virtualx-engine/servers/visual/rasterizer_rd/rasterizer_scene_rd.h

826 lines
29 KiB
C++
Raw Normal View History

/*************************************************************************/
/* rasterizer_scene_rd.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZER_SCENE_RD_H
#define RASTERIZER_SCENE_RD_H
#include "core/rid_owner.h"
#include "servers/visual/rasterizer.h"
2019-08-26 22:43:58 +02:00
#include "servers/visual/rasterizer_rd/rasterizer_storage_rd.h"
2019-10-03 22:39:08 +02:00
#include "servers/visual/rasterizer_rd/shaders/giprobe.glsl.gen.h"
#include "servers/visual/rasterizer_rd/shaders/giprobe_debug.glsl.gen.h"
2019-08-26 22:43:58 +02:00
#include "servers/visual/rendering_device.h"
class RasterizerSceneRD : public RasterizerScene {
2019-10-04 01:15:38 +02:00
public:
enum GIProbeQuality {
GIPROBE_QUALITY_ULTRA_LOW,
GIPROBE_QUALITY_MEDIUM,
GIPROBE_QUALITY_HIGH,
};
protected:
struct RenderBufferData {
virtual void configure(RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa) = 0;
virtual ~RenderBufferData() {}
};
virtual RenderBufferData *_create_render_buffer_data() = 0;
2019-10-03 22:39:08 +02:00
virtual void _render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) = 0;
virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool use_dp_flip) = 0;
virtual void _render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) = 0;
2019-10-05 15:27:43 +02:00
virtual void _debug_giprobe(RID p_gi_probe, RenderingDevice::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha);
2019-10-03 22:39:08 +02:00
private:
2019-08-26 22:43:58 +02:00
int roughness_layers;
RasterizerStorageRD *storage;
struct ReflectionData {
2019-08-26 22:43:58 +02:00
struct Layer {
struct Mipmap {
RID framebuffers[6];
RID views[6];
Size2i size;
};
Vector<Mipmap> mipmaps;
};
RID radiance_base_cubemap; //cubemap for first layer, first cubemap
2019-08-26 22:43:58 +02:00
Vector<Layer> layers;
};
void _clear_reflection_data(ReflectionData &rd);
2019-09-09 22:50:51 +02:00
void _update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer);
void _create_reflection_from_panorama(ReflectionData &rd, RID p_panorama, bool p_quality);
2019-09-09 22:50:51 +02:00
void _create_reflection_from_base_mipmap(ReflectionData &rd, bool p_use_arrays, bool p_quality, int p_cube_side);
void _update_reflection_mipmaps(ReflectionData &rd, bool p_quality);
/* SKY */
struct Sky {
2019-09-09 22:50:51 +02:00
RID radiance;
int radiance_size = 256;
VS::SkyMode mode = VS::SKY_MODE_QUALITY;
RID panorama;
ReflectionData reflection;
bool dirty = false;
Sky *dirty_list = nullptr;
};
2019-08-26 22:43:58 +02:00
Sky *dirty_sky_list = nullptr;
void _sky_invalidate(Sky *p_sky);
void _update_dirty_skys();
uint32_t sky_ggx_samples_quality;
uint32_t sky_ggx_samples_realtime;
bool sky_use_cubemap_array;
mutable RID_Owner<Sky> sky_owner;
2019-09-09 22:50:51 +02:00
/* REFLECTION ATLAS */
2019-09-09 22:50:51 +02:00
struct ReflectionAtlas {
2019-09-09 22:50:51 +02:00
int count = 0;
int size = 0;
2019-09-09 22:50:51 +02:00
RID reflection;
RID depth_buffer;
2019-10-03 22:39:08 +02:00
RID depth_fb;
2019-09-09 22:50:51 +02:00
struct Reflection {
RID owner;
ReflectionData data;
RID fbs[6];
};
Vector<Reflection> reflections;
};
RID_Owner<ReflectionAtlas> reflection_atlas_owner;
/* REFLECTION PROBE INSTANCE */
struct ReflectionProbeInstance {
RID probe;
int atlas_index = -1;
RID atlas;
bool dirty = true;
bool rendering = false;
int processing_side = 0;
2019-09-09 22:50:51 +02:00
uint32_t render_step = 0;
uint64_t last_pass = 0;
uint32_t render_index = 0;
Transform transform;
};
mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner;
2019-09-25 21:44:44 +02:00
/* GIPROBE INSTANCE */
2019-10-03 22:39:08 +02:00
struct GIProbeLight {
uint32_t type;
float energy;
float radius;
float attenuation;
float color[3];
float spot_angle_radians;
float position[3];
float spot_attenuation;
float direction[3];
uint32_t has_shadow;
};
struct GIProbePushConstant {
int32_t limits[3];
uint32_t stack_size;
float emission_scale;
float propagation;
float dynamic_range;
uint32_t light_count;
uint32_t cell_offset;
uint32_t cell_count;
float aniso_strength;
uint32_t pad;
};
struct GIProbeDynamicPushConstant {
int32_t limits[3];
uint32_t light_count;
int32_t x_dir[3];
float z_base;
int32_t y_dir[3];
float z_sign;
int32_t z_dir[3];
float pos_multiplier;
uint32_t rect_pos[2];
uint32_t rect_size[2];
uint32_t prev_rect_ofs[2];
uint32_t prev_rect_size[2];
uint32_t flip_x;
uint32_t flip_y;
float dynamic_range;
uint32_t on_mipmap;
float propagation;
float pad[3];
};
2019-10-03 22:39:08 +02:00
struct GIProbeInstance {
RID probe;
RID texture;
RID anisotropy[2]; //only if anisotropy is used
RID anisotropy_r16[2]; //only if anisotropy is used
2019-10-03 22:39:08 +02:00
RID write_buffer;
struct Mipmap {
RID texture;
RID anisotropy[2]; //only if anisotropy is used
RID uniform_set;
RID second_bounce_uniform_set;
RID write_uniform_set;
uint32_t level;
uint32_t cell_offset;
uint32_t cell_count;
};
Vector<Mipmap> mipmaps;
struct DynamicMap {
RID texture; //color normally, or emission on first pass
RID fb_depth; //actual depth buffer for the first pass, float depth for later passes
RID depth; //actual depth buffer for the first pass, float depth for later passes
RID normal; //normal buffer for the first pass
RID albedo; //emission buffer for the first pass
RID orm; //orm buffer for the first pass
RID fb; //used for rendering, only valid on first map
RID uniform_set;
uint32_t size;
int mipmap; // mipmap to write to, -1 if no mipmap assigned
};
Vector<DynamicMap> dynamic_maps;
2019-10-03 22:39:08 +02:00
int slot = -1;
uint32_t last_probe_version = 0;
uint32_t last_probe_data_version = 0;
uint64_t last_pass = 0;
uint32_t render_index = 0;
bool has_dynamic_object_data = false;
2019-10-03 22:39:08 +02:00
Transform transform;
};
GIProbeLight *gi_probe_lights;
uint32_t gi_probe_max_lights;
RID gi_probe_lights_uniform;
bool gi_probe_use_anisotropy = false;
2019-10-04 01:15:38 +02:00
GIProbeQuality gi_probe_quality = GIPROBE_QUALITY_MEDIUM;
2019-10-03 22:39:08 +02:00
bool gi_probe_slots_dirty = true;
2019-10-03 22:39:08 +02:00
Vector<RID> gi_probe_slots;
enum {
GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT,
GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE,
GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP,
GI_PROBE_SHADER_VERSION_WRITE_TEXTURE,
GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING,
GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE,
GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT,
GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT,
2019-10-03 22:39:08 +02:00
GI_PROBE_SHADER_VERSION_MAX
};
GiprobeShaderRD giprobe_shader;
2019-09-25 21:44:44 +02:00
RID giprobe_lighting_shader_version;
2019-10-03 22:39:08 +02:00
RID giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_MAX];
RID giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_MAX];
mutable RID_Owner<GIProbeInstance> gi_probe_instance_owner;
enum {
GI_PROBE_DEBUG_COLOR,
GI_PROBE_DEBUG_LIGHT,
2019-10-05 15:27:43 +02:00
GI_PROBE_DEBUG_EMISSION,
GI_PROBE_DEBUG_LIGHT_FULL,
2019-10-03 22:39:08 +02:00
GI_PROBE_DEBUG_MAX
};
struct GIProbeDebugPushConstant {
float projection[16];
uint32_t cell_offset;
float dynamic_range;
float alpha;
uint32_t level;
int32_t bounds[3];
uint32_t pad;
2019-10-03 22:39:08 +02:00
};
GiprobeDebugShaderRD giprobe_debug_shader;
RID giprobe_debug_shader_version;
RID giprobe_debug_shader_version_shaders[GI_PROBE_DEBUG_MAX];
RenderPipelineVertexFormatCacheRD giprobe_debug_shader_version_pipelines[GI_PROBE_DEBUG_MAX];
RID giprobe_debug_uniform_set;
2019-09-25 21:44:44 +02:00
/* SHADOW ATLAS */
struct ShadowAtlas {
enum {
QUADRANT_SHIFT = 27,
SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1,
SHADOW_INVALID = 0xFFFFFFFF
};
struct Quadrant {
uint32_t subdivision;
struct Shadow {
RID owner;
uint64_t version;
uint64_t alloc_tick;
Shadow() {
version = 0;
alloc_tick = 0;
}
};
Vector<Shadow> shadows;
Quadrant() {
subdivision = 0; //not in use
}
} quadrants[4];
int size_order[4] = { 0, 1, 2, 3 };
uint32_t smallest_subdiv = 0;
int size = 0;
RID depth;
RID fb; //for copying
Map<RID, uint32_t> shadow_owners;
};
RID_Owner<ShadowAtlas> shadow_atlas_owner;
bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow);
/* DIRECTIONAL SHADOW */
struct DirectionalShadow {
RID depth;
RID fb; //for copying
int light_count = 0;
int size = 0;
int current_light = 0;
} directional_shadow;
/* SHADOW CUBEMAPS */
struct ShadowCubemap {
RID cubemap;
RID side_fb[6];
};
Map<int, ShadowCubemap> shadow_cubemaps;
ShadowCubemap *_get_shadow_cubemap(int p_size);
struct ShadowMap {
RID depth;
RID fb;
};
Map<Vector2i, ShadowMap> shadow_maps;
ShadowMap *_get_shadow_map(const Size2i &p_size);
void _create_shadow_cubemaps();
/* LIGHT INSTANCE */
struct LightInstance {
struct ShadowTransform {
CameraMatrix camera;
Transform transform;
float farplane;
float split;
float bias_scale;
Rect2 atlas_rect;
};
VS::LightType light_type;
ShadowTransform shadow_transform[4];
RID self;
RID light;
Transform transform;
Vector3 light_vector;
Vector3 spot_vector;
float linear_att;
uint64_t shadow_pass = 0;
uint64_t last_scene_pass = 0;
uint64_t last_scene_shadow_pass = 0;
uint64_t last_pass = 0;
uint32_t light_index = 0;
uint32_t light_directional_index = 0;
uint32_t current_shadow_atlas_key;
Vector2 dp;
Rect2 directional_rect;
Set<RID> shadow_atlases; //shadow atlases where this light is registered
LightInstance() {}
};
mutable RID_Owner<LightInstance> light_instance_owner;
/* ENVIRONMENT */
2019-08-26 22:43:58 +02:00
struct Environent {
// BG
2019-08-26 22:43:58 +02:00
VS::EnvironmentBG background = VS::ENV_BG_CLEAR_COLOR;
RID sky;
float sky_custom_fov = 0.0;
Basis sky_orientation;
Color bg_color;
float bg_energy = 1.0;
int canvas_max_layer = 0;
VS::EnvironmentAmbientSource ambient_source = VS::ENV_AMBIENT_SOURCE_BG;
Color ambient_light;
float ambient_light_energy = 1.0;
float ambient_sky_contribution = 1.0;
VS::EnvironmentReflectionSource reflection_source = VS::ENV_REFLECTION_SOURCE_BG;
/// Tonemap
VS::EnvironmentToneMapper tone_mapper;
float exposure = 1.0;
float white = 1.0;
bool auto_exposure = false;
float min_luminance = 0.2;
float max_luminance = 8.0;
float auto_exp_speed = 0.2;
float auto_exp_scale = 0.5;
2019-08-26 22:43:58 +02:00
};
mutable RID_Owner<Environent> environment_owner;
/* RENDER BUFFERS */
struct RenderBuffers {
RenderBufferData *data = nullptr;
int width = 0, height = 0;
VS::ViewportMSAA msaa = VS::VIEWPORT_MSAA_DISABLED;
RID render_target;
};
2019-08-26 22:43:58 +02:00
mutable RID_Owner<RenderBuffers> render_buffers_owner;
uint64_t scene_pass = 0;
uint64_t shadow_atlas_realloc_tolerance_msec = 500;
public:
/* SHADOW ATLAS API */
RID shadow_atlas_create();
void shadow_atlas_set_size(RID p_atlas, int p_size);
void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision);
bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version);
_FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_intance) {
ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!atlas, false);
return atlas->shadow_owners.has(p_light_intance);
}
_FORCE_INLINE_ RID shadow_atlas_get_texture(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!atlas, RID());
return atlas->depth;
}
_FORCE_INLINE_ Size2i shadow_atlas_get_size(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!atlas, Size2i());
return Size2(atlas->size, atlas->size);
}
void directional_shadow_atlas_set_size(int p_size);
int get_directional_light_shadow_size(RID p_light_intance);
void set_directional_shadow_count(int p_count);
_FORCE_INLINE_ RID directional_shadow_get_texture() {
return directional_shadow.depth;
}
_FORCE_INLINE_ Size2i directional_shadow_get_size() {
return Size2i(directional_shadow.size, directional_shadow.size);
}
2019-08-26 22:43:58 +02:00
/* SKY API */
2019-08-26 22:43:58 +02:00
RID sky_create();
void sky_set_radiance_size(RID p_sky, int p_radiance_size);
void sky_set_mode(RID p_sky, VS::SkyMode p_mode);
void sky_set_texture(RID p_sky, RID p_panorama);
2019-08-26 22:43:58 +02:00
RID sky_get_panorama_texture_rd(RID p_sky) const;
RID sky_get_radiance_texture_rd(RID p_sky) const;
/* ENVIRONMENT API */
RID environment_create();
void environment_set_background(RID p_env, VS::EnvironmentBG p_bg);
void environment_set_sky(RID p_env, RID p_sky);
void environment_set_sky_custom_fov(RID p_env, float p_scale);
void environment_set_sky_orientation(RID p_env, const Basis &p_orientation);
void environment_set_bg_color(RID p_env, const Color &p_color);
void environment_set_bg_energy(RID p_env, float p_energy);
void environment_set_canvas_max_layer(RID p_env, int p_max_layer);
void environment_set_ambient_light(RID p_env, const Color &p_color, VS::EnvironmentAmbientSource p_ambient = VS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, VS::EnvironmentReflectionSource p_reflection_source = VS::ENV_REFLECTION_SOURCE_BG);
VS::EnvironmentBG environment_get_background(RID p_env) const;
RID environment_get_sky(RID p_env) const;
float environment_get_sky_custom_fov(RID p_env) const;
Basis environment_get_sky_orientation(RID p_env) const;
Color environment_get_bg_color(RID p_env) const;
float environment_get_bg_energy(RID p_env) const;
int environment_get_canvas_max_layer(RID p_env) const;
Color environment_get_ambient_light_color(RID p_env) const;
VS::EnvironmentAmbientSource environment_get_ambient_light_ambient_source(RID p_env) const;
float environment_get_ambient_light_ambient_energy(RID p_env) const;
float environment_get_ambient_sky_contribution(RID p_env) const;
VS::EnvironmentReflectionSource environment_get_reflection_source(RID p_env) const;
bool is_environment(RID p_env) const;
void environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_far_amount, VS::EnvironmentDOFBlurQuality p_quality) {}
void environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_far_amount, VS::EnvironmentDOFBlurQuality p_quality) {}
void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) {}
void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {}
void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance, bool p_roughness) {}
void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {}
void environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale);
VS::EnvironmentToneMapper environment_get_tonemapper(RID p_env) const;
float environment_get_exposure(RID p_env) const;
float environment_get_white(RID p_env) const;
bool environment_get_auto_exposure(RID p_env) const;
float environment_get_min_luminance(RID p_env) const;
float environment_get_max_luminance(RID p_env) const;
float environment_get_auto_exposure_scale(RID p_env) const;
float environment_get_auto_exposure_speed(RID p_env) const;
void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {}
void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {}
void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {}
void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {}
RID light_instance_create(RID p_light);
void light_instance_set_transform(RID p_light_instance, const Transform &p_transform);
void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale = 1.0);
void light_instance_mark_visible(RID p_light_instance);
_FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->light;
}
_FORCE_INLINE_ Transform light_instance_get_base_transform(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->transform;
}
_FORCE_INLINE_ Rect2 light_instance_get_shadow_atlas_rect(RID p_light_instance, RID p_shadow_atlas) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
LightInstance *li = light_instance_owner.getornull(p_light_instance);
uint32_t key = shadow_atlas->shadow_owners[li->self];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), Rect2());
uint32_t atlas_size = shadow_atlas->size;
uint32_t quadrant_size = atlas_size >> 1;
uint32_t x = (quadrant & 1) * quadrant_size;
uint32_t y = (quadrant >> 1) * quadrant_size;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
uint32_t width = shadow_size;
uint32_t height = shadow_size;
return Rect2(x / float(shadow_atlas->size), y / float(shadow_atlas->size), width / float(shadow_atlas->size), height / float(shadow_atlas->size));
}
_FORCE_INLINE_ CameraMatrix light_instance_get_shadow_camera(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].camera;
}
_FORCE_INLINE_ Transform light_instance_get_shadow_transform(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].transform;
}
_FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].atlas_rect;
}
_FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].split;
}
_FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
li->last_pass = p_pass;
}
_FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->last_pass;
}
_FORCE_INLINE_ void light_instance_set_index(RID p_light_instance, uint32_t p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
li->light_index = p_index;
}
_FORCE_INLINE_ uint32_t light_instance_get_index(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->light_index;
}
_FORCE_INLINE_ VS::LightType light_instance_get_type(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->light_type;
}
2019-09-09 22:50:51 +02:00
virtual RID reflection_atlas_create();
virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count);
_FORCE_INLINE_ RID reflection_atlas_get_texture(RID p_ref_atlas) {
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_ref_atlas);
ERR_FAIL_COND_V(!atlas, RID());
return atlas->reflection;
}
virtual RID reflection_probe_instance_create(RID p_probe);
virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform);
2019-09-09 22:50:51 +02:00
virtual void reflection_probe_release_atlas_index(RID p_instance);
virtual bool reflection_probe_instance_needs_redraw(RID p_instance);
2019-09-09 22:50:51 +02:00
virtual bool reflection_probe_instance_has_reflection(RID p_instance);
virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas);
virtual bool reflection_probe_instance_postprocess_step(RID p_instance);
uint32_t reflection_probe_instance_get_resolution(RID p_instance);
RID reflection_probe_instance_get_framebuffer(RID p_instance, int p_index);
2019-10-03 22:39:08 +02:00
RID reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index);
_FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, RID());
return rpi->probe;
}
_FORCE_INLINE_ void reflection_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
rpi->render_index = p_render_index;
}
_FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_index(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, 0);
return rpi->render_index;
}
2019-09-09 22:50:51 +02:00
_FORCE_INLINE_ void reflection_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
rpi->last_pass = p_render_pass;
}
_FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_pass(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, 0);
return rpi->last_pass;
}
_FORCE_INLINE_ Transform reflection_probe_instance_get_transform(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, Transform());
return rpi->transform;
}
2019-09-09 22:50:51 +02:00
_FORCE_INLINE_ int reflection_probe_instance_get_atlas_index(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
2019-09-09 22:50:51 +02:00
ERR_FAIL_COND_V(!rpi, -1);
2019-09-09 22:50:51 +02:00
return rpi->atlas_index;
}
2019-10-03 22:39:08 +02:00
RID gi_probe_instance_create(RID p_base);
void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform);
bool gi_probe_needs_update(RID p_probe) const;
void gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects);
2019-10-03 22:39:08 +02:00
_FORCE_INLINE_ uint32_t gi_probe_instance_get_slot(RID p_probe) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
return gi_probe->slot;
}
_FORCE_INLINE_ RID gi_probe_instance_get_base_probe(RID p_probe) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
return gi_probe->probe;
}
_FORCE_INLINE_ Transform gi_probe_instance_get_transform_to_cell(RID p_probe) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
return storage->gi_probe_get_to_cell_xform(gi_probe->probe) * gi_probe->transform.affine_inverse();
}
_FORCE_INLINE_ RID gi_probe_instance_get_texture(RID p_probe) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
return gi_probe->texture;
}
_FORCE_INLINE_ RID gi_probe_instance_get_aniso_texture(RID p_probe, int p_index) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
return gi_probe->anisotropy[p_index];
}
_FORCE_INLINE_ void gi_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!gi_probe);
gi_probe->render_index = p_render_index;
}
_FORCE_INLINE_ uint32_t gi_probe_instance_get_render_index(RID p_instance) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->render_index;
}
_FORCE_INLINE_ void gi_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) {
GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!g_probe);
g_probe->last_pass = p_render_pass;
}
_FORCE_INLINE_ uint32_t gi_probe_instance_get_render_pass(RID p_instance) {
GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!g_probe, 0);
return g_probe->last_pass;
}
const Vector<RID> &gi_probe_get_slots() const;
bool gi_probe_slots_are_dirty() const;
void gi_probe_slots_make_not_dirty();
_FORCE_INLINE_ bool gi_probe_is_anisotropic() const {
return gi_probe_use_anisotropy;
}
2019-10-04 01:15:38 +02:00
GIProbeQuality gi_probe_get_quality() const;
RID render_buffers_create();
void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa);
2019-10-03 22:39:08 +02:00
void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass);
void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count);
void render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region);
virtual void set_scene_pass(uint64_t p_pass) { scene_pass = p_pass; }
_FORCE_INLINE_ uint64_t get_scene_pass() { return scene_pass; }
2019-08-26 22:43:58 +02:00
int get_roughness_layers() const;
bool is_using_radiance_cubemap_array() const;
virtual bool free(RID p_rid);
2019-08-26 22:43:58 +02:00
virtual void update();
RasterizerSceneRD(RasterizerStorageRD *p_storage);
~RasterizerSceneRD();
};
#endif // RASTERIZER_SCENE_RD_H