bake_light.write[p_idx].accum[j][0] = 0;
bake_light.write[p_idx].accum[j][1] = 0;
bake_light.write[p_idx].accum[j][2] = 0;
}
}
float alpha_average = 0;
int children_found = 0;
for (int i = 0; i < 8; i++) {
uint32_t child = bake_cells[p_idx].children[i];
if (child == CHILD_EMPTY) {
continue;
}
_fixup_plot(child, p_level + 1);
alpha_average += bake_cells[child].alpha;
if (bake_light.size() > 0) {
for (int j = 0; j < 6; j++) {
bake_light.write[p_idx].accum[j][0] += bake_light[child].accum[j][0];
bake_light.write[p_idx].accum[j][1] += bake_light[child].accum[j][1];
bake_light.write[p_idx].accum[j][2] += bake_light[child].accum[j][2];
}
bake_cells.write[p_idx].emission[0] += bake_cells[child].emission[0];
bake_cells.write[p_idx].emission[1] += bake_cells[child].emission[1];
bake_cells.write[p_idx].emission[2] += bake_cells[child].emission[2];
}
children_found++;
}
bake_cells.write[p_idx].alpha = alpha_average / 8.0;
if (bake_light.size() && children_found) {
float divisor = Math::lerp(8, children_found, propagation);
for (int j = 0; j < 6; j++) {
bake_light.write[p_idx].accum[j][0] /= divisor;
bake_light.write[p_idx].accum[j][1] /= divisor;
bake_light.write[p_idx].accum[j][2] /= divisor;
}
bake_cells.write[p_idx].emission[0] /= divisor;
bake_cells.write[p_idx].emission[1] /= divisor;
bake_cells.write[p_idx].emission[2] /= divisor;
}
}
}
void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) {
original_bounds = p_bounds;
cell_subdiv = p_subdiv;
bake_cells.resize(1);
material_cache.clear();
//find out the actual real bounds, power of 2, which gets the highest subdivision
po2_bounds = p_bounds;
int longest_axis = po2_bounds.get_longest_axis_index();
axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1));
leaf_voxel_count = 0;
for (int i = 0; i < 3; i++) {
if (i == longest_axis) {
continue;
}
axis_cell_size[i] = axis_cell_size[longest_axis];
float axis_size = po2_bounds.size[longest_axis];
//shrink until fit subdiv
while (axis_size / 2.0 >= po2_bounds.size[i]) {
axis_size /= 2.0;
axis_cell_size[i] >>= 1;
}
po2_bounds.size[i] = po2_bounds.size[longest_axis];
}
Transform to_bounds;
to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
to_bounds.origin = po2_bounds.position;
Transform to_grid;
to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
to_cell_space = to_grid * to_bounds.affine_inverse();
cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis];
}
void VoxelLightBaker::end_bake() {
_fixup_plot(0, 0);
}
//create the data for visual server
PoolVector<int> VoxelLightBaker::create_gi_probe_data() {
PoolVector<int> data;
data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest.
{
PoolVector<int>::Write w = data.write();
uint32_t *w32 = (uint32_t *)w.ptr();
w32[0] = 0; //version
w32[1] = cell_subdiv; //subdiv
w32[2] = axis_cell_size[0];
w32[3] = axis_cell_size[1];
w32[4] = axis_cell_size[2];
w32[5] = bake_cells.size();
w32[6] = leaf_voxel_count;
int ofs = 16;
for (int i = 0; i < bake_cells.size(); i++) {
for (int j = 0; j < 8; j++) {
w32[ofs++] = bake_cells[i].children[j];
}
{ //albedo
uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16;
rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8;
rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0;
w32[ofs++] = rgba;
}
{ //emission
Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]);
float l = e.length();
if (l > 0) {
e.normalize();
l = CLAMP(l / 8.0, 0, 1.0);
}
uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24;
em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16;
em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8;
em |= uint32_t(CLAMP(l * 255, 0, 255));
w32[ofs++] = em;
}
//w32[ofs++]=bake_cells[i].used_sides;
{ //normal
Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]);
n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
uint32_t norm = 0;
norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16;
norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8;
norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0;
w32[ofs++] = norm;
}
{
2019-02-23 01:19:04 +01:00
uint16_t alpha = MIN(uint32_t(bake_cells[i].alpha * 65535.0), 65535);
uint16_t level = bake_cells[i].level;
w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha);
}
}
}
return data;
}
void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode) {
if (p_level == cell_subdiv - 1) {
Vector3 center = p_aabb.position + p_aabb.size * 0.5;
Transform xform;
xform.origin = center;
xform.basis.scale(p_aabb.size * 0.5);
p_multimesh->set_instance_transform(idx, xform);
Color col;
if (p_mode == DEBUG_ALBEDO) {
col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]);
} else if (p_mode == DEBUG_LIGHT) {
for (int i = 0; i < 6; i++) {
col.r += bake_light[p_idx].accum[i][0];
col.g += bake_light[p_idx].accum[i][1];
col.b += bake_light[p_idx].accum[i][2];
col.r += bake_light[p_idx].direct_accum[i][0];
col.g += bake_light[p_idx].direct_accum[i][1];
col.b += bake_light[p_idx].direct_accum[i][2];
}
}
//Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
p_multimesh->set_instance_color(idx, col);
idx++;
} else {
for (int i = 0; i < 8; i++) {
uint32_t child = bake_cells[p_idx].children[i];
if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) {
continue;
}
AABB aabb = p_aabb;
aabb.size *= 0.5;
if (i & 1) {
aabb.position.x += aabb.size.x;
}
if (i & 2) {
aabb.position.y += aabb.size.y;
}
if (i & 4) {
aabb.position.z += aabb.size.z;
}
_debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx, p_mode);
}
}
}
Ref<MultiMesh> VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) {
Ref<MultiMesh> mm;
ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm);
mm.instance();
mm->set_transform_format(MultiMesh::TRANSFORM_3D);
mm->set_color_format(MultiMesh::COLOR_8BIT);
mm->set_instance_count(leaf_voxel_count);
Ref<ArrayMesh> mesh;
mesh.instance();
{
Array arr;
arr.resize(Mesh::ARRAY_MAX);
PoolVector<Vector3> vertices;
PoolVector<Color> colors;
#define ADD_VTX(m_idx) \
; \
vertices.push_back(face_points[m_idx]); \
colors.push_back(Color(1, 1, 1, 1));
for (int i = 0; i < 6; i++) {
Vector3 face_points[4];
for (int j = 0; j < 4; j++) {
float v[3];
v[0] = 1.0;
v[1] = 1 - 2 * ((j >> 1) & 1);
v[2] = v[1] * (1 - 2 * (j & 1));
for (int k = 0; k < 3; k++) {
if (i < 3) {
Fixes logically dead code (Coverity) Fixes reported logically dead codes by Coverity * image.cpp: Doesn't really need any modification. But to remove the bug report then we have to move the MAX call away from the for loop statement. * rasterizer_gles3.cpp: Removes unnecessary elif condition since it is checked earlier in the function * collada.cpp: If stamement never reached due to macro ERR_CONTINUE does the same. * navigation_mesh.cpp: Variables should always be null - however, also checked for the very same condition in their function call. Leaving this for review (whether the function call is necessary or not) * path_editor_plugin.cpp: If cancel is true, then it should restore the edited value to the original provided. http://docs.godotengine.org/en/3.0/classes/class_editorspatialgizmo.html#class-editorspatialgizmo-commit-handle * spatial_editor_gizmos.cpp: the very condition of i >= 3 is predetermined in the if case right before it. Thus case 1 is always '1' and case 2 is always '-1' * grid_map_editor.cpp: Same as above in spatial_editor_gizmos.cpp * voxel_light_baker.cpp: Same as above in spatial_editor_gizmos.cpp * visual_server.cpp: Same as above in spatial_editor_gizmos.cpp * visual_script_expression.cpp: char '-' is already true in the switch case mechanism. Thus it can never reach to default case. * particles.cpp: Case 'PARAM_MAX' is unreachable due to index checking right before the switch execution. * shader_language.cpp: Invalid index is handled in switch default case. `type < TYPE_FLOAT && type > TYPE_VEC4` -> `(type < TYPE_FLOAT || type > TYPE_VEC4`) Fixes the "always false problem" in TODO comment.
2018-04-21 16:35:23 +02:00
face_points[j][(i + k) % 3] = v[k];
} else {
Fixes logically dead code (Coverity) Fixes reported logically dead codes by Coverity * image.cpp: Doesn't really need any modification. But to remove the bug report then we have to move the MAX call away from the for loop statement. * rasterizer_gles3.cpp: Removes unnecessary elif condition since it is checked earlier in the function * collada.cpp: If stamement never reached due to macro ERR_CONTINUE does the same. * navigation_mesh.cpp: Variables should always be null - however, also checked for the very same condition in their function call. Leaving this for review (whether the function call is necessary or not) * path_editor_plugin.cpp: If cancel is true, then it should restore the edited value to the original provided. http://docs.godotengine.org/en/3.0/classes/class_editorspatialgizmo.html#class-editorspatialgizmo-commit-handle * spatial_editor_gizmos.cpp: the very condition of i >= 3 is predetermined in the if case right before it. Thus case 1 is always '1' and case 2 is always '-1' * grid_map_editor.cpp: Same as above in spatial_editor_gizmos.cpp * voxel_light_baker.cpp: Same as above in spatial_editor_gizmos.cpp * visual_server.cpp: Same as above in spatial_editor_gizmos.cpp * visual_script_expression.cpp: char '-' is already true in the switch case mechanism. Thus it can never reach to default case. * particles.cpp: Case 'PARAM_MAX' is unreachable due to index checking right before the switch execution. * shader_language.cpp: Invalid index is handled in switch default case. `type < TYPE_FLOAT && type > TYPE_VEC4` -> `(type < TYPE_FLOAT || type > TYPE_VEC4`) Fixes the "always false problem" in TODO comment.
2018-04-21 16:35:23 +02:00
face_points[3 - j][(i + k) % 3] = -v[k];
}
}
}
//tri 1
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
//tri 2
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
}
arr[Mesh::ARRAY_VERTEX] = vertices;
arr[Mesh::ARRAY_COLOR] = colors;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
}
{
Ref<SpatialMaterial> fsm;
fsm.instance();
fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
fsm->set_albedo(Color(1, 1, 1, 1));
mesh->surface_set_material(0, fsm);
}
mm->set_mesh(mesh);
int idx = 0;
_debug_mesh(0, 0, po2_bounds, mm, idx, p_mode);
return mm;
}
struct VoxelLightBakerOctree {
enum {
CHILD_EMPTY = 0xFFFFFFFF
};
uint16_t light[6][3]; //anisotropic light
float alpha;
uint32_t children[8];
};
PoolVector<uint8_t> VoxelLightBaker::create_capture_octree(int p_subdiv) {
p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one
Vector<uint32_t> remap;
int bc = bake_cells.size();
remap.resize(bc);
Vector<uint32_t> demap;
int new_size = 0;
for (int i = 0; i < bc; i++) {
uint32_t c = CHILD_EMPTY;
if (bake_cells[i].level < p_subdiv) {
c = new_size;
new_size++;
demap.push_back(i);
}
remap.write[i] = c;
}
Vector<VoxelLightBakerOctree> octree;
octree.resize(new_size);
for (int i = 0; i < new_size; i++) {
octree.write[i].alpha = bake_cells[demap[i]].alpha;
for (int j = 0; j < 6; j++) {
for (int k = 0; k < 3; k++) {
float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light
l += bake_cells[demap[i]].emission[k]; //add emission
octree.write[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree
}
}
for (int j = 0; j < 8; j++) {
uint32_t child = bake_cells[demap[i]].children[j];
octree.write[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child];
}
}
PoolVector<uint8_t> ret;
int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree);
ret.resize(ret_bytes);
{
PoolVector<uint8_t>::Write w = ret.write();
memcpy(w.ptr(), octree.ptr(), ret_bytes);
}
return ret;
}
float VoxelLightBaker::get_cell_size() const {
return cell_size;
}
Transform VoxelLightBaker::get_to_cell_space_xform() const {
return to_cell_space;
}
VoxelLightBaker::VoxelLightBaker() {
color_scan_cell_width = 4;
bake_texture_size = 128;
propagation = 0.85;
}