virtualx-engine/servers/rendering/rasterizer_rd/rasterizer_storage_rd.cpp

8171 lines
267 KiB
C++
Raw Normal View History

/*************************************************************************/
/* rasterizer_storage_rd.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "rasterizer_storage_rd.h"
#include "core/config/engine.h"
#include "core/config/project_settings.h"
#include "core/io/resource_loader.h"
#include "rasterizer_rd.h"
#include "servers/rendering/shader_language.h"
Ref<Image> RasterizerStorageRD::_validate_texture_format(const Ref<Image> &p_image, TextureToRDFormat &r_format) {
Ref<Image> image = p_image->duplicate();
switch (p_image->get_format()) {
case Image::FORMAT_L8: {
r_format.format = RD::DATA_FORMAT_R8_UNORM;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //luminance
case Image::FORMAT_LA8: {
r_format.format = RD::DATA_FORMAT_R8G8_UNORM;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_G;
} break; //luminance-alpha
case Image::FORMAT_R8: {
r_format.format = RD::DATA_FORMAT_R8_UNORM;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RG8: {
r_format.format = RD::DATA_FORMAT_R8G8_UNORM;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RGB8: {
//this format is not mandatory for specification, check if supported first
if (false && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R8G8B8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT) && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R8G8B8_SRGB, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_R8G8B8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8_SRGB;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RGBA8: {
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_RGBA4444: {
r_format.format = RD::DATA_FORMAT_B4G4R4A4_UNORM_PACK16;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_B; //needs swizzle
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_RGB565: {
r_format.format = RD::DATA_FORMAT_B5G6R5_UNORM_PACK16;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_RF: {
r_format.format = RD::DATA_FORMAT_R32_SFLOAT;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //float
case Image::FORMAT_RGF: {
r_format.format = RD::DATA_FORMAT_R32G32_SFLOAT;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RGBF: {
//this format is not mandatory for specification, check if supported first
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
image->convert(Image::FORMAT_RGBAF);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RGBAF: {
r_format.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_RH: {
r_format.format = RD::DATA_FORMAT_R16_SFLOAT;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //half float
case Image::FORMAT_RGH: {
r_format.format = RD::DATA_FORMAT_R16G16_SFLOAT;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RGBH: {
//this format is not mandatory for specification, check if supported first
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R16G16B16_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_R16G16B16_SFLOAT;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
image->convert(Image::FORMAT_RGBAH);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RGBAH: {
r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_RGBE9995: {
r_format.format = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
#ifndef _MSC_VER
#warning TODO need to make a function in Image to swap bits for this
#endif
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_IDENTITY;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_IDENTITY;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_IDENTITY;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_IDENTITY;
} break;
case Image::FORMAT_DXT1: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC1_RGB_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC1_RGB_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_BC1_RGB_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //s3tc bc1
case Image::FORMAT_DXT3: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC2_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC2_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_BC2_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break; //bc2
case Image::FORMAT_DXT5: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC3_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC3_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_BC3_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break; //bc3
case Image::FORMAT_RGTC_R: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC4_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC4_UNORM_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8_UNORM;
image->decompress();
image->convert(Image::FORMAT_R8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_RGTC_RG: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC5_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC5_UNORM_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8_UNORM;
image->decompress();
image->convert(Image::FORMAT_RG8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_BPTC_RGBA: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC7_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC7_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_BC7_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break; //btpc bc7
case Image::FORMAT_BPTC_RGBF: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC6H_SFLOAT_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC6H_SFLOAT_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
image->decompress();
image->convert(Image::FORMAT_RGBAH);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //float bc6h
case Image::FORMAT_BPTC_RGBFU: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC6H_UFLOAT_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC6H_UFLOAT_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
image->decompress();
image->convert(Image::FORMAT_RGBAH);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //unsigned float bc6hu
case Image::FORMAT_PVRTC2: {
//this is not properly supported by MoltekVK it seems, so best to use ETC2
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG;
r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //pvrtc
case Image::FORMAT_PVRTC2A: {
//this is not properly supported by MoltekVK it seems, so best to use ETC2
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG;
r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_PVRTC4: {
//this is not properly supported by MoltekVK it seems, so best to use ETC2
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG;
r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_PVRTC4A: {
//this is not properly supported by MoltekVK it seems, so best to use ETC2
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG;
r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_ETC2_R11: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_EAC_R11_UNORM_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8_UNORM;
image->decompress();
image->convert(Image::FORMAT_R8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //etc2
case Image::FORMAT_ETC2_R11S: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11_SNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_EAC_R11_SNORM_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8_SNORM;
image->decompress();
image->convert(Image::FORMAT_R8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break; //signed: {} break; NOT srgb.
case Image::FORMAT_ETC2_RG11: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11G11_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_EAC_R11G11_UNORM_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8_UNORM;
image->decompress();
image->convert(Image::FORMAT_RG8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_ETC2_RG11S: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11G11_SNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_EAC_R11G11_SNORM_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8_SNORM;
image->decompress();
image->convert(Image::FORMAT_RG8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_ETC:
case Image::FORMAT_ETC2_RGB8: {
//ETC2 is backwards compatible with ETC1, and all modern platforms support it
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_ETC2_RGBA8: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_ETC2_RGB8A1: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A;
} break;
case Image::FORMAT_ETC2_RA_AS_RG: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_A;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
case Image::FORMAT_DXT5_RA_AS_RG: {
if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC3_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) {
r_format.format = RD::DATA_FORMAT_BC3_UNORM_BLOCK;
r_format.format_srgb = RD::DATA_FORMAT_BC3_SRGB_BLOCK;
} else {
//not supported, reconvert
r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
image->decompress();
image->convert(Image::FORMAT_RGBA8);
}
r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R;
r_format.swizzle_g = RD::TEXTURE_SWIZZLE_A;
r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO;
r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
} break;
default: {
}
}
return image;
}
RID RasterizerStorageRD::texture_2d_create(const Ref<Image> &p_image) {
ERR_FAIL_COND_V(p_image.is_null(), RID());
ERR_FAIL_COND_V(p_image->empty(), RID());
TextureToRDFormat ret_format;
Ref<Image> image = _validate_texture_format(p_image, ret_format);
Texture texture;
texture.type = Texture::TYPE_2D;
texture.width = p_image->get_width();
texture.height = p_image->get_height();
texture.layers = 1;
texture.mipmaps = p_image->get_mipmap_count() + 1;
texture.depth = 1;
texture.format = p_image->get_format();
texture.validated_format = image->get_format();
texture.rd_type = RD::TEXTURE_TYPE_2D;
texture.rd_format = ret_format.format;
texture.rd_format_srgb = ret_format.format_srgb;
RD::TextureFormat rd_format;
RD::TextureView rd_view;
{ //attempt register
rd_format.format = texture.rd_format;
rd_format.width = texture.width;
rd_format.height = texture.height;
rd_format.depth = 1;
rd_format.array_layers = 1;
rd_format.mipmaps = texture.mipmaps;
rd_format.type = texture.rd_type;
rd_format.samples = RD::TEXTURE_SAMPLES_1;
rd_format.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) {
rd_format.shareable_formats.push_back(texture.rd_format);
rd_format.shareable_formats.push_back(texture.rd_format_srgb);
}
}
{
rd_view.swizzle_r = ret_format.swizzle_r;
rd_view.swizzle_g = ret_format.swizzle_g;
rd_view.swizzle_b = ret_format.swizzle_b;
rd_view.swizzle_a = ret_format.swizzle_a;
}
Vector<uint8_t> data = image->get_data(); //use image data
Vector<Vector<uint8_t>> data_slices;
data_slices.push_back(data);
texture.rd_texture = RD::get_singleton()->texture_create(rd_format, rd_view, data_slices);
ERR_FAIL_COND_V(texture.rd_texture.is_null(), RID());
if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) {
rd_view.format_override = texture.rd_format_srgb;
texture.rd_texture_srgb = RD::get_singleton()->texture_create_shared(rd_view, texture.rd_texture);
if (texture.rd_texture_srgb.is_null()) {
RD::get_singleton()->free(texture.rd_texture);
ERR_FAIL_COND_V(texture.rd_texture_srgb.is_null(), RID());
}
}
//used for 2D, overridable
texture.width_2d = texture.width;
texture.height_2d = texture.height;
texture.is_render_target = false;
texture.rd_view = rd_view;
texture.is_proxy = false;
return texture_owner.make_rid(texture);
}
RID RasterizerStorageRD::texture_2d_layered_create(const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type) {
ERR_FAIL_COND_V(p_layers.size() == 0, RID());
ERR_FAIL_COND_V(p_layered_type == RS::TEXTURE_LAYERED_CUBEMAP && p_layers.size() != 6, RID());
ERR_FAIL_COND_V(p_layered_type == RS::TEXTURE_LAYERED_CUBEMAP_ARRAY && (p_layers.size() < 6 || (p_layers.size() % 6) != 0), RID());
TextureToRDFormat ret_format;
Vector<Ref<Image>> images;
{
int valid_width = 0;
int valid_height = 0;
bool valid_mipmaps = false;
Image::Format valid_format = Image::FORMAT_MAX;
for (int i = 0; i < p_layers.size(); i++) {
ERR_FAIL_COND_V(p_layers[i]->empty(), RID());
if (i == 0) {
valid_width = p_layers[i]->get_width();
valid_height = p_layers[i]->get_height();
valid_format = p_layers[i]->get_format();
valid_mipmaps = p_layers[i]->has_mipmaps();
} else {
ERR_FAIL_COND_V(p_layers[i]->get_width() != valid_width, RID());
ERR_FAIL_COND_V(p_layers[i]->get_height() != valid_height, RID());
ERR_FAIL_COND_V(p_layers[i]->get_format() != valid_format, RID());
ERR_FAIL_COND_V(p_layers[i]->has_mipmaps() != valid_mipmaps, RID());
}
images.push_back(_validate_texture_format(p_layers[i], ret_format));
}
}
Texture texture;
texture.type = Texture::TYPE_LAYERED;
texture.layered_type = p_layered_type;
texture.width = p_layers[0]->get_width();
texture.height = p_layers[0]->get_height();
texture.layers = p_layers.size();
texture.mipmaps = p_layers[0]->get_mipmap_count() + 1;
texture.depth = 1;
texture.format = p_layers[0]->get_format();
texture.validated_format = images[0]->get_format();
switch (p_layered_type) {
case RS::TEXTURE_LAYERED_2D_ARRAY: {
texture.rd_type = RD::TEXTURE_TYPE_2D_ARRAY;
} break;
case RS::TEXTURE_LAYERED_CUBEMAP: {
texture.rd_type = RD::TEXTURE_TYPE_CUBE;
} break;
case RS::TEXTURE_LAYERED_CUBEMAP_ARRAY: {
texture.rd_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
} break;
}
texture.rd_format = ret_format.format;
texture.rd_format_srgb = ret_format.format_srgb;
RD::TextureFormat rd_format;
RD::TextureView rd_view;
{ //attempt register
rd_format.format = texture.rd_format;
rd_format.width = texture.width;
rd_format.height = texture.height;
rd_format.depth = 1;
rd_format.array_layers = texture.layers;
rd_format.mipmaps = texture.mipmaps;
rd_format.type = texture.rd_type;
rd_format.samples = RD::TEXTURE_SAMPLES_1;
rd_format.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) {
rd_format.shareable_formats.push_back(texture.rd_format);
rd_format.shareable_formats.push_back(texture.rd_format_srgb);
}
}
{
rd_view.swizzle_r = ret_format.swizzle_r;
rd_view.swizzle_g = ret_format.swizzle_g;
rd_view.swizzle_b = ret_format.swizzle_b;
rd_view.swizzle_a = ret_format.swizzle_a;
}
Vector<Vector<uint8_t>> data_slices;
for (int i = 0; i < images.size(); i++) {
Vector<uint8_t> data = images[i]->get_data(); //use image data
data_slices.push_back(data);
}
texture.rd_texture = RD::get_singleton()->texture_create(rd_format, rd_view, data_slices);
ERR_FAIL_COND_V(texture.rd_texture.is_null(), RID());
if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) {
rd_view.format_override = texture.rd_format_srgb;
texture.rd_texture_srgb = RD::get_singleton()->texture_create_shared(rd_view, texture.rd_texture);
if (texture.rd_texture_srgb.is_null()) {
RD::get_singleton()->free(texture.rd_texture);
ERR_FAIL_COND_V(texture.rd_texture_srgb.is_null(), RID());
}
}
//used for 2D, overridable
texture.width_2d = texture.width;
texture.height_2d = texture.height;
texture.is_render_target = false;
texture.rd_view = rd_view;
texture.is_proxy = false;
return texture_owner.make_rid(texture);
}
RID RasterizerStorageRD::texture_3d_create(Image::Format p_format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector<Ref<Image>> &p_data) {
ERR_FAIL_COND_V(p_data.size() == 0, RID());
Image::Image3DValidateError verr = Image::validate_3d_image(p_format, p_width, p_height, p_depth, p_mipmaps, p_data);
if (verr != Image::VALIDATE_3D_OK) {
ERR_FAIL_V_MSG(RID(), Image::get_3d_image_validation_error_text(verr));
}
TextureToRDFormat ret_format;
Image::Format validated_format = Image::FORMAT_MAX;
Vector<uint8_t> all_data;
uint32_t mipmap_count = 0;
Vector<Texture::BufferSlice3D> slices;
{
Vector<Ref<Image>> images;
uint32_t all_data_size = 0;
images.resize(p_data.size());
for (int i = 0; i < p_data.size(); i++) {
TextureToRDFormat f;
images.write[i] = _validate_texture_format(p_data[i], f);
if (i == 0) {
ret_format = f;
validated_format = images[0]->get_format();
}
all_data_size += images[i]->get_data().size();
}
all_data.resize(all_data_size); //consolidate all data here
uint32_t offset = 0;
Size2i prev_size;
for (int i = 0; i < p_data.size(); i++) {
uint32_t s = images[i]->get_data().size();
copymem(&all_data.write[offset], images[i]->get_data().ptr(), s);
{
Texture::BufferSlice3D slice;
slice.size.width = images[i]->get_width();
slice.size.height = images[i]->get_height();
slice.offset = offset;
slice.buffer_size = s;
slices.push_back(slice);
}
offset += s;
Size2i img_size(images[i]->get_width(), images[i]->get_height());
if (img_size != prev_size) {
mipmap_count++;
}
prev_size = img_size;
}
}
Texture texture;
texture.type = Texture::TYPE_3D;
texture.width = p_width;
texture.height = p_height;
texture.depth = p_depth;
texture.mipmaps = mipmap_count;
texture.format = p_data[0]->get_format();
texture.validated_format = validated_format;
texture.buffer_size_3d = all_data.size();
texture.buffer_slices_3d = slices;
texture.rd_type = RD::TEXTURE_TYPE_3D;
texture.rd_format = ret_format.format;
texture.rd_format_srgb = ret_format.format_srgb;
RD::TextureFormat rd_format;
RD::TextureView rd_view;
{ //attempt register
rd_format.format = texture.rd_format;
rd_format.width = texture.width;
rd_format.height = texture.height;
rd_format.depth = texture.depth;
rd_format.array_layers = 1;
rd_format.mipmaps = texture.mipmaps;
rd_format.type = texture.rd_type;
rd_format.samples = RD::TEXTURE_SAMPLES_1;
rd_format.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) {
rd_format.shareable_formats.push_back(texture.rd_format);
rd_format.shareable_formats.push_back(texture.rd_format_srgb);
}
}
{
rd_view.swizzle_r = ret_format.swizzle_r;
rd_view.swizzle_g = ret_format.swizzle_g;
rd_view.swizzle_b = ret_format.swizzle_b;
rd_view.swizzle_a = ret_format.swizzle_a;
}
Vector<Vector<uint8_t>> data_slices;
data_slices.push_back(all_data); //one slice
texture.rd_texture = RD::get_singleton()->texture_create(rd_format, rd_view, data_slices);
ERR_FAIL_COND_V(texture.rd_texture.is_null(), RID());
if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) {
rd_view.format_override = texture.rd_format_srgb;
texture.rd_texture_srgb = RD::get_singleton()->texture_create_shared(rd_view, texture.rd_texture);
if (texture.rd_texture_srgb.is_null()) {
RD::get_singleton()->free(texture.rd_texture);
ERR_FAIL_COND_V(texture.rd_texture_srgb.is_null(), RID());
}
}
//used for 2D, overridable
texture.width_2d = texture.width;
texture.height_2d = texture.height;
texture.is_render_target = false;
texture.rd_view = rd_view;
texture.is_proxy = false;
return texture_owner.make_rid(texture);
}
RID RasterizerStorageRD::texture_proxy_create(RID p_base) {
Texture *tex = texture_owner.getornull(p_base);
ERR_FAIL_COND_V(!tex, RID());
Texture proxy_tex = *tex;
proxy_tex.rd_view.format_override = tex->rd_format;
proxy_tex.rd_texture = RD::get_singleton()->texture_create_shared(proxy_tex.rd_view, tex->rd_texture);
if (proxy_tex.rd_texture_srgb.is_valid()) {
proxy_tex.rd_view.format_override = tex->rd_format_srgb;
proxy_tex.rd_texture_srgb = RD::get_singleton()->texture_create_shared(proxy_tex.rd_view, tex->rd_texture);
}
proxy_tex.proxy_to = p_base;
proxy_tex.is_render_target = false;
proxy_tex.is_proxy = true;
proxy_tex.proxies.clear();
RID rid = texture_owner.make_rid(proxy_tex);
tex->proxies.push_back(rid);
return rid;
}
void RasterizerStorageRD::_texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer, bool p_immediate) {
ERR_FAIL_COND(p_image.is_null() || p_image->empty());
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
ERR_FAIL_COND(tex->is_render_target);
ERR_FAIL_COND(p_image->get_width() != tex->width || p_image->get_height() != tex->height);
ERR_FAIL_COND(p_image->get_format() != tex->format);
if (tex->type == Texture::TYPE_LAYERED) {
ERR_FAIL_INDEX(p_layer, tex->layers);
}
#ifdef TOOLS_ENABLED
tex->image_cache_2d.unref();
#endif
TextureToRDFormat f;
Ref<Image> validated = _validate_texture_format(p_image, f);
RD::get_singleton()->texture_update(tex->rd_texture, p_layer, validated->get_data(), !p_immediate);
}
void RasterizerStorageRD::texture_2d_update_immediate(RID p_texture, const Ref<Image> &p_image, int p_layer) {
_texture_2d_update(p_texture, p_image, p_layer, true);
}
void RasterizerStorageRD::texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer) {
_texture_2d_update(p_texture, p_image, p_layer, false);
}
void RasterizerStorageRD::texture_3d_update(RID p_texture, const Vector<Ref<Image>> &p_data) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
ERR_FAIL_COND(tex->type != Texture::TYPE_3D);
Image::Image3DValidateError verr = Image::validate_3d_image(tex->format, tex->width, tex->height, tex->depth, tex->mipmaps > 1, p_data);
if (verr != Image::VALIDATE_3D_OK) {
ERR_FAIL_MSG(Image::get_3d_image_validation_error_text(verr));
}
Vector<uint8_t> all_data;
{
Vector<Ref<Image>> images;
uint32_t all_data_size = 0;
images.resize(p_data.size());
for (int i = 0; i < p_data.size(); i++) {
Ref<Image> image = p_data[i];
if (image->get_format() != tex->validated_format) {
image = image->duplicate();
image->convert(tex->validated_format);
}
all_data_size += images[i]->get_data().size();
images.push_back(image);
}
all_data.resize(all_data_size); //consolidate all data here
uint32_t offset = 0;
for (int i = 0; i < p_data.size(); i++) {
uint32_t s = images[i]->get_data().size();
copymem(&all_data.write[offset], images[i]->get_data().ptr(), s);
offset += s;
}
}
RD::get_singleton()->texture_update(tex->rd_texture, 0, all_data, true);
}
void RasterizerStorageRD::texture_proxy_update(RID p_texture, RID p_proxy_to) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
ERR_FAIL_COND(!tex->is_proxy);
Texture *proxy_to = texture_owner.getornull(p_proxy_to);
ERR_FAIL_COND(!proxy_to);
ERR_FAIL_COND(proxy_to->is_proxy);
if (tex->proxy_to.is_valid()) {
//unlink proxy
if (RD::get_singleton()->texture_is_valid(tex->rd_texture)) {
RD::get_singleton()->free(tex->rd_texture);
tex->rd_texture = RID();
}
if (RD::get_singleton()->texture_is_valid(tex->rd_texture_srgb)) {
RD::get_singleton()->free(tex->rd_texture_srgb);
tex->rd_texture_srgb = RID();
}
Texture *prev_tex = texture_owner.getornull(tex->proxy_to);
ERR_FAIL_COND(!prev_tex);
prev_tex->proxies.erase(p_texture);
}
*tex = *proxy_to;
tex->proxy_to = p_proxy_to;
tex->is_render_target = false;
tex->is_proxy = true;
tex->proxies.clear();
proxy_to->proxies.push_back(p_texture);
tex->rd_view.format_override = tex->rd_format;
tex->rd_texture = RD::get_singleton()->texture_create_shared(tex->rd_view, proxy_to->rd_texture);
if (tex->rd_texture_srgb.is_valid()) {
tex->rd_view.format_override = tex->rd_format_srgb;
tex->rd_texture_srgb = RD::get_singleton()->texture_create_shared(tex->rd_view, proxy_to->rd_texture);
}
}
//these two APIs can be used together or in combination with the others.
RID RasterizerStorageRD::texture_2d_placeholder_create() {
//this could be better optimized to reuse an existing image , done this way
//for now to get it working
Ref<Image> image;
image.instance();
image->create(4, 4, false, Image::FORMAT_RGBA8);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
image->set_pixel(i, j, Color(1, 0, 1, 1));
}
}
return texture_2d_create(image);
}
RID RasterizerStorageRD::texture_2d_layered_placeholder_create(RS::TextureLayeredType p_layered_type) {
//this could be better optimized to reuse an existing image , done this way
//for now to get it working
Ref<Image> image;
image.instance();
image->create(4, 4, false, Image::FORMAT_RGBA8);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
image->set_pixel(i, j, Color(1, 0, 1, 1));
}
}
Vector<Ref<Image>> images;
if (p_layered_type == RS::TEXTURE_LAYERED_2D_ARRAY) {
images.push_back(image);
} else {
//cube
for (int i = 0; i < 6; i++) {
images.push_back(image);
}
}
return texture_2d_layered_create(images, p_layered_type);
}
RID RasterizerStorageRD::texture_3d_placeholder_create() {
//this could be better optimized to reuse an existing image , done this way
//for now to get it working
Ref<Image> image;
image.instance();
image->create(4, 4, false, Image::FORMAT_RGBA8);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
image->set_pixel(i, j, Color(1, 0, 1, 1));
}
}
Vector<Ref<Image>> images;
//cube
for (int i = 0; i < 4; i++) {
images.push_back(image);
}
return texture_3d_create(Image::FORMAT_RGBA8, 4, 4, 4, false, images);
}
Ref<Image> RasterizerStorageRD::texture_2d_get(RID p_texture) const {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!tex, Ref<Image>());
#ifdef TOOLS_ENABLED
if (tex->image_cache_2d.is_valid()) {
return tex->image_cache_2d;
}
#endif
Vector<uint8_t> data = RD::get_singleton()->texture_get_data(tex->rd_texture, 0);
ERR_FAIL_COND_V(data.size() == 0, Ref<Image>());
Ref<Image> image;
image.instance();
image->create(tex->width, tex->height, tex->mipmaps > 1, tex->validated_format, data);
ERR_FAIL_COND_V(image->empty(), Ref<Image>());
if (tex->format != tex->validated_format) {
image->convert(tex->format);
}
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
tex->image_cache_2d = image;
}
#endif
return image;
}
Ref<Image> RasterizerStorageRD::texture_2d_layer_get(RID p_texture, int p_layer) const {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!tex, Ref<Image>());
Vector<uint8_t> data = RD::get_singleton()->texture_get_data(tex->rd_texture, p_layer);
ERR_FAIL_COND_V(data.size() == 0, Ref<Image>());
Ref<Image> image;
image.instance();
image->create(tex->width, tex->height, tex->mipmaps > 1, tex->validated_format, data);
ERR_FAIL_COND_V(image->empty(), Ref<Image>());
if (tex->format != tex->validated_format) {
image->convert(tex->format);
}
return image;
}
Vector<Ref<Image>> RasterizerStorageRD::texture_3d_get(RID p_texture) const {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!tex, Vector<Ref<Image>>());
ERR_FAIL_COND_V(tex->type != Texture::TYPE_3D, Vector<Ref<Image>>());
Vector<uint8_t> all_data = RD::get_singleton()->texture_get_data(tex->rd_texture, 0);
ERR_FAIL_COND_V(all_data.size() != (int)tex->buffer_size_3d, Vector<Ref<Image>>());
Vector<Ref<Image>> ret;
for (int i = 0; i < tex->buffer_slices_3d.size(); i++) {
const Texture::BufferSlice3D &bs = tex->buffer_slices_3d[i];
ERR_FAIL_COND_V(bs.offset >= (uint32_t)all_data.size(), Vector<Ref<Image>>());
ERR_FAIL_COND_V(bs.offset + bs.buffer_size > (uint32_t)all_data.size(), Vector<Ref<Image>>());
Vector<uint8_t> sub_region = all_data.subarray(bs.offset, bs.offset + bs.buffer_size - 1);
Ref<Image> img;
img.instance();
img->create(bs.size.width, bs.size.height, false, tex->validated_format, sub_region);
ERR_FAIL_COND_V(img->empty(), Vector<Ref<Image>>());
if (tex->format != tex->validated_format) {
img->convert(tex->format);
}
ret.push_back(img);
}
return ret;
}
void RasterizerStorageRD::texture_replace(RID p_texture, RID p_by_texture) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
ERR_FAIL_COND(tex->proxy_to.is_valid()); //can't replace proxy
Texture *by_tex = texture_owner.getornull(p_by_texture);
ERR_FAIL_COND(!by_tex);
ERR_FAIL_COND(by_tex->proxy_to.is_valid()); //can't replace proxy
if (tex == by_tex) {
return;
}
if (tex->rd_texture_srgb.is_valid()) {
RD::get_singleton()->free(tex->rd_texture_srgb);
}
RD::get_singleton()->free(tex->rd_texture);
if (tex->canvas_texture) {
memdelete(tex->canvas_texture);
tex->canvas_texture = nullptr;
}
Vector<RID> proxies_to_update = tex->proxies;
Vector<RID> proxies_to_redirect = by_tex->proxies;
*tex = *by_tex;
tex->proxies = proxies_to_update; //restore proxies, so they can be updated
if (tex->canvas_texture) {
tex->canvas_texture->diffuse = p_texture; //update
}
for (int i = 0; i < proxies_to_update.size(); i++) {
texture_proxy_update(proxies_to_update[i], p_texture);
}
for (int i = 0; i < proxies_to_redirect.size(); i++) {
texture_proxy_update(proxies_to_redirect[i], p_texture);
}
//delete last, so proxies can be updated
texture_owner.free(p_by_texture);
if (decal_atlas.textures.has(p_texture)) {
//belongs to decal atlas..
decal_atlas.dirty = true; //mark it dirty since it was most likely modified
}
}
void RasterizerStorageRD::texture_set_size_override(RID p_texture, int p_width, int p_height) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
ERR_FAIL_COND(tex->type != Texture::TYPE_2D);
tex->width_2d = p_width;
tex->height_2d = p_height;
}
void RasterizerStorageRD::texture_set_path(RID p_texture, const String &p_path) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
tex->path = p_path;
}
String RasterizerStorageRD::texture_get_path(RID p_texture) const {
return String();
}
void RasterizerStorageRD::texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
tex->detect_3d_callback_ud = p_userdata;
tex->detect_3d_callback = p_callback;
}
void RasterizerStorageRD::texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
tex->detect_normal_callback_ud = p_userdata;
tex->detect_normal_callback = p_callback;
}
void RasterizerStorageRD::texture_set_detect_roughness_callback(RID p_texture, RS::TextureDetectRoughnessCallback p_callback, void *p_userdata) {
Texture *tex = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!tex);
tex->detect_roughness_callback_ud = p_userdata;
tex->detect_roughness_callback = p_callback;
}
void RasterizerStorageRD::texture_debug_usage(List<RS::TextureInfo> *r_info) {
}
void RasterizerStorageRD::texture_set_proxy(RID p_proxy, RID p_base) {
}
void RasterizerStorageRD::texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {
}
Size2 RasterizerStorageRD::texture_size_with_proxy(RID p_proxy) {
return texture_2d_get_size(p_proxy);
}
/* CANVAS TEXTURE */
void RasterizerStorageRD::CanvasTexture::clear_sets() {
if (cleared_cache) {
return;
}
for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) {
for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) {
if (RD::get_singleton()->uniform_set_is_valid(uniform_sets[i][j])) {
RD::get_singleton()->free(uniform_sets[i][j]);
uniform_sets[i][j] = RID();
}
}
}
cleared_cache = true;
}
RasterizerStorageRD::CanvasTexture::~CanvasTexture() {
clear_sets();
}
RID RasterizerStorageRD::canvas_texture_create() {
return canvas_texture_owner.make_rid(memnew(CanvasTexture));
}
void RasterizerStorageRD::canvas_texture_set_channel(RID p_canvas_texture, RS::CanvasTextureChannel p_channel, RID p_texture) {
CanvasTexture *ct = canvas_texture_owner.getornull(p_canvas_texture);
switch (p_channel) {
case RS::CANVAS_TEXTURE_CHANNEL_DIFFUSE: {
ct->diffuse = p_texture;
} break;
case RS::CANVAS_TEXTURE_CHANNEL_NORMAL: {
ct->normalmap = p_texture;
} break;
case RS::CANVAS_TEXTURE_CHANNEL_SPECULAR: {
ct->specular = p_texture;
} break;
}
ct->clear_sets();
}
void RasterizerStorageRD::canvas_texture_set_shading_parameters(RID p_canvas_texture, const Color &p_specular_color, float p_shininess) {
CanvasTexture *ct = canvas_texture_owner.getornull(p_canvas_texture);
ct->specular_color.r = p_specular_color.r;
ct->specular_color.g = p_specular_color.g;
ct->specular_color.b = p_specular_color.b;
ct->specular_color.a = p_shininess;
ct->clear_sets();
}
void RasterizerStorageRD::canvas_texture_set_texture_filter(RID p_canvas_texture, RS::CanvasItemTextureFilter p_filter) {
CanvasTexture *ct = canvas_texture_owner.getornull(p_canvas_texture);
ct->texture_filter = p_filter;
ct->clear_sets();
}
void RasterizerStorageRD::canvas_texture_set_texture_repeat(RID p_canvas_texture, RS::CanvasItemTextureRepeat p_repeat) {
CanvasTexture *ct = canvas_texture_owner.getornull(p_canvas_texture);
ct->texture_repeat = p_repeat;
ct->clear_sets();
}
bool RasterizerStorageRD::canvas_texture_get_uniform_set(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, RID p_base_shader, int p_base_set, RID &r_uniform_set, Size2i &r_size, Color &r_specular_shininess, bool &r_use_normal, bool &r_use_specular) {
CanvasTexture *ct = nullptr;
Texture *t = texture_owner.getornull(p_texture);
if (t) {
//regular texture
if (!t->canvas_texture) {
t->canvas_texture = memnew(CanvasTexture);
t->canvas_texture->diffuse = p_texture;
}
ct = t->canvas_texture;
} else {
ct = canvas_texture_owner.getornull(p_texture);
}
if (!ct) {
return false; //invalid texture RID
}
RS::CanvasItemTextureFilter filter = ct->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? ct->texture_filter : p_base_filter;
ERR_FAIL_COND_V(filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT, false);
RS::CanvasItemTextureRepeat repeat = ct->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? ct->texture_repeat : p_base_repeat;
ERR_FAIL_COND_V(repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT, false);
RID uniform_set = ct->uniform_sets[filter][repeat];
if (!RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
//create and update
Vector<RD::Uniform> uniforms;
{ //diffuse
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 0;
t = texture_owner.getornull(ct->diffuse);
if (!t) {
u.ids.push_back(texture_rd_get_default(DEFAULT_RD_TEXTURE_WHITE));
ct->size_cache = Size2i(1, 1);
} else {
u.ids.push_back(t->rd_texture);
ct->size_cache = Size2i(t->width_2d, t->height_2d);
}
uniforms.push_back(u);
}
{ //normal
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
t = texture_owner.getornull(ct->normalmap);
if (!t) {
u.ids.push_back(texture_rd_get_default(DEFAULT_RD_TEXTURE_NORMAL));
ct->use_normal_cache = false;
} else {
u.ids.push_back(t->rd_texture);
ct->use_normal_cache = true;
}
uniforms.push_back(u);
}
{ //specular
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
t = texture_owner.getornull(ct->specular);
if (!t) {
u.ids.push_back(texture_rd_get_default(DEFAULT_RD_TEXTURE_WHITE));
ct->use_specular_cache = false;
} else {
u.ids.push_back(t->rd_texture);
ct->use_specular_cache = true;
}
uniforms.push_back(u);
}
{ //sampler
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 3;
u.ids.push_back(sampler_rd_get_default(filter, repeat));
uniforms.push_back(u);
}
uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_base_shader, p_base_set);
ct->uniform_sets[filter][repeat] = uniform_set;
ct->cleared_cache = false;
}
r_uniform_set = uniform_set;
r_size = ct->size_cache;
r_specular_shininess = ct->specular_color;
r_use_normal = ct->use_normal_cache;
r_use_specular = ct->use_specular_cache;
return true;
}
/* SHADER API */
RID RasterizerStorageRD::shader_create() {
Shader shader;
2020-04-02 01:20:12 +02:00
shader.data = nullptr;
shader.type = SHADER_TYPE_MAX;
return shader_owner.make_rid(shader);
}
void RasterizerStorageRD::shader_set_code(RID p_shader, const String &p_code) {
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND(!shader);
shader->code = p_code;
String mode_string = ShaderLanguage::get_shader_type(p_code);
ShaderType new_type;
if (mode_string == "canvas_item") {
new_type = SHADER_TYPE_2D;
} else if (mode_string == "particles") {
new_type = SHADER_TYPE_PARTICLES;
} else if (mode_string == "spatial") {
new_type = SHADER_TYPE_3D;
} else if (mode_string == "sky") {
2019-09-15 11:58:38 +02:00
new_type = SHADER_TYPE_SKY;
} else {
new_type = SHADER_TYPE_MAX;
}
if (new_type != shader->type) {
if (shader->data) {
memdelete(shader->data);
2020-04-02 01:20:12 +02:00
shader->data = nullptr;
}
for (Set<Material *>::Element *E = shader->owners.front(); E; E = E->next()) {
Material *material = E->get();
material->shader_type = new_type;
if (material->data) {
memdelete(material->data);
2020-04-02 01:20:12 +02:00
material->data = nullptr;
}
}
shader->type = new_type;
if (new_type < SHADER_TYPE_MAX && shader_data_request_func[new_type]) {
shader->data = shader_data_request_func[new_type]();
} else {
shader->type = SHADER_TYPE_MAX; //invalid
}
for (Set<Material *>::Element *E = shader->owners.front(); E; E = E->next()) {
Material *material = E->get();
if (shader->data) {
material->data = material_data_request_func[new_type](shader->data);
material->data->self = material->self;
material->data->set_next_pass(material->next_pass);
material->data->set_render_priority(material->priority);
}
material->shader_type = new_type;
}
for (Map<StringName, RID>::Element *E = shader->default_texture_parameter.front(); E; E = E->next()) {
shader->data->set_default_texture_param(E->key(), E->get());
}
}
if (shader->data) {
shader->data->set_code(p_code);
}
for (Set<Material *>::Element *E = shader->owners.front(); E; E = E->next()) {
Material *material = E->get();
material->instance_dependency.instance_notify_changed(false, true);
_material_queue_update(material, true, true);
}
}
String RasterizerStorageRD::shader_get_code(RID p_shader) const {
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND_V(!shader, String());
return shader->code;
}
void RasterizerStorageRD::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND(!shader);
if (shader->data) {
return shader->data->get_param_list(p_param_list);
}
}
void RasterizerStorageRD::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) {
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND(!shader);
if (p_texture.is_valid() && texture_owner.owns(p_texture)) {
shader->default_texture_parameter[p_name] = p_texture;
} else {
shader->default_texture_parameter.erase(p_name);
}
if (shader->data) {
shader->data->set_default_texture_param(p_name, p_texture);
}
for (Set<Material *>::Element *E = shader->owners.front(); E; E = E->next()) {
Material *material = E->get();
_material_queue_update(material, false, true);
}
}
RID RasterizerStorageRD::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const {
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND_V(!shader, RID());
if (shader->default_texture_parameter.has(p_name)) {
return shader->default_texture_parameter[p_name];
}
return RID();
}
Variant RasterizerStorageRD::shader_get_param_default(RID p_shader, const StringName &p_param) const {
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND_V(!shader, Variant());
if (shader->data) {
return shader->data->get_default_parameter(p_param);
}
return Variant();
}
void RasterizerStorageRD::shader_set_data_request_function(ShaderType p_shader_type, ShaderDataRequestFunction p_function) {
ERR_FAIL_INDEX(p_shader_type, SHADER_TYPE_MAX);
shader_data_request_func[p_shader_type] = p_function;
}
/* COMMON MATERIAL API */
RID RasterizerStorageRD::material_create() {
Material material;
2020-04-02 01:20:12 +02:00
material.data = nullptr;
material.shader = nullptr;
material.shader_type = SHADER_TYPE_MAX;
2020-04-02 01:20:12 +02:00
material.update_next = nullptr;
material.update_requested = false;
material.uniform_dirty = false;
material.texture_dirty = false;
material.priority = 0;
RID id = material_owner.make_rid(material);
{
Material *material_ptr = material_owner.getornull(id);
material_ptr->self = id;
}
return id;
}
void RasterizerStorageRD::_material_queue_update(Material *material, bool p_uniform, bool p_texture) {
if (material->update_requested) {
return;
}
material->update_next = material_update_list;
material_update_list = material;
material->update_requested = true;
material->uniform_dirty = material->uniform_dirty || p_uniform;
material->texture_dirty = material->texture_dirty || p_texture;
}
void RasterizerStorageRD::material_set_shader(RID p_material, RID p_shader) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
if (material->data) {
memdelete(material->data);
2020-04-02 01:20:12 +02:00
material->data = nullptr;
}
if (material->shader) {
material->shader->owners.erase(material);
2020-04-02 01:20:12 +02:00
material->shader = nullptr;
material->shader_type = SHADER_TYPE_MAX;
}
if (p_shader.is_null()) {
material->instance_dependency.instance_notify_changed(false, true);
return;
}
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND(!shader);
material->shader = shader;
material->shader_type = shader->type;
shader->owners.insert(material);
if (shader->type == SHADER_TYPE_MAX) {
return;
}
2020-04-02 01:20:12 +02:00
ERR_FAIL_COND(shader->data == nullptr);
material->data = material_data_request_func[shader->type](shader->data);
material->data->self = p_material;
material->data->set_next_pass(material->next_pass);
material->data->set_render_priority(material->priority);
//updating happens later
material->instance_dependency.instance_notify_changed(false, true);
_material_queue_update(material, true, true);
}
void RasterizerStorageRD::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
if (p_value.get_type() == Variant::NIL) {
material->params.erase(p_param);
} else {
material->params[p_param] = p_value;
}
if (material->shader && material->shader->data) { //shader is valid
bool is_texture = material->shader->data->is_param_texture(p_param);
_material_queue_update(material, !is_texture, is_texture);
} else {
_material_queue_update(material, true, true);
}
}
Variant RasterizerStorageRD::material_get_param(RID p_material, const StringName &p_param) const {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (material->params.has(p_param)) {
return material->params[p_param];
} else {
return Variant();
}
}
void RasterizerStorageRD::material_set_next_pass(RID p_material, RID p_next_material) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
if (material->next_pass == p_next_material) {
return;
}
material->next_pass = p_next_material;
if (material->data) {
material->data->set_next_pass(p_next_material);
}
material->instance_dependency.instance_notify_changed(false, true);
}
void RasterizerStorageRD::material_set_render_priority(RID p_material, int priority) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
material->priority = priority;
if (material->data) {
material->data->set_render_priority(priority);
}
}
bool RasterizerStorageRD::material_is_animated(RID p_material) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->shader && material->shader->data) {
if (material->shader->data->is_animated()) {
return true;
} else if (material->next_pass.is_valid()) {
return material_is_animated(material->next_pass);
}
}
return false; //by default nothing is animated
}
bool RasterizerStorageRD::material_casts_shadows(RID p_material) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND_V(!material, true);
if (material->shader && material->shader->data) {
if (material->shader->data->casts_shadows()) {
return true;
} else if (material->next_pass.is_valid()) {
return material_casts_shadows(material->next_pass);
}
}
return true; //by default everything casts shadows
}
void RasterizerStorageRD::material_get_instance_shader_parameters(RID p_material, List<InstanceShaderParam> *r_parameters) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
if (material->shader && material->shader->data) {
material->shader->data->get_instance_param_list(r_parameters);
if (material->next_pass.is_valid()) {
material_get_instance_shader_parameters(material->next_pass, r_parameters);
}
}
}
void RasterizerStorageRD::material_update_dependency(RID p_material, RasterizerScene::InstanceBase *p_instance) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
p_instance->update_dependency(&material->instance_dependency);
if (material->next_pass.is_valid()) {
material_update_dependency(material->next_pass, p_instance);
}
}
void RasterizerStorageRD::material_set_data_request_function(ShaderType p_shader_type, MaterialDataRequestFunction p_function) {
ERR_FAIL_INDEX(p_shader_type, SHADER_TYPE_MAX);
material_data_request_func[p_shader_type] = p_function;
}
_FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, const Variant &value, uint8_t *data, bool p_linear_color) {
switch (type) {
case ShaderLanguage::TYPE_BOOL: {
bool v = value;
uint32_t *gui = (uint32_t *)data;
*gui = v ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC2: {
int v = value;
uint32_t *gui = (uint32_t *)data;
gui[0] = v & 1 ? 1 : 0;
gui[1] = v & 2 ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC3: {
int v = value;
uint32_t *gui = (uint32_t *)data;
gui[0] = (v & 1) ? 1 : 0;
gui[1] = (v & 2) ? 1 : 0;
gui[2] = (v & 4) ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC4: {
int v = value;
uint32_t *gui = (uint32_t *)data;
gui[0] = (v & 1) ? 1 : 0;
gui[1] = (v & 2) ? 1 : 0;
gui[2] = (v & 4) ? 1 : 0;
gui[3] = (v & 8) ? 1 : 0;
} break;
case ShaderLanguage::TYPE_INT: {
int v = value;
int32_t *gui = (int32_t *)data;
gui[0] = v;
} break;
case ShaderLanguage::TYPE_IVEC2: {
Vector<int> iv = value;
int s = iv.size();
int32_t *gui = (int32_t *)data;
const int *r = iv.ptr();
for (int i = 0; i < 2; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_IVEC3: {
Vector<int> iv = value;
int s = iv.size();
int32_t *gui = (int32_t *)data;
const int *r = iv.ptr();
for (int i = 0; i < 3; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_IVEC4: {
Vector<int> iv = value;
int s = iv.size();
int32_t *gui = (int32_t *)data;
const int *r = iv.ptr();
for (int i = 0; i < 4; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_UINT: {
int v = value;
uint32_t *gui = (uint32_t *)data;
gui[0] = v;
} break;
case ShaderLanguage::TYPE_UVEC2: {
Vector<int> iv = value;
int s = iv.size();
uint32_t *gui = (uint32_t *)data;
const int *r = iv.ptr();
for (int i = 0; i < 2; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_UVEC3: {
Vector<int> iv = value;
int s = iv.size();
uint32_t *gui = (uint32_t *)data;
const int *r = iv.ptr();
for (int i = 0; i < 3; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_UVEC4: {
Vector<int> iv = value;
int s = iv.size();
uint32_t *gui = (uint32_t *)data;
const int *r = iv.ptr();
for (int i = 0; i < 4; i++) {
if (i < s) {
gui[i] = r[i];
} else {
gui[i] = 0;
}
}
} break;
case ShaderLanguage::TYPE_FLOAT: {
float v = value;
float *gui = (float *)data;
gui[0] = v;
} break;
case ShaderLanguage::TYPE_VEC2: {
Vector2 v = value;
float *gui = (float *)data;
gui[0] = v.x;
gui[1] = v.y;
} break;
case ShaderLanguage::TYPE_VEC3: {
Vector3 v = value;
float *gui = (float *)data;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
} break;
case ShaderLanguage::TYPE_VEC4: {
float *gui = (float *)data;
if (value.get_type() == Variant::COLOR) {
Color v = value;
if (p_linear_color) {
v = v.to_linear();
}
gui[0] = v.r;
gui[1] = v.g;
gui[2] = v.b;
gui[3] = v.a;
} else if (value.get_type() == Variant::RECT2) {
Rect2 v = value;
gui[0] = v.position.x;
gui[1] = v.position.y;
gui[2] = v.size.x;
gui[3] = v.size.y;
} else if (value.get_type() == Variant::QUAT) {
Quat v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
gui[3] = v.w;
} else {
Plane v = value;
gui[0] = v.normal.x;
gui[1] = v.normal.y;
gui[2] = v.normal.z;
gui[3] = v.d;
}
} break;
case ShaderLanguage::TYPE_MAT2: {
Transform2D v = value;
float *gui = (float *)data;
//in std140 members of mat2 are treated as vec4s
gui[0] = v.elements[0][0];
gui[1] = v.elements[0][1];
gui[2] = 0;
gui[3] = 0;
gui[4] = v.elements[1][0];
gui[5] = v.elements[1][1];
gui[6] = 0;
gui[7] = 0;
} break;
case ShaderLanguage::TYPE_MAT3: {
Basis v = value;
float *gui = (float *)data;
gui[0] = v.elements[0][0];
gui[1] = v.elements[1][0];
gui[2] = v.elements[2][0];
gui[3] = 0;
gui[4] = v.elements[0][1];
gui[5] = v.elements[1][1];
gui[6] = v.elements[2][1];
gui[7] = 0;
gui[8] = v.elements[0][2];
gui[9] = v.elements[1][2];
gui[10] = v.elements[2][2];
gui[11] = 0;
} break;
case ShaderLanguage::TYPE_MAT4: {
Transform v = value;
float *gui = (float *)data;
gui[0] = v.basis.elements[0][0];
gui[1] = v.basis.elements[1][0];
gui[2] = v.basis.elements[2][0];
gui[3] = 0;
gui[4] = v.basis.elements[0][1];
gui[5] = v.basis.elements[1][1];
gui[6] = v.basis.elements[2][1];
gui[7] = 0;
gui[8] = v.basis.elements[0][2];
gui[9] = v.basis.elements[1][2];
gui[10] = v.basis.elements[2][2];
gui[11] = 0;
gui[12] = v.origin.x;
gui[13] = v.origin.y;
gui[14] = v.origin.z;
gui[15] = 1;
} break;
default: {
}
}
}
_FORCE_INLINE_ static void _fill_std140_ubo_value(ShaderLanguage::DataType type, const Vector<ShaderLanguage::ConstantNode::Value> &value, uint8_t *data) {
switch (type) {
case ShaderLanguage::TYPE_BOOL: {
uint32_t *gui = (uint32_t *)data;
*gui = value[0].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC2: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].boolean ? 1 : 0;
gui[1] = value[1].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC3: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].boolean ? 1 : 0;
gui[1] = value[1].boolean ? 1 : 0;
gui[2] = value[2].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC4: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].boolean ? 1 : 0;
gui[1] = value[1].boolean ? 1 : 0;
gui[2] = value[2].boolean ? 1 : 0;
gui[3] = value[3].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_INT: {
int32_t *gui = (int32_t *)data;
gui[0] = value[0].sint;
} break;
case ShaderLanguage::TYPE_IVEC2: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_IVEC3: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_IVEC4: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_UINT: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].uint;
} break;
case ShaderLanguage::TYPE_UVEC2: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_UVEC3: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_UVEC4: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_FLOAT: {
float *gui = (float *)data;
gui[0] = value[0].real;
} break;
case ShaderLanguage::TYPE_VEC2: {
float *gui = (float *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_VEC3: {
float *gui = (float *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_VEC4: {
float *gui = (float *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_MAT2: {
float *gui = (float *)data;
//in std140 members of mat2 are treated as vec4s
gui[0] = value[0].real;
gui[1] = value[1].real;
gui[2] = 0;
gui[3] = 0;
gui[4] = value[2].real;
gui[5] = value[3].real;
gui[6] = 0;
gui[7] = 0;
} break;
case ShaderLanguage::TYPE_MAT3: {
float *gui = (float *)data;
gui[0] = value[0].real;
gui[1] = value[1].real;
gui[2] = value[2].real;
gui[3] = 0;
gui[4] = value[3].real;
gui[5] = value[4].real;
gui[6] = value[5].real;
gui[7] = 0;
gui[8] = value[6].real;
gui[9] = value[7].real;
gui[10] = value[8].real;
gui[11] = 0;
} break;
case ShaderLanguage::TYPE_MAT4: {
float *gui = (float *)data;
for (int i = 0; i < 16; i++) {
gui[i] = value[i].real;
}
} break;
default: {
}
}
}
_FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type, uint8_t *data) {
switch (type) {
case ShaderLanguage::TYPE_BOOL:
case ShaderLanguage::TYPE_INT:
case ShaderLanguage::TYPE_UINT:
case ShaderLanguage::TYPE_FLOAT: {
zeromem(data, 4);
} break;
case ShaderLanguage::TYPE_BVEC2:
case ShaderLanguage::TYPE_IVEC2:
case ShaderLanguage::TYPE_UVEC2:
case ShaderLanguage::TYPE_VEC2: {
zeromem(data, 8);
} break;
case ShaderLanguage::TYPE_BVEC3:
case ShaderLanguage::TYPE_IVEC3:
case ShaderLanguage::TYPE_UVEC3:
case ShaderLanguage::TYPE_VEC3:
case ShaderLanguage::TYPE_BVEC4:
case ShaderLanguage::TYPE_IVEC4:
case ShaderLanguage::TYPE_UVEC4:
case ShaderLanguage::TYPE_VEC4: {
zeromem(data, 16);
} break;
case ShaderLanguage::TYPE_MAT2: {
zeromem(data, 32);
} break;
case ShaderLanguage::TYPE_MAT3: {
zeromem(data, 48);
} break;
case ShaderLanguage::TYPE_MAT4: {
zeromem(data, 64);
} break;
default: {
}
}
}
void RasterizerStorageRD::MaterialData::update_uniform_buffer(const Map<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const Map<StringName, Variant> &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color) {
bool uses_global_buffer = false;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = p_uniforms.front(); E; E = E->next()) {
if (E->get().order < 0) {
continue; // texture, does not go here
}
if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue; //instance uniforms don't appear in the bufferr
}
if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL) {
//this is a global variable, get the index to it
RasterizerStorageRD *rs = base_singleton;
GlobalVariables::Variable *gv = rs->global_variables.variables.getptr(E->key());
uint32_t index = 0;
if (gv) {
index = gv->buffer_index;
} else {
WARN_PRINT("Shader uses global uniform '" + E->key() + "', but it was removed at some point. Material will not display correctly.");
}
uint32_t offset = p_uniform_offsets[E->get().order];
uint32_t *intptr = (uint32_t *)&p_buffer[offset];
*intptr = index;
uses_global_buffer = true;
continue;
}
//regular uniform
uint32_t offset = p_uniform_offsets[E->get().order];
#ifdef DEBUG_ENABLED
uint32_t size = ShaderLanguage::get_type_size(E->get().type);
ERR_CONTINUE(offset + size > p_buffer_size);
#endif
uint8_t *data = &p_buffer[offset];
const Map<StringName, Variant>::Element *V = p_parameters.find(E->key());
if (V) {
//user provided
_fill_std140_variant_ubo_value(E->get().type, V->get(), data, p_use_linear_color);
} else if (E->get().default_value.size()) {
//default value
_fill_std140_ubo_value(E->get().type, E->get().default_value, data);
//value=E->get().default_value;
} else {
//zero because it was not provided
if (E->get().type == ShaderLanguage::TYPE_VEC4 && E->get().hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) {
//colors must be set as black, with alpha as 1.0
_fill_std140_variant_ubo_value(E->get().type, Color(0, 0, 0, 1), data, p_use_linear_color);
} else {
//else just zero it out
_fill_std140_ubo_empty(E->get().type, data);
}
}
}
if (uses_global_buffer != (global_buffer_E != nullptr)) {
RasterizerStorageRD *rs = base_singleton;
if (uses_global_buffer) {
global_buffer_E = rs->global_variables.materials_using_buffer.push_back(self);
} else {
rs->global_variables.materials_using_buffer.erase(global_buffer_E);
global_buffer_E = nullptr;
}
}
}
RasterizerStorageRD::MaterialData::~MaterialData() {
if (global_buffer_E) {
//unregister global buffers
RasterizerStorageRD *rs = base_singleton;
rs->global_variables.materials_using_buffer.erase(global_buffer_E);
}
if (global_texture_E) {
//unregister global textures
RasterizerStorageRD *rs = base_singleton;
for (Map<StringName, uint64_t>::Element *E = used_global_textures.front(); E; E = E->next()) {
GlobalVariables::Variable *v = rs->global_variables.variables.getptr(E->key());
if (v) {
v->texture_materials.erase(self);
}
}
//unregister material from those using global textures
rs->global_variables.materials_using_texture.erase(global_texture_E);
}
}
void RasterizerStorageRD::MaterialData::update_textures(const Map<StringName, Variant> &p_parameters, const Map<StringName, RID> &p_default_textures, const Vector<ShaderCompilerRD::GeneratedCode::Texture> &p_texture_uniforms, RID *p_textures, bool p_use_linear_color) {
RasterizerStorageRD *singleton = (RasterizerStorageRD *)RasterizerStorage::base_singleton;
#ifdef TOOLS_ENABLED
Texture *roughness_detect_texture = nullptr;
RS::TextureDetectRoughnessChannel roughness_channel = RS::TEXTURE_DETECT_ROUGNHESS_R;
Texture *normal_detect_texture = nullptr;
#endif
bool uses_global_textures = false;
global_textures_pass++;
for (int i = 0; i < p_texture_uniforms.size(); i++) {
const StringName &uniform_name = p_texture_uniforms[i].name;
RID texture;
if (p_texture_uniforms[i].global) {
RasterizerStorageRD *rs = base_singleton;
uses_global_textures = true;
GlobalVariables::Variable *v = rs->global_variables.variables.getptr(uniform_name);
if (v) {
if (v->buffer_index >= 0) {
WARN_PRINT("Shader uses global uniform texture '" + String(uniform_name) + "', but it changed type and is no longer a texture!.");
} else {
Map<StringName, uint64_t>::Element *E = used_global_textures.find(uniform_name);
if (!E) {
E = used_global_textures.insert(uniform_name, global_textures_pass);
v->texture_materials.insert(self);
} else {
E->get() = global_textures_pass;
}
texture = v->override.get_type() != Variant::NIL ? v->override : v->value;
}
} else {
WARN_PRINT("Shader uses global uniform texture '" + String(uniform_name) + "', but it was removed at some point. Material will not display correctly.");
}
} else {
if (!texture.is_valid()) {
const Map<StringName, Variant>::Element *V = p_parameters.find(uniform_name);
if (V) {
texture = V->get();
}
}
if (!texture.is_valid()) {
const Map<StringName, RID>::Element *W = p_default_textures.find(uniform_name);
if (W) {
texture = W->get();
}
}
}
RID rd_texture;
if (texture.is_null()) {
//check default usage
switch (p_texture_uniforms[i].hint) {
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK:
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO: {
rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_BLACK);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_NONE: {
rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_NORMAL);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_ANISO);
} break;
default: {
rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_WHITE);
} break;
}
} else {
bool srgb = p_use_linear_color && (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ALBEDO || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO);
Texture *tex = singleton->texture_owner.getornull(texture);
if (tex) {
rd_texture = (srgb && tex->rd_texture_srgb.is_valid()) ? tex->rd_texture_srgb : tex->rd_texture;
#ifdef TOOLS_ENABLED
if (tex->detect_3d_callback && p_use_linear_color) {
tex->detect_3d_callback(tex->detect_3d_callback_ud);
}
if (tex->detect_normal_callback && (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL)) {
if (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL) {
normal_detect_texture = tex;
}
tex->detect_normal_callback(tex->detect_normal_callback_ud);
}
if (tex->detect_roughness_callback && (p_texture_uniforms[i].hint >= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R || p_texture_uniforms[i].hint <= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_GRAY)) {
//find the normal texture
roughness_detect_texture = tex;
roughness_channel = RS::TextureDetectRoughnessChannel(p_texture_uniforms[i].hint - ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R);
}
#endif
}
if (rd_texture.is_null()) {
//wtf
rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_WHITE);
}
}
p_textures[i] = rd_texture;
}
#ifdef TOOLS_ENABLED
if (roughness_detect_texture && normal_detect_texture && normal_detect_texture->path != String()) {
roughness_detect_texture->detect_roughness_callback(roughness_detect_texture->detect_roughness_callback_ud, normal_detect_texture->path, roughness_channel);
}
#endif
{
//for textures no longer used, unregister them
List<Map<StringName, uint64_t>::Element *> to_delete;
RasterizerStorageRD *rs = base_singleton;
for (Map<StringName, uint64_t>::Element *E = used_global_textures.front(); E; E = E->next()) {
if (E->get() != global_textures_pass) {
to_delete.push_back(E);
GlobalVariables::Variable *v = rs->global_variables.variables.getptr(E->key());
if (v) {
v->texture_materials.erase(self);
}
}
}
while (to_delete.front()) {
used_global_textures.erase(to_delete.front()->get());
to_delete.pop_front();
}
//handle registering/unregistering global textures
if (uses_global_textures != (global_texture_E != nullptr)) {
if (uses_global_textures) {
global_texture_E = rs->global_variables.materials_using_texture.push_back(self);
} else {
rs->global_variables.materials_using_texture.erase(global_texture_E);
global_texture_E = nullptr;
}
}
}
}
void RasterizerStorageRD::material_force_update_textures(RID p_material, ShaderType p_shader_type) {
Material *material = material_owner.getornull(p_material);
if (material->shader_type != p_shader_type) {
return;
}
if (material->data) {
material->data->update_parameters(material->params, false, true);
}
}
void RasterizerStorageRD::_update_queued_materials() {
Material *material = material_update_list;
while (material) {
Material *next = material->update_next;
if (material->data) {
material->data->update_parameters(material->params, material->uniform_dirty, material->texture_dirty);
}
material->update_requested = false;
material->texture_dirty = false;
material->uniform_dirty = false;
2020-04-02 01:20:12 +02:00
material->update_next = nullptr;
material = next;
}
2020-04-02 01:20:12 +02:00
material_update_list = nullptr;
}
/* MESH API */
RID RasterizerStorageRD::mesh_create() {
return mesh_owner.make_rid(Mesh());
}
/// Returns stride
void RasterizerStorageRD::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
//ensure blend shape consistency
ERR_FAIL_COND(mesh->blend_shape_count && p_surface.blend_shapes.size() != (int)mesh->blend_shape_count);
ERR_FAIL_COND(mesh->blend_shape_count && p_surface.bone_aabbs.size() != mesh->bone_aabbs.size());
#ifdef DEBUG_ENABLED
//do a validation, to catch errors first
{
uint32_t stride = 0;
for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
if ((p_surface.format & (1 << i))) {
switch (i) {
case RS::ARRAY_VERTEX: {
if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
stride += sizeof(float) * 2;
} else {
stride += sizeof(float) * 3;
}
} break;
case RS::ARRAY_NORMAL: {
if (p_surface.format & RS::ARRAY_COMPRESS_NORMAL) {
stride += sizeof(int8_t) * 4;
} else {
stride += sizeof(float) * 4;
}
} break;
case RS::ARRAY_TANGENT: {
if (p_surface.format & RS::ARRAY_COMPRESS_TANGENT) {
stride += sizeof(int8_t) * 4;
} else {
stride += sizeof(float) * 4;
}
} break;
case RS::ARRAY_COLOR: {
if (p_surface.format & RS::ARRAY_COMPRESS_COLOR) {
stride += sizeof(int8_t) * 4;
} else {
stride += sizeof(float) * 4;
}
} break;
case RS::ARRAY_TEX_UV: {
if (p_surface.format & RS::ARRAY_COMPRESS_TEX_UV) {
stride += sizeof(int16_t) * 2;
} else {
stride += sizeof(float) * 2;
}
} break;
case RS::ARRAY_TEX_UV2: {
if (p_surface.format & RS::ARRAY_COMPRESS_TEX_UV2) {
stride += sizeof(int16_t) * 2;
} else {
stride += sizeof(float) * 2;
}
} break;
case RS::ARRAY_BONES: {
//assumed weights too
//unique format, internally 16 bits, exposed as single array for 32
stride += sizeof(int32_t) * 4;
} break;
}
}
}
int expected_size = stride * p_surface.vertex_count;
ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
}
#endif
Mesh::Surface *s = memnew(Mesh::Surface);
s->format = p_surface.format;
s->primitive = p_surface.primitive;
s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data);
s->vertex_count = p_surface.vertex_count;
if (p_surface.index_count) {
bool is_index_16 = p_surface.vertex_count <= 65536;
s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
s->index_count = p_surface.index_count;
s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
if (p_surface.lods.size()) {
s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
s->lod_count = p_surface.lods.size();
for (int i = 0; i < p_surface.lods.size(); i++) {
uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
s->lods[i].edge_length = p_surface.lods[i].edge_length;
}
}
}
s->aabb = p_surface.aabb;
s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
for (int i = 0; i < p_surface.blend_shapes.size(); i++) {
if (p_surface.blend_shapes[i].size() != p_surface.vertex_data.size()) {
memdelete(s);
ERR_FAIL_COND(p_surface.blend_shapes[i].size() != p_surface.vertex_data.size());
}
RID vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.blend_shapes[i].size(), p_surface.blend_shapes[i]);
s->blend_shapes.push_back(vertex_buffer);
}
mesh->blend_shape_count = p_surface.blend_shapes.size();
if (mesh->surface_count == 0) {
mesh->bone_aabbs = p_surface.bone_aabbs;
mesh->aabb = p_surface.aabb;
} else {
for (int i = 0; i < p_surface.bone_aabbs.size(); i++) {
mesh->bone_aabbs.write[i].merge_with(p_surface.bone_aabbs[i]);
}
mesh->aabb.merge_with(p_surface.aabb);
}
2019-10-03 22:39:08 +02:00
s->material = p_surface.material;
mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
mesh->surfaces[mesh->surface_count] = s;
mesh->surface_count++;
mesh->instance_dependency.instance_notify_changed(true, true);
mesh->material_cache.clear();
}
int RasterizerStorageRD::mesh_get_blend_shape_count(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
return mesh->blend_shape_count;
}
void RasterizerStorageRD::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX((int)p_mode, 2);
mesh->blend_shape_mode = p_mode;
}
RS::BlendShapeMode RasterizerStorageRD::mesh_get_blend_shape_mode(RID p_mesh) const {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
return mesh->blend_shape_mode;
}
void RasterizerStorageRD::mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
ERR_FAIL_COND(p_data.size() == 0);
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
}
void RasterizerStorageRD::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
mesh->surfaces[p_surface]->material = p_material;
mesh->instance_dependency.instance_notify_changed(false, true);
mesh->material_cache.clear();
}
RID RasterizerStorageRD::mesh_surface_get_material(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RID());
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
return mesh->surfaces[p_surface]->material;
}
RS::SurfaceData RasterizerStorageRD::mesh_get_surface(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
Mesh::Surface &s = *mesh->surfaces[p_surface];
RS::SurfaceData sd;
sd.format = s.format;
sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
sd.vertex_count = s.vertex_count;
sd.index_count = s.index_count;
2019-10-03 22:39:08 +02:00
sd.primitive = s.primitive;
if (sd.index_count) {
sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
}
sd.aabb = s.aabb;
for (uint32_t i = 0; i < s.lod_count; i++) {
RS::SurfaceData::LOD lod;
lod.edge_length = s.lods[i].edge_length;
lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
sd.lods.push_back(lod);
}
sd.bone_aabbs = s.bone_aabbs;
for (int i = 0; i < s.blend_shapes.size(); i++) {
Vector<uint8_t> bs = RD::get_singleton()->buffer_get_data(s.blend_shapes[i]);
sd.blend_shapes.push_back(bs);
}
return sd;
}
int RasterizerStorageRD::mesh_get_surface_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
return mesh->surface_count;
}
void RasterizerStorageRD::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->custom_aabb = p_aabb;
}
AABB RasterizerStorageRD::mesh_get_custom_aabb(RID p_mesh) const {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
return mesh->custom_aabb;
}
AABB RasterizerStorageRD::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
if (mesh->custom_aabb != AABB()) {
return mesh->custom_aabb;
}
2019-09-23 23:53:05 +02:00
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
if (!skeleton || skeleton->size == 0) {
return mesh->aabb;
}
2019-09-23 23:53:05 +02:00
AABB aabb;
for (uint32_t i = 0; i < mesh->surface_count; i++) {
2019-09-23 23:53:05 +02:00
AABB laabb;
if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
2019-09-23 23:53:05 +02:00
int bs = mesh->surfaces[i]->bone_aabbs.size();
const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
int sbs = skeleton->size;
ERR_CONTINUE(bs > sbs);
const float *baseptr = skeleton->data.ptr();
bool first = true;
if (skeleton->use_2d) {
for (int j = 0; j < bs; j++) {
if (skbones[0].size == Vector3()) {
2019-09-23 23:53:05 +02:00
continue; //bone is unused
}
2019-09-23 23:53:05 +02:00
const float *dataptr = baseptr + j * 8;
Transform mtx;
mtx.basis.elements[0].x = dataptr[0];
mtx.basis.elements[1].x = dataptr[1];
mtx.origin.x = dataptr[3];
mtx.basis.elements[0].y = dataptr[4];
mtx.basis.elements[1].y = dataptr[5];
mtx.origin.y = dataptr[7];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
} else {
for (int j = 0; j < bs; j++) {
if (skbones[0].size == Vector3()) {
2019-09-23 23:53:05 +02:00
continue; //bone is unused
}
2019-09-23 23:53:05 +02:00
const float *dataptr = baseptr + j * 12;
Transform mtx;
mtx.basis.elements[0][0] = dataptr[0];
mtx.basis.elements[0][1] = dataptr[1];
mtx.basis.elements[0][2] = dataptr[2];
mtx.origin.x = dataptr[3];
mtx.basis.elements[1][0] = dataptr[4];
mtx.basis.elements[1][1] = dataptr[5];
mtx.basis.elements[1][2] = dataptr[6];
mtx.origin.y = dataptr[7];
mtx.basis.elements[2][0] = dataptr[8];
mtx.basis.elements[2][1] = dataptr[9];
mtx.basis.elements[2][2] = dataptr[10];
mtx.origin.z = dataptr[11];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
}
if (laabb.size == Vector3()) {
laabb = mesh->surfaces[i]->aabb;
}
} else {
laabb = mesh->surfaces[i]->aabb;
}
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
return aabb;
}
void RasterizerStorageRD::mesh_clear(RID p_mesh) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
for (uint32_t i = 0; i < mesh->surface_count; i++) {
Mesh::Surface &s = *mesh->surfaces[i];
RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
if (s.versions) {
memfree(s.versions); //reallocs, so free with memfree.
}
if (s.index_buffer.is_valid()) {
RD::get_singleton()->free(s.index_buffer);
}
if (s.lod_count) {
for (uint32_t j = 0; j < s.lod_count; j++) {
RD::get_singleton()->free(s.lods[j].index_buffer);
}
memdelete_arr(s.lods);
}
for (int32_t j = 0; j < s.blend_shapes.size(); j++) {
RD::get_singleton()->free(s.blend_shapes[j]);
}
if (s.blend_shape_base_buffer.is_valid()) {
RD::get_singleton()->free(s.blend_shape_base_buffer);
}
memdelete(mesh->surfaces[i]);
}
if (mesh->surfaces) {
memfree(mesh->surfaces);
}
mesh->surfaces = nullptr;
mesh->surface_count = 0;
mesh->material_cache.clear();
mesh->instance_dependency.instance_notify_changed(true, true);
}
void RasterizerStorageRD::_mesh_surface_generate_version_for_input_mask(Mesh::Surface *s, uint32_t p_input_mask) {
uint32_t version = s->version_count;
s->version_count++;
s->versions = (Mesh::Surface::Version *)memrealloc(s->versions, sizeof(Mesh::Surface::Version) * s->version_count);
Mesh::Surface::Version &v = s->versions[version];
Vector<RD::VertexAttribute> attributes;
Vector<RID> buffers;
uint32_t stride = 0;
for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
RD::VertexAttribute vd;
RID buffer;
vd.location = i;
if (!(s->format & (1 << i))) {
// Not supplied by surface, use default value
buffer = mesh_default_rd_buffers[i];
switch (i) {
case RS::ARRAY_VERTEX: {
vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
} break;
case RS::ARRAY_NORMAL: {
vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
} break;
case RS::ARRAY_TANGENT: {
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
} break;
case RS::ARRAY_COLOR: {
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
} break;
case RS::ARRAY_TEX_UV: {
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
} break;
case RS::ARRAY_TEX_UV2: {
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
} break;
case RS::ARRAY_BONES: {
//assumed weights too
vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
} break;
}
} else {
//Supplied, use it
vd.offset = stride;
vd.stride = 1; //mark that it needs a stride set
buffer = s->vertex_buffer;
switch (i) {
case RS::ARRAY_VERTEX: {
if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
stride += sizeof(float) * 2;
} else {
vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
stride += sizeof(float) * 3;
}
} break;
case RS::ARRAY_NORMAL: {
if (s->format & RS::ARRAY_COMPRESS_NORMAL) {
vd.format = RD::DATA_FORMAT_R8G8B8A8_SNORM;
stride += sizeof(int8_t) * 4;
} else {
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
stride += sizeof(float) * 4;
}
} break;
case RS::ARRAY_TANGENT: {
if (s->format & RS::ARRAY_COMPRESS_TANGENT) {
vd.format = RD::DATA_FORMAT_R8G8B8A8_SNORM;
stride += sizeof(int8_t) * 4;
} else {
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
stride += sizeof(float) * 4;
}
} break;
case RS::ARRAY_COLOR: {
if (s->format & RS::ARRAY_COMPRESS_COLOR) {
vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
stride += sizeof(int8_t) * 4;
} else {
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
stride += sizeof(float) * 4;
}
} break;
case RS::ARRAY_TEX_UV: {
if (s->format & RS::ARRAY_COMPRESS_TEX_UV) {
vd.format = RD::DATA_FORMAT_R16G16_SFLOAT;
stride += sizeof(int16_t) * 2;
} else {
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
stride += sizeof(float) * 2;
}
} break;
case RS::ARRAY_TEX_UV2: {
if (s->format & RS::ARRAY_COMPRESS_TEX_UV2) {
vd.format = RD::DATA_FORMAT_R16G16_SFLOAT;
stride += sizeof(int16_t) * 2;
} else {
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
stride += sizeof(float) * 2;
}
} break;
case RS::ARRAY_BONES: {
//assumed weights too
//unique format, internally 16 bits, exposed as single array for 32
vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
stride += sizeof(int32_t) * 4;
} break;
}
}
if (!(p_input_mask & (1 << i))) {
continue; // Shader does not need this, skip it
}
attributes.push_back(vd);
buffers.push_back(buffer);
}
//update final stride
for (int i = 0; i < attributes.size(); i++) {
if (attributes[i].stride == 1) {
attributes.write[i].stride = stride;
}
}
v.input_mask = p_input_mask;
v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
}
////////////////// MULTIMESH
RID RasterizerStorageRD::multimesh_create() {
return multimesh_owner.make_rid(MultiMesh());
}
void RasterizerStorageRD::multimesh_allocate(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
return;
}
if (multimesh->buffer.is_valid()) {
RD::get_singleton()->free(multimesh->buffer);
multimesh->buffer = RID();
multimesh->uniform_set_3d = RID(); //cleared by dependency
}
if (multimesh->data_cache_dirty_regions) {
memdelete_arr(multimesh->data_cache_dirty_regions);
multimesh->data_cache_dirty_regions = nullptr;
multimesh->data_cache_used_dirty_regions = 0;
}
multimesh->instances = p_instances;
multimesh->xform_format = p_transform_format;
multimesh->uses_colors = p_use_colors;
multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
multimesh->uses_custom_data = p_use_custom_data;
multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
multimesh->buffer_set = false;
//print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
multimesh->data_cache = Vector<float>();
multimesh->aabb = AABB();
multimesh->aabb_dirty = false;
multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
if (multimesh->instances) {
multimesh->buffer = RD::get_singleton()->storage_buffer_create(multimesh->instances * multimesh->stride_cache * 4);
}
}
int RasterizerStorageRD::multimesh_get_instance_count(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, 0);
return multimesh->instances;
}
void RasterizerStorageRD::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (multimesh->mesh == p_mesh) {
return;
}
multimesh->mesh = p_mesh;
if (multimesh->instances == 0) {
return;
}
if (multimesh->data_cache.size()) {
//we have a data cache, just mark it dirt
_multimesh_mark_all_dirty(multimesh, false, true);
} else if (multimesh->instances) {
//need to re-create AABB unfortunately, calling this has a penalty
if (multimesh->buffer_set) {
Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
const uint8_t *r = buffer.ptr();
const float *data = (const float *)r;
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
}
}
multimesh->instance_dependency.instance_notify_changed(true, true);
}
#define MULTIMESH_DIRTY_REGION_SIZE 512
void RasterizerStorageRD::_multimesh_make_local(MultiMesh *multimesh) const {
if (multimesh->data_cache.size() > 0) {
return; //already local
}
ERR_FAIL_COND(multimesh->data_cache.size() > 0);
// this means that the user wants to load/save individual elements,
// for this, the data must reside on CPU, so just copy it there.
multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
{
float *w = multimesh->data_cache.ptrw();
if (multimesh->buffer_set) {
Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
{
const uint8_t *r = buffer.ptr();
copymem(w, r, buffer.size());
}
} else {
zeromem(w, multimesh->instances * multimesh->stride_cache * sizeof(float));
}
}
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
multimesh->data_cache_dirty_regions[i] = false;
}
multimesh->data_cache_used_dirty_regions = 0;
}
void RasterizerStorageRD::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
#ifdef DEBUG_ENABLED
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
#endif
if (!multimesh->data_cache_dirty_regions[region_index]) {
multimesh->data_cache_dirty_regions[region_index] = true;
multimesh->data_cache_used_dirty_regions++;
}
if (p_aabb) {
multimesh->aabb_dirty = true;
}
if (!multimesh->dirty) {
multimesh->dirty_list = multimesh_dirty_list;
multimesh_dirty_list = multimesh;
multimesh->dirty = true;
}
}
void RasterizerStorageRD::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
if (p_data) {
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
if (!multimesh->data_cache_dirty_regions[i]) {
multimesh->data_cache_dirty_regions[i] = true;
multimesh->data_cache_used_dirty_regions++;
}
}
}
if (p_aabb) {
multimesh->aabb_dirty = true;
}
if (!multimesh->dirty) {
multimesh->dirty_list = multimesh_dirty_list;
multimesh_dirty_list = multimesh;
multimesh->dirty = true;
}
}
void RasterizerStorageRD::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
ERR_FAIL_COND(multimesh->mesh.is_null());
AABB aabb;
AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
for (int i = 0; i < p_instances; i++) {
const float *data = p_data + multimesh->stride_cache * i;
Transform t;
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
t.basis.elements[0][0] = data[0];
t.basis.elements[0][1] = data[1];
t.basis.elements[0][2] = data[2];
t.origin.x = data[3];
t.basis.elements[1][0] = data[4];
t.basis.elements[1][1] = data[5];
t.basis.elements[1][2] = data[6];
t.origin.y = data[7];
t.basis.elements[2][0] = data[8];
t.basis.elements[2][1] = data[9];
t.basis.elements[2][2] = data[10];
t.origin.z = data[11];
} else {
t.basis.elements[0].x = data[0];
t.basis.elements[1].x = data[1];
t.origin.x = data[3];
t.basis.elements[0].y = data[4];
t.basis.elements[1].y = data[5];
t.origin.y = data[7];
}
if (i == 0) {
aabb = t.xform(mesh_aabb);
} else {
aabb.merge_with(t.xform(mesh_aabb));
}
}
multimesh->aabb = aabb;
}
void RasterizerStorageRD::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
_multimesh_make_local(multimesh);
{
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache;
dataptr[0] = p_transform.basis.elements[0][0];
dataptr[1] = p_transform.basis.elements[0][1];
dataptr[2] = p_transform.basis.elements[0][2];
dataptr[3] = p_transform.origin.x;
dataptr[4] = p_transform.basis.elements[1][0];
dataptr[5] = p_transform.basis.elements[1][1];
dataptr[6] = p_transform.basis.elements[1][2];
dataptr[7] = p_transform.origin.y;
dataptr[8] = p_transform.basis.elements[2][0];
dataptr[9] = p_transform.basis.elements[2][1];
dataptr[10] = p_transform.basis.elements[2][2];
dataptr[11] = p_transform.origin.z;
}
_multimesh_mark_dirty(multimesh, p_index, true);
}
void RasterizerStorageRD::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
_multimesh_make_local(multimesh);
{
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache;
dataptr[0] = p_transform.elements[0][0];
dataptr[1] = p_transform.elements[1][0];
dataptr[2] = 0;
dataptr[3] = p_transform.elements[2][0];
dataptr[4] = p_transform.elements[0][1];
dataptr[5] = p_transform.elements[1][1];
dataptr[6] = 0;
dataptr[7] = p_transform.elements[2][1];
}
_multimesh_mark_dirty(multimesh, p_index, true);
}
void RasterizerStorageRD::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(!multimesh->uses_colors);
_multimesh_make_local(multimesh);
{
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
dataptr[0] = p_color.r;
dataptr[1] = p_color.g;
dataptr[2] = p_color.b;
dataptr[3] = p_color.a;
}
_multimesh_mark_dirty(multimesh, p_index, false);
}
void RasterizerStorageRD::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(!multimesh->uses_custom_data);
_multimesh_make_local(multimesh);
{
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
dataptr[0] = p_color.r;
dataptr[1] = p_color.g;
dataptr[2] = p_color.b;
dataptr[3] = p_color.a;
}
_multimesh_mark_dirty(multimesh, p_index, false);
}
RID RasterizerStorageRD::multimesh_get_mesh(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, RID());
return multimesh->mesh;
}
Transform RasterizerStorageRD::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Transform());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform());
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform());
_multimesh_make_local(multimesh);
Transform t;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache;
t.basis.elements[0][0] = dataptr[0];
t.basis.elements[0][1] = dataptr[1];
t.basis.elements[0][2] = dataptr[2];
t.origin.x = dataptr[3];
t.basis.elements[1][0] = dataptr[4];
t.basis.elements[1][1] = dataptr[5];
t.basis.elements[1][2] = dataptr[6];
t.origin.y = dataptr[7];
t.basis.elements[2][0] = dataptr[8];
t.basis.elements[2][1] = dataptr[9];
t.basis.elements[2][2] = dataptr[10];
t.origin.z = dataptr[11];
}
return t;
}
Transform2D RasterizerStorageRD::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Transform2D());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
_multimesh_make_local(multimesh);
Transform2D t;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache;
t.elements[0][0] = dataptr[0];
t.elements[1][0] = dataptr[1];
t.elements[2][0] = dataptr[3];
t.elements[0][1] = dataptr[4];
t.elements[1][1] = dataptr[5];
t.elements[2][1] = dataptr[7];
}
return t;
}
Color RasterizerStorageRD::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
_multimesh_make_local(multimesh);
Color c;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
c.r = dataptr[0];
c.g = dataptr[1];
c.b = dataptr[2];
c.a = dataptr[3];
}
return c;
}
Color RasterizerStorageRD::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
_multimesh_make_local(multimesh);
Color c;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
c.r = dataptr[0];
c.g = dataptr[1];
c.b = dataptr[2];
c.a = dataptr[3];
}
return c;
}
void RasterizerStorageRD::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
{
const float *r = p_buffer.ptr();
RD::get_singleton()->buffer_update(multimesh->buffer, 0, p_buffer.size() * sizeof(float), r, false);
multimesh->buffer_set = true;
}
if (multimesh->data_cache.size()) {
//if we have a data cache, just update it
multimesh->data_cache = p_buffer;
{
//clear dirty since nothing will be dirty anymore
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
multimesh->data_cache_dirty_regions[i] = false;
}
multimesh->data_cache_used_dirty_regions = 0;
}
_multimesh_mark_all_dirty(multimesh, false, true); //update AABB
} else if (multimesh->mesh.is_valid()) {
//if we have a mesh set, we need to re-generate the AABB from the new data
const float *data = p_buffer.ptr();
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
multimesh->instance_dependency.instance_notify_changed(true, false);
}
}
Vector<float> RasterizerStorageRD::multimesh_get_buffer(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Vector<float>());
if (multimesh->buffer.is_null()) {
return Vector<float>();
} else if (multimesh->data_cache.size()) {
return multimesh->data_cache;
} else {
//get from memory
Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
Vector<float> ret;
2020-02-21 01:51:57 +01:00
ret.resize(multimesh->instances * multimesh->stride_cache);
{
2020-02-21 01:51:57 +01:00
float *w = ret.ptrw();
const uint8_t *r = buffer.ptr();
copymem(w, r, buffer.size());
}
return ret;
}
}
void RasterizerStorageRD::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
if (multimesh->visible_instances == p_visible) {
return;
}
if (multimesh->data_cache.size()) {
//there is a data cache..
_multimesh_mark_all_dirty(multimesh, false, true);
}
multimesh->visible_instances = p_visible;
}
int RasterizerStorageRD::multimesh_get_visible_instances(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, 0);
return multimesh->visible_instances;
}
AABB RasterizerStorageRD::multimesh_get_aabb(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, AABB());
if (multimesh->aabb_dirty) {
const_cast<RasterizerStorageRD *>(this)->_update_dirty_multimeshes();
}
return multimesh->aabb;
}
void RasterizerStorageRD::_update_dirty_multimeshes() {
while (multimesh_dirty_list) {
MultiMesh *multimesh = multimesh_dirty_list;
if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
const float *data = multimesh->data_cache.ptr();
uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
if (multimesh->data_cache_used_dirty_regions) {
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
uint32_t visible_region_count = (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) {
//if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
RD::get_singleton()->buffer_update(multimesh->buffer, 0, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data, false);
} else {
//not that many regions? update them all
for (uint32_t i = 0; i < visible_region_count; i++) {
if (multimesh->data_cache_dirty_regions[i]) {
uint64_t offset = i * region_size;
uint64_t size = multimesh->stride_cache * multimesh->instances * sizeof(float);
RD::get_singleton()->buffer_update(multimesh->buffer, offset, MIN(region_size, size - offset), &data[i * region_size], false);
}
}
}
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
multimesh->data_cache_dirty_regions[i] = false;
}
multimesh->data_cache_used_dirty_regions = 0;
}
if (multimesh->aabb_dirty) {
//aabb is dirty..
_multimesh_re_create_aabb(multimesh, data, visible_instances);
multimesh->aabb_dirty = false;
multimesh->instance_dependency.instance_notify_changed(true, false);
}
}
multimesh_dirty_list = multimesh->dirty_list;
multimesh->dirty_list = nullptr;
multimesh->dirty = false;
}
multimesh_dirty_list = nullptr;
}
/* PARTICLES */
2019-09-23 23:53:05 +02:00
RID RasterizerStorageRD::particles_create() {
return particles_owner.make_rid(Particles());
}
void RasterizerStorageRD::particles_set_emitting(RID p_particles, bool p_emitting) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->emitting = p_emitting;
}
bool RasterizerStorageRD::particles_get_emitting(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->emitting;
}
void RasterizerStorageRD::_particles_free_data(Particles *particles) {
if (!particles->particle_buffer.is_valid()) {
return;
}
RD::get_singleton()->free(particles->particle_buffer);
RD::get_singleton()->free(particles->frame_params_buffer);
RD::get_singleton()->free(particles->particle_instance_buffer);
particles->particles_transforms_buffer_uniform_set = RID();
particles->particle_buffer = RID();
if (RD::get_singleton()->uniform_set_is_valid(particles->collision_textures_uniform_set)) {
RD::get_singleton()->free(particles->collision_textures_uniform_set);
}
if (particles->particles_sort_buffer.is_valid()) {
RD::get_singleton()->free(particles->particles_sort_buffer);
particles->particles_sort_buffer = RID();
}
if (particles->emission_buffer != nullptr) {
particles->emission_buffer = nullptr;
particles->emission_buffer_data.clear();
RD::get_singleton()->free(particles->emission_storage_buffer);
particles->emission_storage_buffer = RID();
}
}
void RasterizerStorageRD::particles_set_amount(RID p_particles, int p_amount) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
if (particles->amount == p_amount) {
return;
}
_particles_free_data(particles);
particles->amount = p_amount;
if (particles->amount > 0) {
particles->particle_buffer = RD::get_singleton()->storage_buffer_create(sizeof(ParticleData) * p_amount);
particles->frame_params_buffer = RD::get_singleton()->storage_buffer_create(sizeof(ParticlesFrameParams) * 1);
particles->particle_instance_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * 4 * (3 + 1 + 1) * p_amount);
//needs to clear it
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(particles->particle_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.ids.push_back(particles->particle_instance_buffer);
uniforms.push_back(u);
}
particles->particles_copy_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.copy_shader.version_get_shader(particles_shader.copy_shader_version, 0), 0);
}
}
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
}
void RasterizerStorageRD::particles_set_lifetime(RID p_particles, float p_lifetime) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->lifetime = p_lifetime;
}
void RasterizerStorageRD::particles_set_one_shot(RID p_particles, bool p_one_shot) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->one_shot = p_one_shot;
}
void RasterizerStorageRD::particles_set_pre_process_time(RID p_particles, float p_time) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->pre_process_time = p_time;
}
void RasterizerStorageRD::particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->explosiveness = p_ratio;
}
void RasterizerStorageRD::particles_set_randomness_ratio(RID p_particles, float p_ratio) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->randomness = p_ratio;
}
void RasterizerStorageRD::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->custom_aabb = p_aabb;
particles->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::particles_set_speed_scale(RID p_particles, float p_scale) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->speed_scale = p_scale;
}
void RasterizerStorageRD::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->use_local_coords = p_enable;
}
void RasterizerStorageRD::particles_set_fixed_fps(RID p_particles, int p_fps) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->fixed_fps = p_fps;
}
void RasterizerStorageRD::particles_set_fractional_delta(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->fractional_delta = p_enable;
}
void RasterizerStorageRD::particles_set_collision_base_size(RID p_particles, float p_size) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->collision_base_size = p_size;
}
void RasterizerStorageRD::particles_set_process_material(RID p_particles, RID p_material) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->process_material = p_material;
}
void RasterizerStorageRD::particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_order = p_order;
}
void RasterizerStorageRD::particles_set_draw_passes(RID p_particles, int p_passes) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_passes.resize(p_passes);
}
void RasterizerStorageRD::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_pass, particles->draw_passes.size());
particles->draw_passes.write[p_pass] = p_mesh;
}
void RasterizerStorageRD::particles_restart(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->restart_request = true;
}
void RasterizerStorageRD::_particles_allocate_emission_buffer(Particles *particles) {
ERR_FAIL_COND(particles->emission_buffer != nullptr);
particles->emission_buffer_data.resize(sizeof(ParticleEmissionBuffer::Data) * particles->amount + sizeof(uint32_t) * 4);
zeromem(particles->emission_buffer_data.ptrw(), particles->emission_buffer_data.size());
particles->emission_buffer = (ParticleEmissionBuffer *)particles->emission_buffer_data.ptrw();
particles->emission_buffer->particle_max = particles->amount;
particles->emission_storage_buffer = RD::get_singleton()->storage_buffer_create(particles->emission_buffer_data.size(), particles->emission_buffer_data);
if (RD::get_singleton()->uniform_set_is_valid(particles->particles_material_uniform_set)) {
//will need to be re-created
RD::get_singleton()->free(particles->particles_material_uniform_set);
particles->particles_material_uniform_set = RID();
}
}
void RasterizerStorageRD::particles_set_subemitter(RID p_particles, RID p_subemitter_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_COND(p_particles == p_subemitter_particles);
particles->sub_emitter = p_subemitter_particles;
if (RD::get_singleton()->uniform_set_is_valid(particles->particles_material_uniform_set)) {
RD::get_singleton()->free(particles->particles_material_uniform_set);
particles->particles_material_uniform_set = RID(); //clear and force to re create sub emitting
}
}
void RasterizerStorageRD::particles_emit(RID p_particles, const Transform &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_COND(particles->amount == 0);
if (particles->emitting) {
particles->clear = true;
particles->emitting = false;
}
if (particles->emission_buffer == nullptr) {
_particles_allocate_emission_buffer(particles);
}
if (particles->inactive) {
//in case it was inactive, make active again
particles->inactive = false;
particles->inactive_time = 0;
}
int32_t idx = particles->emission_buffer->particle_count;
if (idx < particles->emission_buffer->particle_max) {
store_transform(p_transform, particles->emission_buffer->data[idx].xform);
particles->emission_buffer->data[idx].velocity[0] = p_velocity.x;
particles->emission_buffer->data[idx].velocity[1] = p_velocity.y;
particles->emission_buffer->data[idx].velocity[2] = p_velocity.z;
particles->emission_buffer->data[idx].custom[0] = p_custom.r;
particles->emission_buffer->data[idx].custom[1] = p_custom.g;
particles->emission_buffer->data[idx].custom[2] = p_custom.b;
particles->emission_buffer->data[idx].custom[3] = p_custom.a;
particles->emission_buffer->data[idx].color[0] = p_color.r;
particles->emission_buffer->data[idx].color[1] = p_color.g;
particles->emission_buffer->data[idx].color[2] = p_color.b;
particles->emission_buffer->data[idx].color[3] = p_color.a;
particles->emission_buffer->data[idx].flags = p_emit_flags;
particles->emission_buffer->particle_count++;
}
}
void RasterizerStorageRD::particles_request_process(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
if (!particles->dirty) {
particles->dirty = true;
particles->update_list = particle_update_list;
particle_update_list = particles;
}
}
AABB RasterizerStorageRD::particles_get_current_aabb(RID p_particles) {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
Vector<ParticleData> data;
data.resize(particles->amount);
Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(particles->particle_buffer);
Transform inv = particles->emission_transform.affine_inverse();
AABB aabb;
if (buffer.size()) {
bool first = true;
const ParticleData *particle_data = (const ParticleData *)data.ptr();
for (int i = 0; i < particles->amount; i++) {
if (particle_data[i].active) {
Vector3 pos = Vector3(particle_data[i].xform[12], particle_data[i].xform[13], particle_data[i].xform[14]);
if (!particles->use_local_coords) {
pos = inv.xform(pos);
}
if (first) {
aabb.position = pos;
first = false;
} else {
aabb.expand_to(pos);
}
}
}
}
float longest_axis_size = 0;
for (int i = 0; i < particles->draw_passes.size(); i++) {
if (particles->draw_passes[i].is_valid()) {
AABB maabb = mesh_get_aabb(particles->draw_passes[i], RID());
longest_axis_size = MAX(maabb.get_longest_axis_size(), longest_axis_size);
}
}
aabb.grow_by(longest_axis_size);
return aabb;
}
AABB RasterizerStorageRD::particles_get_aabb(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
return particles->custom_aabb;
}
void RasterizerStorageRD::particles_set_emission_transform(RID p_particles, const Transform &p_transform) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->emission_transform = p_transform;
}
int RasterizerStorageRD::particles_get_draw_passes(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, 0);
return particles->draw_passes.size();
}
RID RasterizerStorageRD::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, RID());
ERR_FAIL_INDEX_V(p_pass, particles->draw_passes.size(), RID());
return particles->draw_passes[p_pass];
}
void RasterizerStorageRD::particles_add_collision(RID p_particles, RasterizerScene::InstanceBase *p_instance) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_PARTICLES_COLLISION);
particles->collisions.insert(p_instance);
}
void RasterizerStorageRD::particles_remove_collision(RID p_particles, RasterizerScene::InstanceBase *p_instance) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->collisions.erase(p_instance);
}
void RasterizerStorageRD::_particles_process(Particles *p_particles, float p_delta) {
if (p_particles->particles_material_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(p_particles->particles_material_uniform_set)) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(p_particles->frame_params_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(p_particles->particle_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
if (p_particles->emission_storage_buffer.is_valid()) {
u.ids.push_back(p_particles->emission_storage_buffer);
} else {
u.ids.push_back(default_rd_storage_buffer);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 3;
Particles *sub_emitter = particles_owner.getornull(p_particles->sub_emitter);
if (sub_emitter) {
if (sub_emitter->emission_buffer == nullptr) { //no emission buffer, allocate emission buffer
_particles_allocate_emission_buffer(sub_emitter);
}
u.ids.push_back(sub_emitter->emission_storage_buffer);
} else {
u.ids.push_back(default_rd_storage_buffer);
}
uniforms.push_back(u);
}
p_particles->particles_material_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.default_shader_rd, 1);
}
float new_phase = Math::fmod((float)p_particles->phase + (p_delta / p_particles->lifetime) * p_particles->speed_scale, (float)1.0);
ParticlesFrameParams &frame_params = p_particles->frame_params;
if (p_particles->clear) {
p_particles->cycle_number = 0;
p_particles->random_seed = Math::rand();
} else if (new_phase < p_particles->phase) {
if (p_particles->one_shot) {
p_particles->emitting = false;
}
p_particles->cycle_number++;
}
frame_params.emitting = p_particles->emitting;
frame_params.system_phase = new_phase;
frame_params.prev_system_phase = p_particles->phase;
p_particles->phase = new_phase;
frame_params.time = RasterizerRD::singleton->get_total_time();
frame_params.delta = p_delta * p_particles->speed_scale;
frame_params.random_seed = p_particles->random_seed;
frame_params.explosiveness = p_particles->explosiveness;
frame_params.randomness = p_particles->randomness;
if (p_particles->use_local_coords) {
store_transform(Transform(), frame_params.emission_transform);
} else {
store_transform(p_particles->emission_transform, frame_params.emission_transform);
}
frame_params.cycle = p_particles->cycle_number;
{ //collision and attractors
frame_params.collider_count = 0;
frame_params.attractor_count = 0;
frame_params.particle_size = p_particles->collision_base_size;
RID collision_3d_textures[ParticlesFrameParams::MAX_3D_TEXTURES];
RID collision_heightmap_texture;
Transform to_particles;
if (p_particles->use_local_coords) {
to_particles = p_particles->emission_transform.affine_inverse();
}
uint32_t collision_3d_textures_used = 0;
for (const Set<RasterizerScene::InstanceBase *>::Element *E = p_particles->collisions.front(); E; E = E->next()) {
ParticlesCollision *pc = particles_collision_owner.getornull(E->get()->base);
Transform to_collider = E->get()->transform;
if (p_particles->use_local_coords) {
to_collider = to_particles * to_collider;
}
Vector3 scale = to_collider.basis.get_scale();
to_collider.basis.orthonormalize();
if (pc->type <= RS::PARTICLES_COLLISION_TYPE_VECTOR_FIELD_ATTRACT) {
//attractor
if (frame_params.attractor_count >= ParticlesFrameParams::MAX_ATTRACTORS) {
continue;
}
ParticlesFrameParams::Attractor &attr = frame_params.attractors[frame_params.attractor_count];
store_transform(to_collider, attr.transform);
attr.strength = pc->attractor_strength;
attr.attenuation = pc->attractor_attenuation;
attr.directionality = pc->attractor_directionality;
switch (pc->type) {
case RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT: {
attr.type = ParticlesFrameParams::ATTRACTOR_TYPE_SPHERE;
float radius = pc->radius;
radius *= (scale.x + scale.y + scale.z) / 3.0;
attr.extents[0] = radius;
attr.extents[1] = radius;
attr.extents[2] = radius;
} break;
case RS::PARTICLES_COLLISION_TYPE_BOX_ATTRACT: {
attr.type = ParticlesFrameParams::ATTRACTOR_TYPE_BOX;
Vector3 extents = pc->extents * scale;
attr.extents[0] = extents.x;
attr.extents[1] = extents.y;
attr.extents[2] = extents.z;
} break;
case RS::PARTICLES_COLLISION_TYPE_VECTOR_FIELD_ATTRACT: {
if (collision_3d_textures_used >= ParticlesFrameParams::MAX_3D_TEXTURES) {
continue;
}
attr.type = ParticlesFrameParams::ATTRACTOR_TYPE_VECTOR_FIELD;
Vector3 extents = pc->extents * scale;
attr.extents[0] = extents.x;
attr.extents[1] = extents.y;
attr.extents[2] = extents.z;
attr.texture_index = collision_3d_textures_used;
collision_3d_textures[collision_3d_textures_used] = pc->field_texture;
collision_3d_textures_used++;
} break;
default: {
}
}
frame_params.attractor_count++;
} else {
//collider
if (frame_params.collider_count >= ParticlesFrameParams::MAX_COLLIDERS) {
continue;
}
ParticlesFrameParams::Collider &col = frame_params.colliders[frame_params.collider_count];
store_transform(to_collider, col.transform);
switch (pc->type) {
case RS::PARTICLES_COLLISION_TYPE_SPHERE_COLLIDE: {
col.type = ParticlesFrameParams::COLLISION_TYPE_SPHERE;
float radius = pc->radius;
radius *= (scale.x + scale.y + scale.z) / 3.0;
col.extents[0] = radius;
col.extents[1] = radius;
col.extents[2] = radius;
} break;
case RS::PARTICLES_COLLISION_TYPE_BOX_COLLIDE: {
col.type = ParticlesFrameParams::COLLISION_TYPE_BOX;
Vector3 extents = pc->extents * scale;
col.extents[0] = extents.x;
col.extents[1] = extents.y;
col.extents[2] = extents.z;
} break;
case RS::PARTICLES_COLLISION_TYPE_SDF_COLLIDE: {
if (collision_3d_textures_used >= ParticlesFrameParams::MAX_3D_TEXTURES) {
continue;
}
col.type = ParticlesFrameParams::COLLISION_TYPE_SDF;
Vector3 extents = pc->extents * scale;
col.extents[0] = extents.x;
col.extents[1] = extents.y;
col.extents[2] = extents.z;
col.texture_index = collision_3d_textures_used;
col.scale = (scale.x + scale.y + scale.z) * 0.333333333333; //non uniform scale non supported
collision_3d_textures[collision_3d_textures_used] = pc->field_texture;
collision_3d_textures_used++;
} break;
case RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE: {
if (collision_heightmap_texture != RID()) { //already taken
continue;
}
col.type = ParticlesFrameParams::COLLISION_TYPE_HEIGHT_FIELD;
Vector3 extents = pc->extents * scale;
col.extents[0] = extents.x;
col.extents[1] = extents.y;
col.extents[2] = extents.z;
collision_heightmap_texture = pc->heightfield_texture;
} break;
default: {
}
}
frame_params.collider_count++;
}
}
bool different = false;
if (collision_3d_textures_used == p_particles->collision_3d_textures_used) {
for (int i = 0; i < ParticlesFrameParams::MAX_3D_TEXTURES; i++) {
if (p_particles->collision_3d_textures[i] != collision_3d_textures[i]) {
different = true;
break;
}
}
}
if (collision_heightmap_texture != p_particles->collision_heightmap_texture) {
different = true;
}
bool uniform_set_valid = RD::get_singleton()->uniform_set_is_valid(p_particles->collision_textures_uniform_set);
if (different || !uniform_set_valid) {
if (uniform_set_valid) {
RD::get_singleton()->free(p_particles->collision_textures_uniform_set);
}
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 0;
for (uint32_t i = 0; i < ParticlesFrameParams::MAX_3D_TEXTURES; i++) {
RID rd_tex;
if (i < collision_3d_textures_used) {
Texture *t = texture_owner.getornull(collision_3d_textures[i]);
if (t && t->type == Texture::TYPE_3D) {
rd_tex = t->rd_texture;
}
}
if (rd_tex == RID()) {
rd_tex = default_rd_textures[DEFAULT_RD_TEXTURE_3D_WHITE];
}
u.ids.push_back(rd_tex);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
if (collision_heightmap_texture.is_valid()) {
u.ids.push_back(collision_heightmap_texture);
} else {
u.ids.push_back(default_rd_textures[DEFAULT_RD_TEXTURE_BLACK]);
}
uniforms.push_back(u);
}
p_particles->collision_textures_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.default_shader_rd, 2);
}
}
ParticlesShader::PushConstant push_constant;
push_constant.clear = p_particles->clear;
push_constant.total_particles = p_particles->amount;
push_constant.lifetime = p_particles->lifetime;
push_constant.trail_size = 1;
push_constant.use_fractional_delta = p_particles->fractional_delta;
push_constant.sub_emitter_mode = !p_particles->emitting && p_particles->emission_buffer && (p_particles->emission_buffer->particle_count > 0 || p_particles->force_sub_emit);
p_particles->force_sub_emit = false; //reset
Particles *sub_emitter = particles_owner.getornull(p_particles->sub_emitter);
if (sub_emitter && sub_emitter->emission_storage_buffer.is_valid()) {
// print_line("updating subemitter buffer");
int32_t zero[4] = { 0, sub_emitter->amount, 0, 0 };
RD::get_singleton()->buffer_update(sub_emitter->emission_storage_buffer, 0, sizeof(uint32_t) * 4, zero, true);
push_constant.can_emit = true;
if (sub_emitter->emitting) {
sub_emitter->emitting = false;
sub_emitter->clear = true; //will need to clear if it was emitting, sorry
}
//make sure the sub emitter processes particles too
sub_emitter->inactive = false;
sub_emitter->inactive_time = 0;
sub_emitter->force_sub_emit = true;
} else {
push_constant.can_emit = false;
}
if (p_particles->emission_buffer && p_particles->emission_buffer->particle_count) {
RD::get_singleton()->buffer_update(p_particles->emission_storage_buffer, 0, sizeof(uint32_t) * 4 + sizeof(ParticleEmissionBuffer::Data) * p_particles->emission_buffer->particle_count, p_particles->emission_buffer, true);
p_particles->emission_buffer->particle_count = 0;
}
p_particles->clear = false;
RD::get_singleton()->buffer_update(p_particles->frame_params_buffer, 0, sizeof(ParticlesFrameParams), &frame_params, true);
ParticlesMaterialData *m = (ParticlesMaterialData *)material_get_data(p_particles->process_material, SHADER_TYPE_PARTICLES);
if (!m) {
m = (ParticlesMaterialData *)material_get_data(particles_shader.default_material, SHADER_TYPE_PARTICLES);
}
ERR_FAIL_COND(!m);
//todo should maybe compute all particle systems together?
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, m->shader_data->pipeline);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles_shader.base_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, p_particles->particles_material_uniform_set, 1);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, p_particles->collision_textures_uniform_set, 2);
if (m->uniform_set.is_valid()) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, m->uniform_set, 3);
}
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(ParticlesShader::PushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
}
void RasterizerStorageRD::particles_set_view_axis(RID p_particles, const Vector3 &p_axis) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH) {
return; //uninteresting for other modes
}
//copy to sort buffer
if (particles->particles_sort_buffer == RID()) {
uint32_t size = particles->amount;
if (size & 1) {
size++; //make multiple of 16
}
size *= sizeof(float) * 2;
particles->particles_sort_buffer = RD::get_singleton()->storage_buffer_create(size);
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(particles->particles_sort_buffer);
uniforms.push_back(u);
}
particles->particles_sort_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.copy_shader.version_get_shader(particles_shader.copy_shader_version, ParticlesShader::COPY_MODE_FILL_SORT_BUFFER), 1);
}
}
Vector3 axis = -p_axis; // cameras look to z negative
if (particles->use_local_coords) {
axis = particles->emission_transform.basis.xform_inv(axis).normalized();
}
ParticlesShader::CopyPushConstant copy_push_constant;
copy_push_constant.total_particles = particles->amount;
copy_push_constant.sort_direction[0] = axis.x;
copy_push_constant.sort_direction[1] = axis.y;
copy_push_constant.sort_direction[2] = axis.z;
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, particles_shader.copy_pipelines[ParticlesShader::COPY_MODE_FILL_SORT_BUFFER]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_copy_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_sort_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &copy_push_constant, sizeof(ParticlesShader::CopyPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
effects.sort_buffer(particles->particles_sort_uniform_set, particles->amount);
compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, particles_shader.copy_pipelines[ParticlesShader::COPY_MODE_FILL_INSTANCES_WITH_SORT_BUFFER]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_copy_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_sort_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &copy_push_constant, sizeof(ParticlesShader::CopyPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
}
void RasterizerStorageRD::update_particles() {
while (particle_update_list) {
//use transform feedback to process particles
Particles *particles = particle_update_list;
//take and remove
particle_update_list = particles->update_list;
particles->update_list = nullptr;
particles->dirty = false;
if (particles->restart_request) {
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
particles->restart_request = false;
}
if (particles->inactive && !particles->emitting) {
//go next
continue;
}
if (particles->emitting) {
if (particles->inactive) {
//restart system from scratch
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
}
particles->inactive = false;
particles->inactive_time = 0;
} else {
particles->inactive_time += particles->speed_scale * RasterizerRD::singleton->get_frame_delta_time();
if (particles->inactive_time > particles->lifetime * 1.2) {
particles->inactive = true;
continue;
}
}
bool zero_time_scale = Engine::get_singleton()->get_time_scale() <= 0.0;
if (particles->clear && particles->pre_process_time > 0.0) {
float frame_time;
if (particles->fixed_fps > 0)
frame_time = 1.0 / particles->fixed_fps;
else
frame_time = 1.0 / 30.0;
float todo = particles->pre_process_time;
while (todo >= 0) {
_particles_process(particles, frame_time);
todo -= frame_time;
}
}
if (particles->fixed_fps > 0) {
float frame_time;
float decr;
if (zero_time_scale) {
frame_time = 0.0;
decr = 1.0 / particles->fixed_fps;
} else {
frame_time = 1.0 / particles->fixed_fps;
decr = frame_time;
}
float delta = RasterizerRD::singleton->get_frame_delta_time();
if (delta > 0.1) { //avoid recursive stalls if fps goes below 10
delta = 0.1;
} else if (delta <= 0.0) { //unlikely but..
delta = 0.001;
}
float todo = particles->frame_remainder + delta;
while (todo >= frame_time) {
_particles_process(particles, frame_time);
todo -= decr;
}
particles->frame_remainder = todo;
} else {
if (zero_time_scale)
_particles_process(particles, 0.0);
else
_particles_process(particles, RasterizerRD::singleton->get_frame_delta_time());
}
//copy particles to instance buffer
if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH) {
ParticlesShader::CopyPushConstant copy_push_constant;
copy_push_constant.total_particles = particles->amount;
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, particles_shader.copy_pipelines[ParticlesShader::COPY_MODE_FILL_INSTANCES]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_copy_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &copy_push_constant, sizeof(ParticlesShader::CopyPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
}
particles->instance_dependency.instance_notify_changed(true, false); //make sure shadows are updated
}
}
bool RasterizerStorageRD::particles_is_inactive(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return !particles->emitting && particles->inactive;
}
/* SKY SHADER */
void RasterizerStorageRD::ParticlesShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
if (code == String()) {
return; //just invalid, but no error
}
ShaderCompilerRD::GeneratedCode gen_code;
ShaderCompilerRD::IdentifierActions actions;
/*
uses_time = false;
actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
actions.usage_flag_pointers["TIME"] = &uses_time;
*/
actions.uniforms = &uniforms;
Error err = base_singleton->particles_shader.compiler.compile(RS::SHADER_PARTICLES, code, &actions, path, gen_code);
ERR_FAIL_COND(err != OK);
if (version.is_null()) {
version = base_singleton->particles_shader.shader.version_create();
}
base_singleton->particles_shader.shader.version_set_compute_code(version, gen_code.uniforms, gen_code.compute_global, gen_code.compute, gen_code.defines);
ERR_FAIL_COND(!base_singleton->particles_shader.shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
//update pipelines
pipeline = RD::get_singleton()->compute_pipeline_create(base_singleton->particles_shader.shader.version_get_shader(version, 0));
valid = true;
}
void RasterizerStorageRD::ParticlesShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
if (!p_texture.is_valid()) {
default_texture_params.erase(p_name);
} else {
default_texture_params[p_name] = p_texture;
}
}
void RasterizerStorageRD::ParticlesShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
if (E->get().texture_order >= 0) {
order[E->get().texture_order + 100000] = E->key();
} else {
order[E->get().order] = E->key();
}
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
pi.name = E->get();
p_param_list->push_back(pi);
}
}
void RasterizerStorageRD::ParticlesShaderData::get_instance_param_list(List<RasterizerStorage::InstanceShaderParam> *p_param_list) const {
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
RasterizerStorage::InstanceShaderParam p;
p.info = ShaderLanguage::uniform_to_property_info(E->get());
p.info.name = E->key(); //supply name
p.index = E->get().instance_index;
p.default_value = ShaderLanguage::constant_value_to_variant(E->get().default_value, E->get().type, E->get().hint);
p_param_list->push_back(p);
}
}
bool RasterizerStorageRD::ParticlesShaderData::is_param_texture(const StringName &p_param) const {
if (!uniforms.has(p_param)) {
return false;
}
return uniforms[p_param].texture_order >= 0;
}
bool RasterizerStorageRD::ParticlesShaderData::is_animated() const {
return false;
}
bool RasterizerStorageRD::ParticlesShaderData::casts_shadows() const {
return false;
}
Variant RasterizerStorageRD::ParticlesShaderData::get_default_parameter(const StringName &p_parameter) const {
if (uniforms.has(p_parameter)) {
ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
}
return Variant();
}
RasterizerStorageRD::ParticlesShaderData::ParticlesShaderData() {
valid = false;
}
RasterizerStorageRD::ParticlesShaderData::~ParticlesShaderData() {
//pipeline variants will clear themselves if shader is gone
if (version.is_valid()) {
base_singleton->particles_shader.shader.version_free(version);
}
}
RasterizerStorageRD::ShaderData *RasterizerStorageRD::_create_particles_shader_func() {
ParticlesShaderData *shader_data = memnew(ParticlesShaderData);
return shader_data;
}
void RasterizerStorageRD::ParticlesMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
uniform_set_updated = true;
if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
p_uniform_dirty = true;
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
uniform_buffer = RID();
}
ubo_data.resize(shader_data->ubo_size);
if (ubo_data.size()) {
uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
}
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
//check whether buffer changed
if (p_uniform_dirty && ubo_data.size()) {
update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
}
uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
if ((uint32_t)texture_cache.size() != tex_uniform_count) {
texture_cache.resize(tex_uniform_count);
p_textures_dirty = true;
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
if (p_textures_dirty && tex_uniform_count) {
update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true);
}
if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) {
// This material does not require an uniform set, so don't create it.
return;
}
if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
//no reason to update uniform set, only UBO (or nothing) was needed to update
return;
}
Vector<RD::Uniform> uniforms;
{
if (shader_data->ubo_size) {
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 0;
u.ids.push_back(uniform_buffer);
uniforms.push_back(u);
}
const RID *textures = texture_cache.ptrw();
for (uint32_t i = 0; i < tex_uniform_count; i++) {
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1 + i;
u.ids.push_back(textures[i]);
uniforms.push_back(u);
}
}
uniform_set = RD::get_singleton()->uniform_set_create(uniforms, base_singleton->particles_shader.shader.version_get_shader(shader_data->version, 0), 3);
}
RasterizerStorageRD::ParticlesMaterialData::~ParticlesMaterialData() {
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
}
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
}
}
RasterizerStorageRD::MaterialData *RasterizerStorageRD::_create_particles_material_func(ParticlesShaderData *p_shader) {
ParticlesMaterialData *material_data = memnew(ParticlesMaterialData);
material_data->shader_data = p_shader;
material_data->last_frame = false;
//update will happen later anyway so do nothing.
return material_data;
}
////////
/* PARTICLES COLLISION API */
RID RasterizerStorageRD::particles_collision_create() {
return particles_collision_owner.make_rid(ParticlesCollision());
}
RID RasterizerStorageRD::particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, RID());
ERR_FAIL_COND_V(particles_collision->type != RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE, RID());
if (particles_collision->heightfield_texture == RID()) {
//create
int resolutions[RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_MAX] = { 256, 512, 1024, 2048, 4096, 8192 };
Size2i size;
if (particles_collision->extents.x > particles_collision->extents.z) {
size.x = resolutions[particles_collision->heightfield_resolution];
size.y = int32_t(particles_collision->extents.z / particles_collision->extents.x * size.x);
} else {
size.y = resolutions[particles_collision->heightfield_resolution];
size.x = int32_t(particles_collision->extents.x / particles_collision->extents.z * size.y);
}
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_D32_SFLOAT;
tf.width = size.x;
tf.height = size.y;
tf.type = RD::TEXTURE_TYPE_2D;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
particles_collision->heightfield_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
Vector<RID> fb_tex;
fb_tex.push_back(particles_collision->heightfield_texture);
particles_collision->heightfield_fb = RD::get_singleton()->framebuffer_create(fb_tex);
particles_collision->heightfield_fb_size = size;
}
return particles_collision->heightfield_fb;
}
void RasterizerStorageRD::particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
if (p_type == particles_collision->type) {
return;
}
if (particles_collision->heightfield_texture.is_valid()) {
RD::get_singleton()->free(particles_collision->heightfield_texture);
particles_collision->heightfield_texture = RID();
}
particles_collision->type = p_type;
particles_collision->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->cull_mask = p_cull_mask;
}
void RasterizerStorageRD::particles_collision_set_sphere_radius(RID p_particles_collision, float p_radius) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->radius = p_radius;
particles_collision->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->extents = p_extents;
particles_collision->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::particles_collision_set_attractor_strength(RID p_particles_collision, float p_strength) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->attractor_strength = p_strength;
}
void RasterizerStorageRD::particles_collision_set_attractor_directionality(RID p_particles_collision, float p_directionality) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->attractor_directionality = p_directionality;
}
void RasterizerStorageRD::particles_collision_set_attractor_attenuation(RID p_particles_collision, float p_curve) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->attractor_attenuation = p_curve;
}
void RasterizerStorageRD::particles_collision_set_field_texture(RID p_particles_collision, RID p_texture) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->field_texture = p_texture;
}
void RasterizerStorageRD::particles_collision_height_field_update(RID p_particles_collision) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
particles_collision->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND(!particles_collision);
if (particles_collision->heightfield_resolution == p_resolution) {
return;
}
particles_collision->heightfield_resolution = p_resolution;
if (particles_collision->heightfield_texture.is_valid()) {
RD::get_singleton()->free(particles_collision->heightfield_texture);
particles_collision->heightfield_texture = RID();
}
}
AABB RasterizerStorageRD::particles_collision_get_aabb(RID p_particles_collision) const {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, AABB());
switch (particles_collision->type) {
case RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT:
case RS::PARTICLES_COLLISION_TYPE_SPHERE_COLLIDE: {
AABB aabb;
aabb.position = -Vector3(1, 1, 1) * particles_collision->radius;
aabb.size = Vector3(2, 2, 2) * particles_collision->radius;
return aabb;
}
default: {
AABB aabb;
aabb.position = -particles_collision->extents;
aabb.size = particles_collision->extents * 2;
return aabb;
}
}
return AABB();
}
Vector3 RasterizerStorageRD::particles_collision_get_extents(RID p_particles_collision) const {
const ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, Vector3());
return particles_collision->extents;
}
bool RasterizerStorageRD::particles_collision_is_heightfield(RID p_particles_collision) const {
const ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_particles_collision);
ERR_FAIL_COND_V(!particles_collision, false);
return particles_collision->type == RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE;
}
2019-09-23 23:53:05 +02:00
/* SKELETON API */
RID RasterizerStorageRD::skeleton_create() {
return skeleton_owner.make_rid(Skeleton());
}
void RasterizerStorageRD::_skeleton_make_dirty(Skeleton *skeleton) {
if (!skeleton->dirty) {
skeleton->dirty = true;
skeleton->dirty_list = skeleton_dirty_list;
skeleton_dirty_list = skeleton;
}
}
void RasterizerStorageRD::skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_COND(p_bones < 0);
if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
2019-09-23 23:53:05 +02:00
return;
}
2019-09-23 23:53:05 +02:00
skeleton->size = p_bones;
skeleton->use_2d = p_2d_skeleton;
skeleton->uniform_set_3d = RID();
if (skeleton->buffer.is_valid()) {
RD::get_singleton()->free(skeleton->buffer);
skeleton->buffer = RID();
skeleton->data.resize(0);
}
if (skeleton->size) {
skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
zeromem(skeleton->data.ptrw(), skeleton->data.size() * sizeof(float));
_skeleton_make_dirty(skeleton);
}
}
2019-09-23 23:53:05 +02:00
int RasterizerStorageRD::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, 0);
return skeleton->size;
}
void RasterizerStorageRD::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(skeleton->use_2d);
float *dataptr = skeleton->data.ptrw() + p_bone * 12;
dataptr[0] = p_transform.basis.elements[0][0];
dataptr[1] = p_transform.basis.elements[0][1];
dataptr[2] = p_transform.basis.elements[0][2];
dataptr[3] = p_transform.origin.x;
dataptr[4] = p_transform.basis.elements[1][0];
dataptr[5] = p_transform.basis.elements[1][1];
dataptr[6] = p_transform.basis.elements[1][2];
dataptr[7] = p_transform.origin.y;
dataptr[8] = p_transform.basis.elements[2][0];
dataptr[9] = p_transform.basis.elements[2][1];
dataptr[10] = p_transform.basis.elements[2][2];
dataptr[11] = p_transform.origin.z;
_skeleton_make_dirty(skeleton);
}
Transform RasterizerStorageRD::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform());
ERR_FAIL_COND_V(skeleton->use_2d, Transform());
const float *dataptr = skeleton->data.ptr() + p_bone * 12;
Transform t;
t.basis.elements[0][0] = dataptr[0];
t.basis.elements[0][1] = dataptr[1];
t.basis.elements[0][2] = dataptr[2];
t.origin.x = dataptr[3];
t.basis.elements[1][0] = dataptr[4];
t.basis.elements[1][1] = dataptr[5];
t.basis.elements[1][2] = dataptr[6];
t.origin.y = dataptr[7];
t.basis.elements[2][0] = dataptr[8];
t.basis.elements[2][1] = dataptr[9];
t.basis.elements[2][2] = dataptr[10];
t.origin.z = dataptr[11];
return t;
}
2019-09-23 23:53:05 +02:00
void RasterizerStorageRD::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(!skeleton->use_2d);
float *dataptr = skeleton->data.ptrw() + p_bone * 8;
dataptr[0] = p_transform.elements[0][0];
dataptr[1] = p_transform.elements[1][0];
dataptr[2] = 0;
dataptr[3] = p_transform.elements[2][0];
dataptr[4] = p_transform.elements[0][1];
dataptr[5] = p_transform.elements[1][1];
dataptr[6] = 0;
dataptr[7] = p_transform.elements[2][1];
_skeleton_make_dirty(skeleton);
}
2019-09-23 23:53:05 +02:00
Transform2D RasterizerStorageRD::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform2D());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
const float *dataptr = skeleton->data.ptr() + p_bone * 8;
Transform2D t;
t.elements[0][0] = dataptr[0];
t.elements[1][0] = dataptr[1];
t.elements[2][0] = dataptr[3];
t.elements[0][1] = dataptr[4];
t.elements[1][1] = dataptr[5];
t.elements[2][1] = dataptr[7];
return t;
}
void RasterizerStorageRD::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton->use_2d);
skeleton->base_transform_2d = p_base_transform;
}
void RasterizerStorageRD::_update_dirty_skeletons() {
while (skeleton_dirty_list) {
Skeleton *skeleton = skeleton_dirty_list;
if (skeleton->size) {
RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr(), false);
}
skeleton_dirty_list = skeleton->dirty_list;
skeleton->instance_dependency.instance_notify_changed(true, false);
skeleton->dirty = false;
skeleton->dirty_list = nullptr;
}
skeleton_dirty_list = nullptr;
}
/* LIGHT */
RID RasterizerStorageRD::light_create(RS::LightType p_type) {
Light light;
light.type = p_type;
light.param[RS::LIGHT_PARAM_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5;
light.param[RS::LIGHT_PARAM_RANGE] = 1.0;
2020-04-09 20:11:15 +02:00
light.param[RS::LIGHT_PARAM_SIZE] = 0.0;
light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45;
light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6;
light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8;
light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02;
light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0;
light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05;
2020-08-13 03:21:01 +02:00
light.param[RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE] = 1.0;
return light_owner.make_rid(light);
}
void RasterizerStorageRD::light_set_color(RID p_light, const Color &p_color) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->color = p_color;
}
void RasterizerStorageRD::light_set_param(RID p_light, RS::LightParam p_param, float p_value) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX);
switch (p_param) {
case RS::LIGHT_PARAM_RANGE:
case RS::LIGHT_PARAM_SPOT_ANGLE:
case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE:
case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET:
case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET:
case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET:
case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS:
case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE:
case RS::LIGHT_PARAM_SHADOW_BIAS: {
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
} break;
default: {
}
}
light->param[p_param] = p_value;
}
void RasterizerStorageRD::light_set_shadow(RID p_light, bool p_enabled) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->shadow = p_enabled;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::light_set_shadow_color(RID p_light, const Color &p_color) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->shadow_color = p_color;
}
void RasterizerStorageRD::light_set_projector(RID p_light, RID p_texture) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
if (light->projector == p_texture) {
return;
}
if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) {
texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
}
light->projector = p_texture;
if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) {
texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
}
}
void RasterizerStorageRD::light_set_negative(RID p_light, bool p_enable) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->negative = p_enable;
}
void RasterizerStorageRD::light_set_cull_mask(RID p_light, uint32_t p_mask) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->cull_mask = p_mask;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->reverse_cull = p_enabled;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->bake_mode = p_bake_mode;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->max_sdfgi_cascade = p_cascade;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_mode = p_mode;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
RS::LightOmniShadowMode RasterizerStorageRD::light_omni_get_shadow_mode(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_OMNI_SHADOW_CUBE);
return light->omni_shadow_mode;
}
void RasterizerStorageRD::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_shadow_mode = p_mode;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::light_directional_set_blend_splits(RID p_light, bool p_enable) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_blend_splits = p_enable;
light->version++;
light->instance_dependency.instance_notify_changed(true, false);
}
bool RasterizerStorageRD::light_directional_get_blend_splits(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, false);
return light->directional_blend_splits;
}
RS::LightDirectionalShadowMode RasterizerStorageRD::light_directional_get_shadow_mode(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
return light->directional_shadow_mode;
}
void RasterizerStorageRD::light_directional_set_shadow_depth_range_mode(RID p_light, RS::LightDirectionalShadowDepthRangeMode p_range_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_range_mode = p_range_mode;
}
RS::LightDirectionalShadowDepthRangeMode RasterizerStorageRD::light_directional_get_shadow_depth_range_mode(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE);
return light->directional_range_mode;
}
uint32_t RasterizerStorageRD::light_get_max_sdfgi_cascade(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->max_sdfgi_cascade;
}
RS::LightBakeMode RasterizerStorageRD::light_get_bake_mode(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_BAKE_DISABLED);
return light->bake_mode;
}
uint64_t RasterizerStorageRD::light_get_version(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->version;
}
AABB RasterizerStorageRD::light_get_aabb(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, AABB());
switch (light->type) {
case RS::LIGHT_SPOT: {
float len = light->param[RS::LIGHT_PARAM_RANGE];
float size = Math::tan(Math::deg2rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len;
return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
};
case RS::LIGHT_OMNI: {
float r = light->param[RS::LIGHT_PARAM_RANGE];
return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
};
case RS::LIGHT_DIRECTIONAL: {
return AABB();
};
}
ERR_FAIL_V(AABB());
}
/* REFLECTION PROBE */
RID RasterizerStorageRD::reflection_probe_create() {
return reflection_probe_owner.make_rid(ReflectionProbe());
}
void RasterizerStorageRD::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->update_mode = p_mode;
reflection_probe->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::reflection_probe_set_intensity(RID p_probe, float p_intensity) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->intensity = p_intensity;
}
void RasterizerStorageRD::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->ambient_mode = p_mode;
}
void RasterizerStorageRD::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->ambient_color = p_color;
}
void RasterizerStorageRD::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->ambient_color_energy = p_energy;
}
void RasterizerStorageRD::reflection_probe_set_max_distance(RID p_probe, float p_distance) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->max_distance = p_distance;
reflection_probe->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
if (reflection_probe->extents == p_extents) {
return;
}
reflection_probe->extents = p_extents;
reflection_probe->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->origin_offset = p_offset;
reflection_probe->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::reflection_probe_set_as_interior(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior = p_enable;
reflection_probe->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->box_projection = p_enable;
}
void RasterizerStorageRD::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->enable_shadows = p_enable;
reflection_probe->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->cull_mask = p_layers;
reflection_probe->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::reflection_probe_set_resolution(RID p_probe, int p_resolution) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
ERR_FAIL_COND(p_resolution < 32);
reflection_probe->resolution = p_resolution;
}
AABB RasterizerStorageRD::reflection_probe_get_aabb(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, AABB());
AABB aabb;
aabb.position = -reflection_probe->extents;
aabb.size = reflection_probe->extents * 2.0;
return aabb;
}
RS::ReflectionProbeUpdateMode RasterizerStorageRD::reflection_probe_get_update_mode(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, RS::REFLECTION_PROBE_UPDATE_ALWAYS);
return reflection_probe->update_mode;
}
uint32_t RasterizerStorageRD::reflection_probe_get_cull_mask(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->cull_mask;
}
Vector3 RasterizerStorageRD::reflection_probe_get_extents(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, Vector3());
return reflection_probe->extents;
}
Vector3 RasterizerStorageRD::reflection_probe_get_origin_offset(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, Vector3());
return reflection_probe->origin_offset;
}
bool RasterizerStorageRD::reflection_probe_renders_shadows(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, false);
return reflection_probe->enable_shadows;
}
float RasterizerStorageRD::reflection_probe_get_origin_max_distance(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->max_distance;
}
int RasterizerStorageRD::reflection_probe_get_resolution(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->resolution;
}
float RasterizerStorageRD::reflection_probe_get_intensity(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->intensity;
}
bool RasterizerStorageRD::reflection_probe_is_interior(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, false);
return reflection_probe->interior;
}
bool RasterizerStorageRD::reflection_probe_is_box_projection(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, false);
return reflection_probe->box_projection;
}
RS::ReflectionProbeAmbientMode RasterizerStorageRD::reflection_probe_get_ambient_mode(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, RS::REFLECTION_PROBE_AMBIENT_DISABLED);
return reflection_probe->ambient_mode;
}
Color RasterizerStorageRD::reflection_probe_get_ambient_color(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, Color());
return reflection_probe->ambient_color;
}
float RasterizerStorageRD::reflection_probe_get_ambient_color_energy(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->ambient_color_energy;
}
RID RasterizerStorageRD::decal_create() {
return decal_owner.make_rid(Decal());
}
void RasterizerStorageRD::decal_set_extents(RID p_decal, const Vector3 &p_extents) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->extents = p_extents;
decal->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::decal_set_texture(RID p_decal, RS::DecalTexture p_type, RID p_texture) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
ERR_FAIL_INDEX(p_type, RS::DECAL_TEXTURE_MAX);
if (decal->textures[p_type] == p_texture) {
return;
}
ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture));
if (decal->textures[p_type].is_valid() && texture_owner.owns(decal->textures[p_type])) {
texture_remove_from_decal_atlas(decal->textures[p_type]);
}
decal->textures[p_type] = p_texture;
if (decal->textures[p_type].is_valid()) {
texture_add_to_decal_atlas(decal->textures[p_type]);
}
decal->instance_dependency.instance_notify_changed(false, true);
}
void RasterizerStorageRD::decal_set_emission_energy(RID p_decal, float p_energy) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->emission_energy = p_energy;
}
void RasterizerStorageRD::decal_set_albedo_mix(RID p_decal, float p_mix) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->albedo_mix = p_mix;
}
void RasterizerStorageRD::decal_set_modulate(RID p_decal, const Color &p_modulate) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->modulate = p_modulate;
}
void RasterizerStorageRD::decal_set_cull_mask(RID p_decal, uint32_t p_layers) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->cull_mask = p_layers;
decal->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::decal_set_distance_fade(RID p_decal, bool p_enabled, float p_begin, float p_length) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->distance_fade = p_enabled;
decal->distance_fade_begin = p_begin;
decal->distance_fade_length = p_length;
}
void RasterizerStorageRD::decal_set_fade(RID p_decal, float p_above, float p_below) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->upper_fade = p_above;
decal->lower_fade = p_below;
}
void RasterizerStorageRD::decal_set_normal_fade(RID p_decal, float p_fade) {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND(!decal);
decal->normal_fade = p_fade;
}
AABB RasterizerStorageRD::decal_get_aabb(RID p_decal) const {
Decal *decal = decal_owner.getornull(p_decal);
ERR_FAIL_COND_V(!decal, AABB());
return AABB(-decal->extents, decal->extents * 2.0);
}
2019-10-03 22:39:08 +02:00
RID RasterizerStorageRD::gi_probe_create() {
return gi_probe_owner.make_rid(GIProbe());
}
void RasterizerStorageRD::gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
2019-10-03 22:39:08 +02:00
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
if (gi_probe->octree_buffer.is_valid()) {
RD::get_singleton()->free(gi_probe->octree_buffer);
RD::get_singleton()->free(gi_probe->data_buffer);
if (gi_probe->sdf_texture.is_valid()) {
RD::get_singleton()->free(gi_probe->sdf_texture);
2019-10-03 22:39:08 +02:00
}
gi_probe->sdf_texture = RID();
gi_probe->octree_buffer = RID();
gi_probe->data_buffer = RID();
gi_probe->octree_buffer_size = 0;
gi_probe->data_buffer_size = 0;
gi_probe->cell_count = 0;
2019-10-03 22:39:08 +02:00
}
gi_probe->to_cell_xform = p_to_cell_xform;
gi_probe->bounds = p_aabb;
gi_probe->octree_size = p_octree_size;
gi_probe->level_counts = p_level_counts;
if (p_octree_cells.size()) {
2019-10-03 22:39:08 +02:00
ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32
uint32_t cell_count = p_octree_cells.size() / 32;
ERR_FAIL_COND(p_data_cells.size() != (int)cell_count * 16); //see that data size matches
2019-10-03 22:39:08 +02:00
gi_probe->cell_count = cell_count;
gi_probe->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells);
gi_probe->octree_buffer_size = p_octree_cells.size();
gi_probe->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells);
gi_probe->data_buffer_size = p_data_cells.size();
if (p_distance_field.size()) {
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R8_UNORM;
tf.width = gi_probe->octree_size.x;
tf.height = gi_probe->octree_size.y;
tf.depth = gi_probe->octree_size.z;
tf.type = RD::TEXTURE_TYPE_3D;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
Vector<Vector<uint8_t>> s;
s.push_back(p_distance_field);
gi_probe->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView(), s);
}
#if 0
{
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R8_UNORM;
tf.width = gi_probe->octree_size.x;
tf.height = gi_probe->octree_size.y;
tf.depth = gi_probe->octree_size.z;
tf.type = RD::TEXTURE_TYPE_3D;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UNORM);
tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UINT);
gi_probe->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
RID shared_tex;
{
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_R8_UINT;
shared_tex = RD::get_singleton()->texture_create_shared(tv, gi_probe->sdf_texture);
}
//update SDF texture
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(gi_probe->octree_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.ids.push_back(gi_probe->data_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 3;
u.ids.push_back(shared_tex);
uniforms.push_back(u);
}
RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_sdf_shader_version_shader, 0);
{
uint32_t push_constant[4] = { 0, 0, 0, 0 };
for (int i = 0; i < gi_probe->level_counts.size() - 1; i++) {
push_constant[0] += gi_probe->level_counts[i];
}
push_constant[1] = push_constant[0] + gi_probe->level_counts[gi_probe->level_counts.size() - 1];
print_line("offset: " + itos(push_constant[0]));
print_line("size: " + itos(push_constant[1]));
//create SDF
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_sdf_shader_pipeline);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, push_constant, sizeof(uint32_t) * 4);
RD::get_singleton()->compute_list_dispatch(compute_list, gi_probe->octree_size.x / 4, gi_probe->octree_size.y / 4, gi_probe->octree_size.z / 4);
RD::get_singleton()->compute_list_end();
}
RD::get_singleton()->free(uniform_set);
RD::get_singleton()->free(shared_tex);
}
#endif
2019-10-03 22:39:08 +02:00
}
gi_probe->version++;
gi_probe->data_version++;
2019-10-03 22:39:08 +02:00
gi_probe->instance_dependency.instance_notify_changed(true, false);
}
AABB RasterizerStorageRD::gi_probe_get_bounds(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, AABB());
return gi_probe->bounds;
}
Vector3i RasterizerStorageRD::gi_probe_get_octree_size(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, Vector3i());
return gi_probe->octree_size;
}
Vector<uint8_t> RasterizerStorageRD::gi_probe_get_octree_cells(RID p_gi_probe) const {
2019-10-03 22:39:08 +02:00
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, Vector<uint8_t>());
2019-10-03 22:39:08 +02:00
if (gi_probe->octree_buffer.is_valid()) {
return RD::get_singleton()->buffer_get_data(gi_probe->octree_buffer);
}
return Vector<uint8_t>();
2019-10-03 22:39:08 +02:00
}
Vector<uint8_t> RasterizerStorageRD::gi_probe_get_data_cells(RID p_gi_probe) const {
2019-10-03 22:39:08 +02:00
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, Vector<uint8_t>());
2019-10-03 22:39:08 +02:00
if (gi_probe->data_buffer.is_valid()) {
return RD::get_singleton()->buffer_get_data(gi_probe->data_buffer);
}
return Vector<uint8_t>();
2019-10-03 22:39:08 +02:00
}
Vector<uint8_t> RasterizerStorageRD::gi_probe_get_distance_field(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, Vector<uint8_t>());
if (gi_probe->data_buffer.is_valid()) {
return RD::get_singleton()->texture_get_data(gi_probe->sdf_texture, 0);
}
return Vector<uint8_t>();
}
Vector<int> RasterizerStorageRD::gi_probe_get_level_counts(RID p_gi_probe) const {
2019-10-03 22:39:08 +02:00
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, Vector<int>());
2019-10-03 22:39:08 +02:00
return gi_probe->level_counts;
}
2019-10-03 22:39:08 +02:00
Transform RasterizerStorageRD::gi_probe_get_to_cell_xform(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, Transform());
return gi_probe->to_cell_xform;
}
void RasterizerStorageRD::gi_probe_set_dynamic_range(RID p_gi_probe, float p_range) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->dynamic_range = p_range;
gi_probe->version++;
}
2019-10-03 22:39:08 +02:00
float RasterizerStorageRD::gi_probe_get_dynamic_range(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->dynamic_range;
}
void RasterizerStorageRD::gi_probe_set_propagation(RID p_gi_probe, float p_range) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->propagation = p_range;
gi_probe->version++;
}
2019-10-03 22:39:08 +02:00
float RasterizerStorageRD::gi_probe_get_propagation(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->propagation;
}
void RasterizerStorageRD::gi_probe_set_energy(RID p_gi_probe, float p_energy) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->energy = p_energy;
}
2019-10-03 22:39:08 +02:00
float RasterizerStorageRD::gi_probe_get_energy(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->energy;
}
void RasterizerStorageRD::gi_probe_set_ao(RID p_gi_probe, float p_ao) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->ao = p_ao;
}
float RasterizerStorageRD::gi_probe_get_ao(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->ao;
}
2019-11-04 22:17:53 +01:00
void RasterizerStorageRD::gi_probe_set_ao_size(RID p_gi_probe, float p_strength) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
2019-11-04 22:17:53 +01:00
gi_probe->ao_size = p_strength;
}
2019-11-04 22:17:53 +01:00
float RasterizerStorageRD::gi_probe_get_ao_size(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
2019-11-04 22:17:53 +01:00
return gi_probe->ao_size;
}
2019-10-03 22:39:08 +02:00
void RasterizerStorageRD::gi_probe_set_bias(RID p_gi_probe, float p_bias) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->bias = p_bias;
}
2019-10-03 22:39:08 +02:00
float RasterizerStorageRD::gi_probe_get_bias(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->bias;
}
void RasterizerStorageRD::gi_probe_set_normal_bias(RID p_gi_probe, float p_normal_bias) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->normal_bias = p_normal_bias;
}
2019-10-03 22:39:08 +02:00
float RasterizerStorageRD::gi_probe_get_normal_bias(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->normal_bias;
}
void RasterizerStorageRD::gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->anisotropy_strength = p_strength;
}
float RasterizerStorageRD::gi_probe_get_anisotropy_strength(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->anisotropy_strength;
}
void RasterizerStorageRD::gi_probe_set_interior(RID p_gi_probe, bool p_enable) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->interior = p_enable;
}
void RasterizerStorageRD::gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->use_two_bounces = p_enable;
gi_probe->version++;
}
bool RasterizerStorageRD::gi_probe_is_using_two_bounces(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, false);
return gi_probe->use_two_bounces;
}
bool RasterizerStorageRD::gi_probe_is_interior(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->interior;
}
uint32_t RasterizerStorageRD::gi_probe_get_version(RID p_gi_probe) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->version;
}
uint32_t RasterizerStorageRD::gi_probe_get_data_version(RID p_gi_probe) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, 0);
return gi_probe->data_version;
}
RID RasterizerStorageRD::gi_probe_get_octree_buffer(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, RID());
return gi_probe->octree_buffer;
}
2019-10-03 22:39:08 +02:00
RID RasterizerStorageRD::gi_probe_get_data_buffer(RID p_gi_probe) const {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, RID());
return gi_probe->data_buffer;
}
RID RasterizerStorageRD::gi_probe_get_sdf_texture(RID p_gi_probe) {
GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe);
ERR_FAIL_COND_V(!gi_probe, RID());
return gi_probe->sdf_texture;
}
/* LIGHTMAP API */
RID RasterizerStorageRD::lightmap_create() {
return lightmap_owner.make_rid(Lightmap());
}
void RasterizerStorageRD::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND(!lm);
lightmap_array_version++;
//erase lightmap users
if (lm->light_texture.is_valid()) {
Texture *t = texture_owner.getornull(lm->light_texture);
if (t) {
t->lightmap_users.erase(p_lightmap);
}
}
Texture *t = texture_owner.getornull(p_light);
lm->light_texture = p_light;
lm->uses_spherical_harmonics = p_uses_spherical_haromics;
RID default_2d_array = default_rd_textures[DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE];
if (!t) {
if (using_lightmap_array) {
if (lm->array_index >= 0) {
lightmap_textures.write[lm->array_index] = default_2d_array;
lm->array_index = -1;
}
}
return;
}
t->lightmap_users.insert(p_lightmap);
if (using_lightmap_array) {
if (lm->array_index < 0) {
//not in array, try to put in array
for (int i = 0; i < lightmap_textures.size(); i++) {
if (lightmap_textures[i] == default_2d_array) {
lm->array_index = i;
break;
}
}
}
ERR_FAIL_COND_MSG(lm->array_index < 0, "Maximum amount of lightmaps in use (" + itos(lightmap_textures.size()) + ") has been exceeded, lightmap will nod display properly.");
lightmap_textures.write[lm->array_index] = t->rd_texture;
}
}
void RasterizerStorageRD::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND(!lm);
lm->bounds = p_bounds;
}
void RasterizerStorageRD::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND(!lm);
lm->interior = p_interior;
}
void RasterizerStorageRD::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND(!lm);
if (p_points.size()) {
ERR_FAIL_COND(p_points.size() * 9 != p_point_sh.size());
ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0);
ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0);
}
lm->points = p_points;
lm->bsp_tree = p_bsp_tree;
lm->point_sh = p_point_sh;
lm->tetrahedra = p_tetrahedra;
}
PackedVector3Array RasterizerStorageRD::lightmap_get_probe_capture_points(RID p_lightmap) const {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND_V(!lm, PackedVector3Array());
return lm->points;
}
PackedColorArray RasterizerStorageRD::lightmap_get_probe_capture_sh(RID p_lightmap) const {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND_V(!lm, PackedColorArray());
return lm->point_sh;
}
PackedInt32Array RasterizerStorageRD::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND_V(!lm, PackedInt32Array());
return lm->tetrahedra;
}
PackedInt32Array RasterizerStorageRD::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND_V(!lm, PackedInt32Array());
return lm->bsp_tree;
}
void RasterizerStorageRD::lightmap_set_probe_capture_update_speed(float p_speed) {
lightmap_probe_capture_update_speed = p_speed;
}
void RasterizerStorageRD::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) {
Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND(!lm);
for (int i = 0; i < 9; i++) {
r_sh[i] = Color(0, 0, 0, 0);
}
if (!lm->points.size() || !lm->bsp_tree.size() || !lm->tetrahedra.size()) {
return;
}
static_assert(sizeof(Lightmap::BSP) == 24);
const Lightmap::BSP *bsp = (const Lightmap::BSP *)lm->bsp_tree.ptr();
int32_t node = 0;
while (node >= 0) {
if (Plane(bsp[node].plane[0], bsp[node].plane[1], bsp[node].plane[2], bsp[node].plane[3]).is_point_over(p_point)) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND(bsp[node].over >= 0 && bsp[node].over < node);
#endif
node = bsp[node].over;
} else {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND(bsp[node].under >= 0 && bsp[node].under < node);
#endif
node = bsp[node].under;
}
}
if (node == Lightmap::BSP::EMPTY_LEAF) {
return; //nothing could be done
}
node = ABS(node) - 1;
uint32_t *tetrahedron = (uint32_t *)&lm->tetrahedra[node * 4];
Vector3 points[4] = { lm->points[tetrahedron[0]], lm->points[tetrahedron[1]], lm->points[tetrahedron[2]], lm->points[tetrahedron[3]] };
const Color *sh_colors[4]{ &lm->point_sh[tetrahedron[0] * 9], &lm->point_sh[tetrahedron[1] * 9], &lm->point_sh[tetrahedron[2] * 9], &lm->point_sh[tetrahedron[3] * 9] };
Color barycentric = Geometry3D::tetrahedron_get_barycentric_coords(points[0], points[1], points[2], points[3], p_point);
for (int i = 0; i < 4; i++) {
float c = CLAMP(barycentric[i], 0.0, 1.0);
for (int j = 0; j < 9; j++) {
r_sh[j] += sh_colors[i][j] * c;
}
}
}
bool RasterizerStorageRD::lightmap_is_interior(RID p_lightmap) const {
const Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND_V(!lm, false);
return lm->interior;
}
AABB RasterizerStorageRD::lightmap_get_aabb(RID p_lightmap) const {
const Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND_V(!lm, AABB());
return lm->bounds;
}
/* RENDER TARGET API */
void RasterizerStorageRD::_clear_render_target(RenderTarget *rt) {
//free in reverse dependency order
if (rt->framebuffer.is_valid()) {
RD::get_singleton()->free(rt->framebuffer);
rt->framebuffer_uniform_set = RID(); //chain deleted
}
if (rt->color.is_valid()) {
RD::get_singleton()->free(rt->color);
}
if (rt->backbuffer.is_valid()) {
RD::get_singleton()->free(rt->backbuffer);
rt->backbuffer = RID();
for (int i = 0; i < rt->backbuffer_mipmaps.size(); i++) {
//just erase copies, since the rest are erased by dependency
RD::get_singleton()->free(rt->backbuffer_mipmaps[i].mipmap_copy);
}
rt->backbuffer_mipmaps.clear();
rt->backbuffer_uniform_set = RID(); //chain deleted
}
rt->framebuffer = RID();
rt->color = RID();
}
void RasterizerStorageRD::_update_render_target(RenderTarget *rt) {
if (rt->texture.is_null()) {
//create a placeholder until updated
rt->texture = texture_2d_placeholder_create();
Texture *tex = texture_owner.getornull(rt->texture);
tex->is_render_target = true;
}
_clear_render_target(rt);
if (rt->size.width == 0 || rt->size.height == 0) {
return;
}
//until we implement support for HDR monitors (and render target is attached to screen), this is enough.
rt->color_format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
rt->color_format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB;
rt->image_format = rt->flags[RENDER_TARGET_TRANSPARENT] ? Image::FORMAT_RGBA8 : Image::FORMAT_RGB8;
RD::TextureFormat rd_format;
RD::TextureView rd_view;
{ //attempt register
rd_format.format = rt->color_format;
rd_format.width = rt->size.width;
rd_format.height = rt->size.height;
rd_format.depth = 1;
rd_format.array_layers = 1;
rd_format.mipmaps = 1;
rd_format.type = RD::TEXTURE_TYPE_2D;
rd_format.samples = RD::TEXTURE_SAMPLES_1;
rd_format.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
rd_format.shareable_formats.push_back(rt->color_format);
rd_format.shareable_formats.push_back(rt->color_format_srgb);
}
rt->color = RD::get_singleton()->texture_create(rd_format, rd_view);
ERR_FAIL_COND(rt->color.is_null());
Vector<RID> fb_textures;
fb_textures.push_back(rt->color);
rt->framebuffer = RD::get_singleton()->framebuffer_create(fb_textures);
if (rt->framebuffer.is_null()) {
_clear_render_target(rt);
ERR_FAIL_COND(rt->framebuffer.is_null());
}
{ //update texture
Texture *tex = texture_owner.getornull(rt->texture);
//free existing textures
if (RD::get_singleton()->texture_is_valid(tex->rd_texture)) {
RD::get_singleton()->free(tex->rd_texture);
}
if (RD::get_singleton()->texture_is_valid(tex->rd_texture_srgb)) {
RD::get_singleton()->free(tex->rd_texture_srgb);
}
tex->rd_texture = RID();
tex->rd_texture_srgb = RID();
//create shared textures to the color buffer,
//so transparent can be supported
RD::TextureView view;
view.format_override = rt->color_format;
if (!rt->flags[RENDER_TARGET_TRANSPARENT]) {
view.swizzle_a = RD::TEXTURE_SWIZZLE_ONE;
}
tex->rd_texture = RD::get_singleton()->texture_create_shared(view, rt->color);
if (rt->color_format_srgb != RD::DATA_FORMAT_MAX) {
view.format_override = rt->color_format_srgb;
tex->rd_texture_srgb = RD::get_singleton()->texture_create_shared(view, rt->color);
}
tex->rd_view = view;
tex->width = rt->size.width;
tex->height = rt->size.height;
tex->width_2d = rt->size.width;
tex->height_2d = rt->size.height;
tex->rd_format = rt->color_format;
tex->rd_format_srgb = rt->color_format_srgb;
tex->format = rt->image_format;
Vector<RID> proxies = tex->proxies; //make a copy, since update may change it
for (int i = 0; i < proxies.size(); i++) {
texture_proxy_update(proxies[i], rt->texture);
}
}
}
void RasterizerStorageRD::_create_render_target_backbuffer(RenderTarget *rt) {
ERR_FAIL_COND(rt->backbuffer.is_valid());
uint32_t mipmaps_required = Image::get_image_required_mipmaps(rt->size.width, rt->size.height, Image::FORMAT_RGBA8);
RD::TextureFormat tf;
tf.format = rt->color_format;
tf.width = rt->size.width;
tf.height = rt->size.height;
tf.type = RD::TEXTURE_TYPE_2D;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
tf.mipmaps = mipmaps_required;
rt->backbuffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
rt->backbuffer_mipmap0 = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rt->backbuffer, 0, 0);
{
Vector<RID> fb_tex;
fb_tex.push_back(rt->backbuffer_mipmap0);
rt->backbuffer_fb = RD::get_singleton()->framebuffer_create(fb_tex);
}
if (rt->framebuffer_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rt->framebuffer_uniform_set)) {
//the new one will require the backbuffer.
RD::get_singleton()->free(rt->framebuffer_uniform_set);
rt->framebuffer_uniform_set = RID();
}
//create mipmaps
for (uint32_t i = 1; i < mipmaps_required; i++) {
RenderTarget::BackbufferMipmap mm;
{
mm.mipmap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rt->backbuffer, 0, i);
}
{
Size2 mm_size = Image::get_image_mipmap_size(tf.width, tf.height, Image::FORMAT_RGBA8, i);
RD::TextureFormat mmtf = tf;
mmtf.width = mm_size.width;
mmtf.height = mm_size.height;
mmtf.mipmaps = 1;
mm.mipmap_copy = RD::get_singleton()->texture_create(mmtf, RD::TextureView());
}
rt->backbuffer_mipmaps.push_back(mm);
}
}
RID RasterizerStorageRD::render_target_create() {
RenderTarget render_target;
render_target.was_used = false;
render_target.clear_requested = false;
for (int i = 0; i < RENDER_TARGET_FLAG_MAX; i++) {
render_target.flags[i] = false;
}
_update_render_target(&render_target);
return render_target_owner.make_rid(render_target);
}
void RasterizerStorageRD::render_target_set_position(RID p_render_target, int p_x, int p_y) {
//unused for this render target
}
void RasterizerStorageRD::render_target_set_size(RID p_render_target, int p_width, int p_height) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->size.x = p_width;
rt->size.y = p_height;
_update_render_target(rt);
}
RID RasterizerStorageRD::render_target_get_texture(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->texture;
}
void RasterizerStorageRD::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id) {
}
void RasterizerStorageRD::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->flags[p_flag] = p_value;
_update_render_target(rt);
}
bool RasterizerStorageRD::render_target_was_used(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->was_used;
}
void RasterizerStorageRD::render_target_set_as_unused(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->was_used = false;
}
Size2 RasterizerStorageRD::render_target_get_size(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, Size2());
return rt->size;
}
RID RasterizerStorageRD::render_target_get_rd_framebuffer(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->framebuffer;
}
RID RasterizerStorageRD::render_target_get_rd_texture(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->color;
}
RID RasterizerStorageRD::render_target_get_rd_backbuffer(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->backbuffer;
}
RID RasterizerStorageRD::render_target_get_rd_backbuffer_framebuffer(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
if (!rt->backbuffer.is_valid()) {
_create_render_target_backbuffer(rt);
}
return rt->backbuffer_fb;
}
void RasterizerStorageRD::render_target_request_clear(RID p_render_target, const Color &p_clear_color) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->clear_requested = true;
rt->clear_color = p_clear_color;
}
bool RasterizerStorageRD::render_target_is_clear_requested(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->clear_requested;
}
Color RasterizerStorageRD::render_target_get_clear_request_color(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, Color());
return rt->clear_color;
}
void RasterizerStorageRD::render_target_disable_clear_request(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->clear_requested = false;
}
void RasterizerStorageRD::render_target_do_clear_request(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (!rt->clear_requested) {
return;
}
Vector<Color> clear_colors;
clear_colors.push_back(rt->clear_color);
2019-10-03 22:39:08 +02:00
RD::get_singleton()->draw_list_begin(rt->framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, clear_colors);
RD::get_singleton()->draw_list_end();
rt->clear_requested = false;
}
void RasterizerStorageRD::render_target_copy_to_back_buffer(RID p_render_target, const Rect2i &p_region, bool p_gen_mipmaps) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (!rt->backbuffer.is_valid()) {
_create_render_target_backbuffer(rt);
}
Rect2i region;
if (p_region == Rect2i()) {
region.size = rt->size;
} else {
region = Rect2i(Size2i(), rt->size).clip(p_region);
if (region.size == Size2i()) {
return; //nothing to do
}
}
//single texture copy for backbuffer
//RD::get_singleton()->texture_copy(rt->color, rt->backbuffer_mipmap0, Vector3(region.position.x, region.position.y, 0), Vector3(region.position.x, region.position.y, 0), Vector3(region.size.x, region.size.y, 1), 0, 0, 0, 0, true);
effects.copy_to_rect(rt->color, rt->backbuffer_mipmap0, region, false, false, false, true, true);
if (!p_gen_mipmaps) {
return;
}
//then mipmap blur
RID prev_texture = rt->color; //use color, not backbuffer, as bb has mipmaps.
for (int i = 0; i < rt->backbuffer_mipmaps.size(); i++) {
region.position.x >>= 1;
region.position.y >>= 1;
region.size.x = MAX(1, region.size.x >> 1);
region.size.y = MAX(1, region.size.y >> 1);
const RenderTarget::BackbufferMipmap &mm = rt->backbuffer_mipmaps[i];
effects.gaussian_blur(prev_texture, mm.mipmap, mm.mipmap_copy, region, true);
prev_texture = mm.mipmap;
}
}
void RasterizerStorageRD::render_target_clear_back_buffer(RID p_render_target, const Rect2i &p_region, const Color &p_color) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (!rt->backbuffer.is_valid()) {
_create_render_target_backbuffer(rt);
}
Rect2i region;
if (p_region == Rect2i()) {
region.size = rt->size;
} else {
region = Rect2i(Size2i(), rt->size).clip(p_region);
if (region.size == Size2i()) {
return; //nothing to do
}
}
//single texture copy for backbuffer
effects.set_color(rt->backbuffer_mipmap0, p_color, region, true);
}
void RasterizerStorageRD::render_target_gen_back_buffer_mipmaps(RID p_render_target, const Rect2i &p_region) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (!rt->backbuffer.is_valid()) {
_create_render_target_backbuffer(rt);
}
Rect2i region;
if (p_region == Rect2i()) {
region.size = rt->size;
} else {
region = Rect2i(Size2i(), rt->size).clip(p_region);
if (region.size == Size2i()) {
return; //nothing to do
}
}
//then mipmap blur
RID prev_texture = rt->backbuffer_mipmap0;
for (int i = 0; i < rt->backbuffer_mipmaps.size(); i++) {
region.position.x >>= 1;
region.position.y >>= 1;
region.size.x = MAX(1, region.size.x >> 1);
region.size.y = MAX(1, region.size.y >> 1);
const RenderTarget::BackbufferMipmap &mm = rt->backbuffer_mipmaps[i];
effects.gaussian_blur(prev_texture, mm.mipmap, mm.mipmap_copy, region, true);
prev_texture = mm.mipmap;
}
}
RID RasterizerStorageRD::render_target_get_framebuffer_uniform_set(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->framebuffer_uniform_set;
}
RID RasterizerStorageRD::render_target_get_backbuffer_uniform_set(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->backbuffer_uniform_set;
}
void RasterizerStorageRD::render_target_set_framebuffer_uniform_set(RID p_render_target, RID p_uniform_set) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->framebuffer_uniform_set = p_uniform_set;
}
void RasterizerStorageRD::render_target_set_backbuffer_uniform_set(RID p_render_target, RID p_uniform_set) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->backbuffer_uniform_set = p_uniform_set;
}
void RasterizerStorageRD::base_update_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {
if (mesh_owner.owns(p_base)) {
Mesh *mesh = mesh_owner.getornull(p_base);
p_instance->update_dependency(&mesh->instance_dependency);
} else if (multimesh_owner.owns(p_base)) {
MultiMesh *multimesh = multimesh_owner.getornull(p_base);
p_instance->update_dependency(&multimesh->instance_dependency);
if (multimesh->mesh.is_valid()) {
base_update_dependency(multimesh->mesh, p_instance);
}
} else if (reflection_probe_owner.owns(p_base)) {
ReflectionProbe *rp = reflection_probe_owner.getornull(p_base);
p_instance->update_dependency(&rp->instance_dependency);
} else if (decal_owner.owns(p_base)) {
Decal *decal = decal_owner.getornull(p_base);
p_instance->update_dependency(&decal->instance_dependency);
2019-10-03 22:39:08 +02:00
} else if (gi_probe_owner.owns(p_base)) {
GIProbe *gip = gi_probe_owner.getornull(p_base);
p_instance->update_dependency(&gip->instance_dependency);
} else if (lightmap_owner.owns(p_base)) {
Lightmap *lm = lightmap_owner.getornull(p_base);
p_instance->update_dependency(&lm->instance_dependency);
} else if (light_owner.owns(p_base)) {
Light *l = light_owner.getornull(p_base);
p_instance->update_dependency(&l->instance_dependency);
} else if (particles_owner.owns(p_base)) {
Particles *p = particles_owner.getornull(p_base);
p_instance->update_dependency(&p->instance_dependency);
} else if (particles_collision_owner.owns(p_base)) {
ParticlesCollision *pc = particles_collision_owner.getornull(p_base);
p_instance->update_dependency(&pc->instance_dependency);
}
}
2019-09-23 23:53:05 +02:00
void RasterizerStorageRD::skeleton_update_dependency(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
p_instance->update_dependency(&skeleton->instance_dependency);
}
RS::InstanceType RasterizerStorageRD::get_base_type(RID p_rid) const {
if (mesh_owner.owns(p_rid)) {
return RS::INSTANCE_MESH;
}
if (multimesh_owner.owns(p_rid)) {
return RS::INSTANCE_MULTIMESH;
}
if (reflection_probe_owner.owns(p_rid)) {
return RS::INSTANCE_REFLECTION_PROBE;
}
if (decal_owner.owns(p_rid)) {
return RS::INSTANCE_DECAL;
}
2019-10-03 22:39:08 +02:00
if (gi_probe_owner.owns(p_rid)) {
return RS::INSTANCE_GI_PROBE;
2019-10-03 22:39:08 +02:00
}
if (light_owner.owns(p_rid)) {
return RS::INSTANCE_LIGHT;
}
if (lightmap_owner.owns(p_rid)) {
return RS::INSTANCE_LIGHTMAP;
}
if (particles_owner.owns(p_rid)) {
return RS::INSTANCE_PARTICLES;
}
if (particles_collision_owner.owns(p_rid)) {
return RS::INSTANCE_PARTICLES_COLLISION;
}
return RS::INSTANCE_NONE;
}
void RasterizerStorageRD::texture_add_to_decal_atlas(RID p_texture, bool p_panorama_to_dp) {
if (!decal_atlas.textures.has(p_texture)) {
DecalAtlas::Texture t;
t.users = 1;
t.panorama_to_dp_users = p_panorama_to_dp ? 1 : 0;
decal_atlas.textures[p_texture] = t;
decal_atlas.dirty = true;
} else {
DecalAtlas::Texture *t = decal_atlas.textures.getptr(p_texture);
t->users++;
if (p_panorama_to_dp) {
t->panorama_to_dp_users++;
}
}
}
void RasterizerStorageRD::texture_remove_from_decal_atlas(RID p_texture, bool p_panorama_to_dp) {
DecalAtlas::Texture *t = decal_atlas.textures.getptr(p_texture);
ERR_FAIL_COND(!t);
t->users--;
if (p_panorama_to_dp) {
ERR_FAIL_COND(t->panorama_to_dp_users == 0);
t->panorama_to_dp_users--;
}
if (t->users == 0) {
decal_atlas.textures.erase(p_texture);
//do not mark it dirty, there is no need to since it remains working
}
}
RID RasterizerStorageRD::decal_atlas_get_texture() const {
return decal_atlas.texture;
}
RID RasterizerStorageRD::decal_atlas_get_texture_srgb() const {
return decal_atlas.texture_srgb;
}
void RasterizerStorageRD::_update_decal_atlas() {
if (!decal_atlas.dirty) {
return; //nothing to do
}
decal_atlas.dirty = false;
if (decal_atlas.texture.is_valid()) {
RD::get_singleton()->free(decal_atlas.texture);
decal_atlas.texture = RID();
decal_atlas.texture_srgb = RID();
decal_atlas.texture_mipmaps.clear();
}
int border = 1 << decal_atlas.mipmaps;
if (decal_atlas.textures.size()) {
//generate atlas
Vector<DecalAtlas::SortItem> itemsv;
itemsv.resize(decal_atlas.textures.size());
int base_size = 8;
const RID *K = nullptr;
int idx = 0;
while ((K = decal_atlas.textures.next(K))) {
DecalAtlas::SortItem &si = itemsv.write[idx];
Texture *src_tex = texture_owner.getornull(*K);
si.size.width = (src_tex->width / border) + 1;
si.size.height = (src_tex->height / border) + 1;
si.pixel_size = Size2i(src_tex->width, src_tex->height);
if (base_size < si.size.width) {
base_size = nearest_power_of_2_templated(si.size.width);
}
si.texture = *K;
idx++;
}
//sort items by size
itemsv.sort();
//attempt to create atlas
int item_count = itemsv.size();
DecalAtlas::SortItem *items = itemsv.ptrw();
int atlas_height = 0;
while (true) {
Vector<int> v_offsetsv;
v_offsetsv.resize(base_size);
int *v_offsets = v_offsetsv.ptrw();
zeromem(v_offsets, sizeof(int) * base_size);
int max_height = 0;
for (int i = 0; i < item_count; i++) {
//best fit
DecalAtlas::SortItem &si = items[i];
int best_idx = -1;
int best_height = 0x7FFFFFFF;
for (int j = 0; j <= base_size - si.size.width; j++) {
int height = 0;
for (int k = 0; k < si.size.width; k++) {
int h = v_offsets[k + j];
if (h > height) {
height = h;
if (height > best_height) {
break; //already bad
}
}
}
if (height < best_height) {
best_height = height;
best_idx = j;
}
}
//update
for (int k = 0; k < si.size.width; k++) {
v_offsets[k + best_idx] = best_height + si.size.height;
}
si.pos.x = best_idx;
si.pos.y = best_height;
if (si.pos.y + si.size.height > max_height) {
max_height = si.pos.y + si.size.height;
}
}
if (max_height <= base_size * 2) {
atlas_height = max_height;
break; //good ratio, break;
}
base_size *= 2;
}
decal_atlas.size.width = base_size * border;
decal_atlas.size.height = nearest_power_of_2_templated(atlas_height * border);
for (int i = 0; i < item_count; i++) {
DecalAtlas::Texture *t = decal_atlas.textures.getptr(items[i].texture);
t->uv_rect.position = items[i].pos * border + Vector2i(border / 2, border / 2);
t->uv_rect.size = items[i].pixel_size;
t->uv_rect.position /= Size2(decal_atlas.size);
t->uv_rect.size /= Size2(decal_atlas.size);
}
} else {
//use border as size, so it at least has enough mipmaps
decal_atlas.size.width = border;
decal_atlas.size.height = border;
}
//blit textures
RD::TextureFormat tformat;
tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tformat.width = decal_atlas.size.width;
tformat.height = decal_atlas.size.height;
tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
tformat.type = RD::TEXTURE_TYPE_2D;
tformat.mipmaps = decal_atlas.mipmaps;
tformat.shareable_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_UNORM);
tformat.shareable_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_SRGB);
decal_atlas.texture = RD::get_singleton()->texture_create(tformat, RD::TextureView());
{
//create the framebuffer
Size2i s = decal_atlas.size;
for (int i = 0; i < decal_atlas.mipmaps; i++) {
DecalAtlas::MipMap mm;
mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), decal_atlas.texture, 0, i);
Vector<RID> fb;
fb.push_back(mm.texture);
mm.fb = RD::get_singleton()->framebuffer_create(fb);
mm.size = s;
decal_atlas.texture_mipmaps.push_back(mm);
s.width = MAX(1, s.width >> 1);
s.height = MAX(1, s.height >> 1);
}
{
//create the SRGB variant
RD::TextureView rd_view;
rd_view.format_override = RD::DATA_FORMAT_R8G8B8A8_SRGB;
decal_atlas.texture_srgb = RD::get_singleton()->texture_create_shared(rd_view, decal_atlas.texture);
}
}
RID prev_texture;
for (int i = 0; i < decal_atlas.texture_mipmaps.size(); i++) {
const DecalAtlas::MipMap &mm = decal_atlas.texture_mipmaps[i];
Color clear_color(0, 0, 0, 0);
if (decal_atlas.textures.size()) {
if (i == 0) {
Vector<Color> cc;
cc.push_back(clear_color);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(mm.fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, cc);
const RID *K = nullptr;
while ((K = decal_atlas.textures.next(K))) {
DecalAtlas::Texture *t = decal_atlas.textures.getptr(*K);
Texture *src_tex = texture_owner.getornull(*K);
effects.copy_to_atlas_fb(src_tex->rd_texture, mm.fb, t->uv_rect, draw_list, false, t->panorama_to_dp_users > 0);
}
RD::get_singleton()->draw_list_end();
prev_texture = mm.texture;
} else {
effects.copy_to_fb_rect(prev_texture, mm.fb, Rect2i(Point2i(), mm.size));
prev_texture = mm.texture;
}
} else {
RD::get_singleton()->texture_clear(mm.texture, clear_color, 0, 1, 0, 1, false);
}
}
}
int32_t RasterizerStorageRD::_global_variable_allocate(uint32_t p_elements) {
int32_t idx = 0;
while (idx + p_elements <= global_variables.buffer_size) {
if (global_variables.buffer_usage[idx].elements == 0) {
bool valid = true;
for (uint32_t i = 1; i < p_elements; i++) {
if (global_variables.buffer_usage[idx + i].elements > 0) {
valid = false;
idx += i + global_variables.buffer_usage[idx + i].elements;
break;
}
}
if (!valid) {
continue; //if not valid, idx is in new position
}
return idx;
} else {
idx += global_variables.buffer_usage[idx].elements;
}
}
return -1;
}
void RasterizerStorageRD::_global_variable_store_in_buffer(int32_t p_index, RS::GlobalVariableType p_type, const Variant &p_value) {
switch (p_type) {
case RS::GLOBAL_VAR_TYPE_BOOL: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
bool b = p_value;
bv.x = b ? 1.0 : 0.0;
bv.y = 0.0;
bv.z = 0.0;
bv.w = 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_BVEC2: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
uint32_t bvec = p_value;
bv.x = (bvec & 1) ? 1.0 : 0.0;
bv.y = (bvec & 2) ? 1.0 : 0.0;
bv.z = 0.0;
bv.w = 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_BVEC3: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
uint32_t bvec = p_value;
bv.x = (bvec & 1) ? 1.0 : 0.0;
bv.y = (bvec & 2) ? 1.0 : 0.0;
bv.z = (bvec & 4) ? 1.0 : 0.0;
bv.w = 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_BVEC4: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
uint32_t bvec = p_value;
bv.x = (bvec & 1) ? 1.0 : 0.0;
bv.y = (bvec & 2) ? 1.0 : 0.0;
bv.z = (bvec & 4) ? 1.0 : 0.0;
bv.w = (bvec & 8) ? 1.0 : 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_INT: {
GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index];
int32_t v = p_value;
bv.x = v;
bv.y = 0;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_IVEC2: {
GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index];
Vector2i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_IVEC3: {
GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index];
Vector3i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = v.z;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_IVEC4: {
GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index];
Vector<int32_t> v = p_value;
bv.x = v.size() >= 1 ? v[0] : 0;
bv.y = v.size() >= 2 ? v[1] : 0;
bv.z = v.size() >= 3 ? v[2] : 0;
bv.w = v.size() >= 4 ? v[3] : 0;
} break;
case RS::GLOBAL_VAR_TYPE_RECT2I: {
GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index];
Rect2i v = p_value;
bv.x = v.position.x;
bv.y = v.position.y;
bv.z = v.size.x;
bv.w = v.size.y;
} break;
case RS::GLOBAL_VAR_TYPE_UINT: {
GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index];
uint32_t v = p_value;
bv.x = v;
bv.y = 0;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_UVEC2: {
GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index];
Vector2i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_UVEC3: {
GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index];
Vector3i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = v.z;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_UVEC4: {
GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index];
Vector<int32_t> v = p_value;
bv.x = v.size() >= 1 ? v[0] : 0;
bv.y = v.size() >= 2 ? v[1] : 0;
bv.z = v.size() >= 3 ? v[2] : 0;
bv.w = v.size() >= 4 ? v[3] : 0;
} break;
case RS::GLOBAL_VAR_TYPE_FLOAT: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
float v = p_value;
bv.x = v;
bv.y = 0;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_VEC2: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
Vector2 v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_VEC3: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
Vector3 v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = v.z;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_VEC4: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
Plane v = p_value;
bv.x = v.normal.x;
bv.y = v.normal.y;
bv.z = v.normal.z;
bv.w = v.d;
} break;
case RS::GLOBAL_VAR_TYPE_COLOR: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
Color v = p_value;
bv.x = v.r;
bv.y = v.g;
bv.z = v.b;
bv.w = v.a;
GlobalVariables::Value &bv_linear = global_variables.buffer_values[p_index + 1];
v = v.to_linear();
bv_linear.x = v.r;
bv_linear.y = v.g;
bv_linear.z = v.b;
bv_linear.w = v.a;
} break;
case RS::GLOBAL_VAR_TYPE_RECT2: {
GlobalVariables::Value &bv = global_variables.buffer_values[p_index];
Rect2 v = p_value;
bv.x = v.position.x;
bv.y = v.position.y;
bv.z = v.size.x;
bv.w = v.size.y;
} break;
case RS::GLOBAL_VAR_TYPE_MAT2: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Vector<float> m2 = p_value;
if (m2.size() < 4) {
m2.resize(4);
}
bv[0].x = m2[0];
bv[0].y = m2[1];
bv[0].z = 0;
bv[0].w = 0;
bv[1].x = m2[2];
bv[1].y = m2[3];
bv[1].z = 0;
bv[1].w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_MAT3: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Basis v = p_value;
bv[0].x = v.elements[0][0];
bv[0].y = v.elements[1][0];
bv[0].z = v.elements[2][0];
bv[0].w = 0;
bv[1].x = v.elements[0][1];
bv[1].y = v.elements[1][1];
bv[1].z = v.elements[2][1];
bv[1].w = 0;
bv[2].x = v.elements[0][2];
bv[2].y = v.elements[1][2];
bv[2].z = v.elements[2][2];
bv[2].w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_MAT4: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Vector<float> m2 = p_value;
if (m2.size() < 16) {
m2.resize(16);
}
bv[0].x = m2[0];
bv[0].y = m2[1];
bv[0].z = m2[2];
bv[0].w = m2[3];
bv[1].x = m2[4];
bv[1].y = m2[5];
bv[1].z = m2[6];
bv[1].w = m2[7];
bv[2].x = m2[8];
bv[2].y = m2[9];
bv[2].z = m2[10];
bv[2].w = m2[11];
bv[3].x = m2[12];
bv[3].y = m2[13];
bv[3].z = m2[14];
bv[3].w = m2[15];
} break;
case RS::GLOBAL_VAR_TYPE_TRANSFORM_2D: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Transform2D v = p_value;
bv[0].x = v.elements[0][0];
bv[0].y = v.elements[0][1];
bv[0].z = 0;
bv[0].w = 0;
bv[1].x = v.elements[1][0];
bv[1].y = v.elements[1][1];
bv[1].z = 0;
bv[1].w = 0;
bv[2].x = v.elements[2][0];
bv[2].y = v.elements[2][1];
bv[2].z = 1;
bv[2].w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_TRANSFORM: {
GlobalVariables::Value *bv = &global_variables.buffer_values[p_index];
Transform v = p_value;
bv[0].x = v.basis.elements[0][0];
bv[0].y = v.basis.elements[1][0];
bv[0].z = v.basis.elements[2][0];
bv[0].w = 0;
bv[1].x = v.basis.elements[0][1];
bv[1].y = v.basis.elements[1][1];
bv[1].z = v.basis.elements[2][1];
bv[1].w = 0;
bv[2].x = v.basis.elements[0][2];
bv[2].y = v.basis.elements[1][2];
bv[2].z = v.basis.elements[2][2];
bv[2].w = 0;
2020-04-28 18:26:57 +02:00
bv[3].x = v.origin.x;
bv[3].y = v.origin.y;
bv[3].z = v.origin.z;
bv[3].w = 1;
} break;
default: {
ERR_FAIL();
}
}
}
void RasterizerStorageRD::_global_variable_mark_buffer_dirty(int32_t p_index, int32_t p_elements) {
int32_t prev_chunk = -1;
for (int32_t i = 0; i < p_elements; i++) {
int32_t chunk = (p_index + i) / GlobalVariables::BUFFER_DIRTY_REGION_SIZE;
if (chunk != prev_chunk) {
if (!global_variables.buffer_dirty_regions[chunk]) {
global_variables.buffer_dirty_regions[chunk] = true;
global_variables.buffer_dirty_region_count++;
}
}
prev_chunk = chunk;
}
}
void RasterizerStorageRD::global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value) {
ERR_FAIL_COND(global_variables.variables.has(p_name));
GlobalVariables::Variable gv;
gv.type = p_type;
gv.value = p_value;
gv.buffer_index = -1;
if (p_type >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) {
//is texture
global_variables.must_update_texture_materials = true; //normally there are none
} else {
gv.buffer_elements = 1;
if (p_type == RS::GLOBAL_VAR_TYPE_COLOR || p_type == RS::GLOBAL_VAR_TYPE_MAT2) {
//color needs to elements to store srgb and linear
gv.buffer_elements = 2;
}
if (p_type == RS::GLOBAL_VAR_TYPE_MAT3 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM_2D) {
//color needs to elements to store srgb and linear
gv.buffer_elements = 3;
}
if (p_type == RS::GLOBAL_VAR_TYPE_MAT4 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM) {
//color needs to elements to store srgb and linear
gv.buffer_elements = 4;
}
//is vector, allocate in buffer and update index
gv.buffer_index = _global_variable_allocate(gv.buffer_elements);
ERR_FAIL_COND_MSG(gv.buffer_index < 0, vformat("Failed allocating global variable '%s' out of buffer memory. Consider increasing it in the Project Settings.", String(p_name)));
global_variables.buffer_usage[gv.buffer_index].elements = gv.buffer_elements;
_global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.value);
_global_variable_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements);
global_variables.must_update_buffer_materials = true; //normally there are none
}
global_variables.variables[p_name] = gv;
}
void RasterizerStorageRD::global_variable_remove(const StringName &p_name) {
if (!global_variables.variables.has(p_name)) {
return;
}
GlobalVariables::Variable &gv = global_variables.variables[p_name];
if (gv.buffer_index >= 0) {
global_variables.buffer_usage[gv.buffer_index].elements = 0;
global_variables.must_update_buffer_materials = true;
} else {
global_variables.must_update_texture_materials = true;
}
global_variables.variables.erase(p_name);
}
Vector<StringName> RasterizerStorageRD::global_variable_get_list() const {
if (!Engine::get_singleton()->is_editor_hint()) {
ERR_FAIL_V_MSG(Vector<StringName>(), "This function should never be used outside the editor, it can severely damage performance.");
}
const StringName *K = nullptr;
Vector<StringName> names;
while ((K = global_variables.variables.next(K))) {
names.push_back(*K);
}
names.sort_custom<StringName::AlphCompare>();
return names;
}
void RasterizerStorageRD::global_variable_set(const StringName &p_name, const Variant &p_value) {
ERR_FAIL_COND(!global_variables.variables.has(p_name));
GlobalVariables::Variable &gv = global_variables.variables[p_name];
gv.value = p_value;
if (gv.override.get_type() == Variant::NIL) {
if (gv.buffer_index >= 0) {
//buffer
_global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.value);
_global_variable_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements);
} else {
//texture
for (Set<RID>::Element *E = gv.texture_materials.front(); E; E = E->next()) {
Material *material = material_owner.getornull(E->get());
ERR_CONTINUE(!material);
_material_queue_update(material, false, true);
}
}
}
}
void RasterizerStorageRD::global_variable_set_override(const StringName &p_name, const Variant &p_value) {
if (!global_variables.variables.has(p_name)) {
return; //variable may not exist
}
GlobalVariables::Variable &gv = global_variables.variables[p_name];
gv.override = p_value;
if (gv.buffer_index >= 0) {
//buffer
if (gv.override.get_type() == Variant::NIL) {
_global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.value);
} else {
_global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.override);
}
_global_variable_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements);
} else {
//texture
//texture
for (Set<RID>::Element *E = gv.texture_materials.front(); E; E = E->next()) {
Material *material = material_owner.getornull(E->get());
ERR_CONTINUE(!material);
_material_queue_update(material, false, true);
}
}
}
Variant RasterizerStorageRD::global_variable_get(const StringName &p_name) const {
if (!Engine::get_singleton()->is_editor_hint()) {
ERR_FAIL_V_MSG(Variant(), "This function should never be used outside the editor, it can severely damage performance.");
}
if (!global_variables.variables.has(p_name)) {
return Variant();
}
return global_variables.variables[p_name].value;
}
RS::GlobalVariableType RasterizerStorageRD::global_variable_get_type_internal(const StringName &p_name) const {
if (!global_variables.variables.has(p_name)) {
return RS::GLOBAL_VAR_TYPE_MAX;
}
return global_variables.variables[p_name].type;
}
RS::GlobalVariableType RasterizerStorageRD::global_variable_get_type(const StringName &p_name) const {
if (!Engine::get_singleton()->is_editor_hint()) {
ERR_FAIL_V_MSG(RS::GLOBAL_VAR_TYPE_MAX, "This function should never be used outside the editor, it can severely damage performance.");
}
return global_variable_get_type_internal(p_name);
}
void RasterizerStorageRD::global_variables_load_settings(bool p_load_textures) {
List<PropertyInfo> settings;
ProjectSettings::get_singleton()->get_property_list(&settings);
for (List<PropertyInfo>::Element *E = settings.front(); E; E = E->next()) {
if (E->get().name.begins_with("shader_globals/")) {
StringName name = E->get().name.get_slice("/", 1);
Dictionary d = ProjectSettings::get_singleton()->get(E->get().name);
ERR_CONTINUE(!d.has("type"));
ERR_CONTINUE(!d.has("value"));
String type = d["type"];
static const char *global_var_type_names[RS::GLOBAL_VAR_TYPE_MAX] = {
"bool",
"bvec2",
"bvec3",
"bvec4",
"int",
"ivec2",
"ivec3",
"ivec4",
"rect2i",
"uint",
"uvec2",
"uvec3",
"uvec4",
"float",
"vec2",
"vec3",
"vec4",
"color",
"rect2",
"mat2",
"mat3",
"mat4",
"transform_2d",
"transform",
"sampler2D",
"sampler2DArray",
"sampler3D",
"samplerCube",
};
RS::GlobalVariableType gvtype = RS::GLOBAL_VAR_TYPE_MAX;
for (int i = 0; i < RS::GLOBAL_VAR_TYPE_MAX; i++) {
if (global_var_type_names[i] == type) {
gvtype = RS::GlobalVariableType(i);
break;
}
}
ERR_CONTINUE(gvtype == RS::GLOBAL_VAR_TYPE_MAX); //type invalid
Variant value = d["value"];
if (gvtype >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) {
//textire
if (!p_load_textures) {
value = RID();
continue;
}
String path = value;
RES resource = ResourceLoader::load(path);
ERR_CONTINUE(resource.is_null());
value = resource;
}
if (global_variables.variables.has(name)) {
//has it, update it
global_variable_set(name, value);
} else {
global_variable_add(name, gvtype, value);
}
}
}
}
void RasterizerStorageRD::global_variables_clear() {
global_variables.variables.clear(); //not right but for now enough
}
RID RasterizerStorageRD::global_variables_get_storage_buffer() const {
return global_variables.buffer;
}
int32_t RasterizerStorageRD::global_variables_instance_allocate(RID p_instance) {
ERR_FAIL_COND_V(global_variables.instance_buffer_pos.has(p_instance), -1);
int32_t pos = _global_variable_allocate(ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES);
global_variables.instance_buffer_pos[p_instance] = pos; //save anyway
ERR_FAIL_COND_V_MSG(pos < 0, -1, "Too many instances using shader instance variables. Increase buffer size in Project Settings.");
global_variables.buffer_usage[pos].elements = ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES;
return pos;
}
void RasterizerStorageRD::global_variables_instance_free(RID p_instance) {
ERR_FAIL_COND(!global_variables.instance_buffer_pos.has(p_instance));
int32_t pos = global_variables.instance_buffer_pos[p_instance];
if (pos >= 0) {
global_variables.buffer_usage[pos].elements = 0;
}
global_variables.instance_buffer_pos.erase(p_instance);
}
void RasterizerStorageRD::global_variables_instance_update(RID p_instance, int p_index, const Variant &p_value) {
if (!global_variables.instance_buffer_pos.has(p_instance)) {
return; //just not allocated, ignore
}
int32_t pos = global_variables.instance_buffer_pos[p_instance];
if (pos < 0) {
return; //again, not allocated, ignore
}
ERR_FAIL_INDEX(p_index, ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES);
ERR_FAIL_COND_MSG(p_value.get_type() > Variant::COLOR, "Unsupported variant type for instance parameter: " + Variant::get_type_name(p_value.get_type())); //anything greater not supported
ShaderLanguage::DataType datatype_from_value[Variant::COLOR + 1] = {
ShaderLanguage::TYPE_MAX, //nil
ShaderLanguage::TYPE_BOOL, //bool
ShaderLanguage::TYPE_INT, //int
ShaderLanguage::TYPE_FLOAT, //float
ShaderLanguage::TYPE_MAX, //string
ShaderLanguage::TYPE_VEC2, //vec2
ShaderLanguage::TYPE_IVEC2, //vec2i
ShaderLanguage::TYPE_VEC4, //rect2
ShaderLanguage::TYPE_IVEC4, //rect2i
ShaderLanguage::TYPE_VEC3, // vec3
ShaderLanguage::TYPE_IVEC3, //vec3i
ShaderLanguage::TYPE_MAX, //xform2d not supported here
ShaderLanguage::TYPE_VEC4, //plane
ShaderLanguage::TYPE_VEC4, //quat
ShaderLanguage::TYPE_MAX, //aabb not supported here
ShaderLanguage::TYPE_MAX, //basis not supported here
ShaderLanguage::TYPE_MAX, //xform not supported here
ShaderLanguage::TYPE_VEC4 //color
};
ShaderLanguage::DataType datatype = datatype_from_value[p_value.get_type()];
ERR_FAIL_COND_MSG(datatype == ShaderLanguage::TYPE_MAX, "Unsupported variant type for instance parameter: " + Variant::get_type_name(p_value.get_type())); //anything greater not supported
pos += p_index;
_fill_std140_variant_ubo_value(datatype, p_value, (uint8_t *)&global_variables.buffer_values[pos], true); //instances always use linear color in this renderer
_global_variable_mark_buffer_dirty(pos, 1);
}
void RasterizerStorageRD::_update_global_variables() {
if (global_variables.buffer_dirty_region_count > 0) {
uint32_t total_regions = global_variables.buffer_size / GlobalVariables::BUFFER_DIRTY_REGION_SIZE;
if (total_regions / global_variables.buffer_dirty_region_count <= 4) {
// 25% of regions dirty, just update all buffer
RD::get_singleton()->buffer_update(global_variables.buffer, 0, sizeof(GlobalVariables::Value) * global_variables.buffer_size, global_variables.buffer_values);
zeromem(global_variables.buffer_dirty_regions, sizeof(bool) * total_regions);
} else {
uint32_t region_byte_size = sizeof(GlobalVariables::Value) * GlobalVariables::BUFFER_DIRTY_REGION_SIZE;
for (uint32_t i = 0; i < total_regions; i++) {
if (global_variables.buffer_dirty_regions[i]) {
RD::get_singleton()->buffer_update(global_variables.buffer, i * region_byte_size, region_byte_size, global_variables.buffer_values);
global_variables.buffer_dirty_regions[i] = false;
}
}
}
global_variables.buffer_dirty_region_count = 0;
}
if (global_variables.must_update_buffer_materials) {
// only happens in the case of a buffer variable added or removed,
// so not often.
for (List<RID>::Element *E = global_variables.materials_using_buffer.front(); E; E = E->next()) {
Material *material = material_owner.getornull(E->get());
ERR_CONTINUE(!material); //wtf
_material_queue_update(material, true, false);
}
global_variables.must_update_buffer_materials = false;
}
if (global_variables.must_update_texture_materials) {
// only happens in the case of a buffer variable added or removed,
// so not often.
for (List<RID>::Element *E = global_variables.materials_using_texture.front(); E; E = E->next()) {
Material *material = material_owner.getornull(E->get());
ERR_CONTINUE(!material); //wtf
_material_queue_update(material, false, true);
print_line("update material texture?");
}
global_variables.must_update_texture_materials = false;
}
}
void RasterizerStorageRD::update_dirty_resources() {
_update_global_variables(); //must do before materials, so it can queue them for update
_update_queued_materials();
_update_dirty_multimeshes();
2019-09-23 23:53:05 +02:00
_update_dirty_skeletons();
_update_decal_atlas();
}
bool RasterizerStorageRD::has_os_feature(const String &p_feature) const {
if (p_feature == "rgtc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC5_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) {
return true;
}
if (p_feature == "s3tc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC1_RGB_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) {
return true;
}
if (p_feature == "bptc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC7_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) {
return true;
}
if ((p_feature == "etc" || p_feature == "etc2") && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) {
return true;
}
if (p_feature == "pvrtc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT)) {
return true;
}
return false;
}
bool RasterizerStorageRD::free(RID p_rid) {
if (texture_owner.owns(p_rid)) {
Texture *t = texture_owner.getornull(p_rid);
ERR_FAIL_COND_V(t->is_render_target, false);
if (RD::get_singleton()->texture_is_valid(t->rd_texture_srgb)) {
//erase this first, as it's a dependency of the one below
RD::get_singleton()->free(t->rd_texture_srgb);
}
if (RD::get_singleton()->texture_is_valid(t->rd_texture)) {
RD::get_singleton()->free(t->rd_texture);
}
if (t->is_proxy && t->proxy_to.is_valid()) {
Texture *proxy_to = texture_owner.getornull(t->proxy_to);
if (proxy_to) {
proxy_to->proxies.erase(p_rid);
}
}
if (decal_atlas.textures.has(p_rid)) {
decal_atlas.textures.erase(p_rid);
//there is not much a point of making it dirty, just let it be.
}
for (int i = 0; i < t->proxies.size(); i++) {
Texture *p = texture_owner.getornull(t->proxies[i]);
ERR_CONTINUE(!p);
p->proxy_to = RID();
p->rd_texture = RID();
p->rd_texture_srgb = RID();
}
if (t->canvas_texture) {
memdelete(t->canvas_texture);
}
texture_owner.free(p_rid);
} else if (canvas_texture_owner.owns(p_rid)) {
CanvasTexture *ct = canvas_texture_owner.getornull(p_rid);
memdelete(ct);
canvas_texture_owner.free(p_rid);
} else if (shader_owner.owns(p_rid)) {
Shader *shader = shader_owner.getornull(p_rid);
//make material unreference this
while (shader->owners.size()) {
material_set_shader(shader->owners.front()->get()->self, RID());
}
//clear data if exists
if (shader->data) {
memdelete(shader->data);
}
shader_owner.free(p_rid);
} else if (material_owner.owns(p_rid)) {
Material *material = material_owner.getornull(p_rid);
if (material->update_requested) {
_update_queued_materials();
}
material_set_shader(p_rid, RID()); //clean up shader
material->instance_dependency.instance_notify_deleted(p_rid);
material_owner.free(p_rid);
} else if (mesh_owner.owns(p_rid)) {
mesh_clear(p_rid);
Mesh *mesh = mesh_owner.getornull(p_rid);
mesh->instance_dependency.instance_notify_deleted(p_rid);
mesh_owner.free(p_rid);
} else if (multimesh_owner.owns(p_rid)) {
_update_dirty_multimeshes();
multimesh_allocate(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
MultiMesh *multimesh = multimesh_owner.getornull(p_rid);
multimesh->instance_dependency.instance_notify_deleted(p_rid);
multimesh_owner.free(p_rid);
2019-09-23 23:53:05 +02:00
} else if (skeleton_owner.owns(p_rid)) {
_update_dirty_skeletons();
skeleton_allocate(p_rid, 0);
Skeleton *skeleton = skeleton_owner.getornull(p_rid);
skeleton->instance_dependency.instance_notify_deleted(p_rid);
skeleton_owner.free(p_rid);
} else if (reflection_probe_owner.owns(p_rid)) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_rid);
reflection_probe->instance_dependency.instance_notify_deleted(p_rid);
reflection_probe_owner.free(p_rid);
} else if (decal_owner.owns(p_rid)) {
Decal *decal = decal_owner.getornull(p_rid);
for (int i = 0; i < RS::DECAL_TEXTURE_MAX; i++) {
if (decal->textures[i].is_valid() && texture_owner.owns(decal->textures[i])) {
texture_remove_from_decal_atlas(decal->textures[i]);
}
}
decal->instance_dependency.instance_notify_deleted(p_rid);
decal_owner.free(p_rid);
2019-10-03 22:39:08 +02:00
} else if (gi_probe_owner.owns(p_rid)) {
gi_probe_allocate(p_rid, Transform(), AABB(), Vector3i(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<int>()); //deallocate
2019-10-03 22:39:08 +02:00
GIProbe *gi_probe = gi_probe_owner.getornull(p_rid);
gi_probe->instance_dependency.instance_notify_deleted(p_rid);
gi_probe_owner.free(p_rid);
} else if (lightmap_owner.owns(p_rid)) {
lightmap_set_textures(p_rid, RID(), false);
Lightmap *lightmap = lightmap_owner.getornull(p_rid);
lightmap->instance_dependency.instance_notify_deleted(p_rid);
lightmap_owner.free(p_rid);
} else if (light_owner.owns(p_rid)) {
light_set_projector(p_rid, RID()); //clear projector
// delete the texture
Light *light = light_owner.getornull(p_rid);
light->instance_dependency.instance_notify_deleted(p_rid);
light_owner.free(p_rid);
} else if (particles_owner.owns(p_rid)) {
Particles *particles = particles_owner.getornull(p_rid);
_particles_free_data(particles);
particles->instance_dependency.instance_notify_deleted(p_rid);
particles_owner.free(p_rid);
} else if (particles_collision_owner.owns(p_rid)) {
ParticlesCollision *particles_collision = particles_collision_owner.getornull(p_rid);
if (particles_collision->heightfield_texture.is_valid()) {
RD::get_singleton()->free(particles_collision->heightfield_texture);
}
particles_collision->instance_dependency.instance_notify_deleted(p_rid);
particles_collision_owner.free(p_rid);
} else if (render_target_owner.owns(p_rid)) {
RenderTarget *rt = render_target_owner.getornull(p_rid);
_clear_render_target(rt);
if (rt->texture.is_valid()) {
Texture *tex = texture_owner.getornull(rt->texture);
tex->is_render_target = false;
free(rt->texture);
}
render_target_owner.free(p_rid);
} else {
return false;
}
return true;
}
RasterizerEffectsRD *RasterizerStorageRD::get_effects() {
return &effects;
}
void RasterizerStorageRD::capture_timestamps_begin() {
RD::get_singleton()->capture_timestamp("Frame Begin", false);
}
void RasterizerStorageRD::capture_timestamp(const String &p_name) {
RD::get_singleton()->capture_timestamp(p_name, true);
}
uint32_t RasterizerStorageRD::get_captured_timestamps_count() const {
return RD::get_singleton()->get_captured_timestamps_count();
}
uint64_t RasterizerStorageRD::get_captured_timestamps_frame() const {
return RD::get_singleton()->get_captured_timestamps_frame();
}
uint64_t RasterizerStorageRD::get_captured_timestamp_gpu_time(uint32_t p_index) const {
return RD::get_singleton()->get_captured_timestamp_gpu_time(p_index);
}
uint64_t RasterizerStorageRD::get_captured_timestamp_cpu_time(uint32_t p_index) const {
return RD::get_singleton()->get_captured_timestamp_cpu_time(p_index);
}
String RasterizerStorageRD::get_captured_timestamp_name(uint32_t p_index) const {
return RD::get_singleton()->get_captured_timestamp_name(p_index);
}
RasterizerStorageRD *RasterizerStorageRD::base_singleton = nullptr;
RasterizerStorageRD::RasterizerStorageRD() {
base_singleton = this;
for (int i = 0; i < SHADER_TYPE_MAX; i++) {
2020-04-02 01:20:12 +02:00
shader_data_request_func[i] = nullptr;
}
static_assert(sizeof(GlobalVariables::Value) == 16);
global_variables.buffer_size = GLOBAL_GET("rendering/high_end/global_shader_variables_buffer_size");
global_variables.buffer_size = MAX(4096, global_variables.buffer_size);
global_variables.buffer_values = memnew_arr(GlobalVariables::Value, global_variables.buffer_size);
zeromem(global_variables.buffer_values, sizeof(GlobalVariables::Value) * global_variables.buffer_size);
global_variables.buffer_usage = memnew_arr(GlobalVariables::ValueUsage, global_variables.buffer_size);
global_variables.buffer_dirty_regions = memnew_arr(bool, global_variables.buffer_size / GlobalVariables::BUFFER_DIRTY_REGION_SIZE);
zeromem(global_variables.buffer_dirty_regions, sizeof(bool) * global_variables.buffer_size / GlobalVariables::BUFFER_DIRTY_REGION_SIZE);
global_variables.buffer = RD::get_singleton()->storage_buffer_create(sizeof(GlobalVariables::Value) * global_variables.buffer_size);
2020-04-02 01:20:12 +02:00
material_update_list = nullptr;
{ //create default textures
RD::TextureFormat tformat;
tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tformat.width = 4;
tformat.height = 4;
tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
tformat.type = RD::TEXTURE_TYPE_2D;
Vector<uint8_t> pv;
pv.resize(16 * 4);
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 255);
pv.set(i * 4 + 1, 255);
pv.set(i * 4 + 2, 255);
pv.set(i * 4 + 3, 255);
}
{
Vector<Vector<uint8_t>> vpv;
vpv.push_back(pv);
default_rd_textures[DEFAULT_RD_TEXTURE_WHITE] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 0);
pv.set(i * 4 + 1, 0);
pv.set(i * 4 + 2, 0);
pv.set(i * 4 + 3, 255);
}
{
Vector<Vector<uint8_t>> vpv;
vpv.push_back(pv);
default_rd_textures[DEFAULT_RD_TEXTURE_BLACK] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
//take the chance and initialize decal atlas to something
decal_atlas.texture = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
decal_atlas.texture_srgb = decal_atlas.texture;
}
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 128);
pv.set(i * 4 + 1, 128);
pv.set(i * 4 + 2, 255);
pv.set(i * 4 + 3, 255);
}
{
Vector<Vector<uint8_t>> vpv;
vpv.push_back(pv);
default_rd_textures[DEFAULT_RD_TEXTURE_NORMAL] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 255);
pv.set(i * 4 + 1, 128);
pv.set(i * 4 + 2, 255);
pv.set(i * 4 + 3, 255);
}
{
Vector<Vector<uint8_t>> vpv;
vpv.push_back(pv);
default_rd_textures[DEFAULT_RD_TEXTURE_ANISO] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 0);
pv.set(i * 4 + 1, 0);
pv.set(i * 4 + 2, 0);
pv.set(i * 4 + 3, 0);
}
default_rd_textures[DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER] = RD::get_singleton()->texture_buffer_create(16, RD::DATA_FORMAT_R8G8B8A8_UNORM, pv);
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 0);
pv.set(i * 4 + 1, 0);
pv.set(i * 4 + 2, 0);
pv.set(i * 4 + 3, 0);
}
{
tformat.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
Vector<Vector<uint8_t>> vpv;
vpv.push_back(pv);
default_rd_textures[DEFAULT_RD_TEXTURE_2D_UINT] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
}
2019-08-26 22:43:58 +02:00
{ //create default cubemap
RD::TextureFormat tformat;
tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tformat.width = 4;
tformat.height = 4;
tformat.array_layers = 6;
tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
tformat.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
2019-08-26 22:43:58 +02:00
Vector<uint8_t> pv;
2019-08-26 22:43:58 +02:00
pv.resize(16 * 4);
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 0);
pv.set(i * 4 + 1, 0);
pv.set(i * 4 + 2, 0);
pv.set(i * 4 + 3, 0);
}
{
Vector<Vector<uint8_t>> vpv;
2019-08-26 22:43:58 +02:00
for (int i = 0; i < 6; i++) {
vpv.push_back(pv);
}
default_rd_textures[DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
}
{ //create default cubemap array
RD::TextureFormat tformat;
tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tformat.width = 4;
tformat.height = 4;
tformat.array_layers = 6;
tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
tformat.type = RD::TEXTURE_TYPE_CUBE;
2019-08-26 22:43:58 +02:00
Vector<uint8_t> pv;
2019-08-26 22:43:58 +02:00
pv.resize(16 * 4);
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 0);
pv.set(i * 4 + 1, 0);
pv.set(i * 4 + 2, 0);
pv.set(i * 4 + 3, 0);
}
{
Vector<Vector<uint8_t>> vpv;
2019-08-26 22:43:58 +02:00
for (int i = 0; i < 6; i++) {
vpv.push_back(pv);
}
default_rd_textures[DEFAULT_RD_TEXTURE_CUBEMAP_BLACK] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
}
{ //create default 3D
RD::TextureFormat tformat;
tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tformat.width = 4;
tformat.height = 4;
tformat.depth = 4;
tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
tformat.type = RD::TEXTURE_TYPE_3D;
Vector<uint8_t> pv;
pv.resize(64 * 4);
for (int i = 0; i < 64; i++) {
pv.set(i * 4 + 0, 0);
pv.set(i * 4 + 1, 0);
pv.set(i * 4 + 2, 0);
pv.set(i * 4 + 3, 0);
}
{
Vector<Vector<uint8_t>> vpv;
vpv.push_back(pv);
default_rd_textures[DEFAULT_RD_TEXTURE_3D_WHITE] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
}
{ //create default array
RD::TextureFormat tformat;
tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tformat.width = 4;
tformat.height = 4;
tformat.array_layers = 1;
tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
tformat.type = RD::TEXTURE_TYPE_2D_ARRAY;
Vector<uint8_t> pv;
pv.resize(16 * 4);
for (int i = 0; i < 16; i++) {
pv.set(i * 4 + 0, 255);
pv.set(i * 4 + 1, 255);
pv.set(i * 4 + 2, 255);
pv.set(i * 4 + 3, 255);
}
{
Vector<Vector<uint8_t>> vpv;
vpv.push_back(pv);
default_rd_textures[DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv);
}
}
//default samplers
for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) {
for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) {
RD::SamplerState sampler_state;
switch (i) {
case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST: {
sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST;
sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST;
sampler_state.max_lod = 0;
} break;
case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR: {
sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.max_lod = 0;
} break;
case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS: {
sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST;
sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR;
} break;
case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS: {
sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR;
} break;
case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC: {
sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST;
sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.use_anisotropy = true;
sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/quality/texture_filters/anisotropic_filtering_level"));
} break;
case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC: {
sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.use_anisotropy = true;
sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/quality/texture_filters/anisotropic_filtering_level"));
} break;
default: {
}
}
switch (j) {
case RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED: {
sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE;
sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE;
sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE;
} break;
case RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED: {
sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT;
sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_REPEAT;
sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_REPEAT;
} break;
case RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR: {
sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT;
sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT;
sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT;
} break;
default: {
}
}
default_rd_samplers[i][j] = RD::get_singleton()->sampler_create(sampler_state);
}
}
//default rd buffers
{
Vector<uint8_t> buffer;
{
buffer.resize(sizeof(float) * 3);
{
uint8_t *w = buffer.ptrw();
float *fptr = (float *)w;
fptr[0] = 0.0;
fptr[1] = 0.0;
fptr[2] = 0.0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
{ //normal
buffer.resize(sizeof(float) * 3);
{
uint8_t *w = buffer.ptrw();
float *fptr = (float *)w;
fptr[0] = 1.0;
fptr[1] = 0.0;
fptr[2] = 0.0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
{ //tangent
buffer.resize(sizeof(float) * 4);
{
uint8_t *w = buffer.ptrw();
float *fptr = (float *)w;
fptr[0] = 1.0;
fptr[1] = 0.0;
fptr[2] = 0.0;
fptr[3] = 0.0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
{ //color
buffer.resize(sizeof(float) * 4);
{
uint8_t *w = buffer.ptrw();
float *fptr = (float *)w;
fptr[0] = 1.0;
fptr[1] = 1.0;
fptr[2] = 1.0;
fptr[3] = 1.0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
{ //tex uv 1
buffer.resize(sizeof(float) * 2);
{
uint8_t *w = buffer.ptrw();
float *fptr = (float *)w;
fptr[0] = 0.0;
fptr[1] = 0.0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
{ //tex uv 2
buffer.resize(sizeof(float) * 2);
{
uint8_t *w = buffer.ptrw();
float *fptr = (float *)w;
fptr[0] = 0.0;
fptr[1] = 0.0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
{ //bones
buffer.resize(sizeof(uint32_t) * 4);
{
uint8_t *w = buffer.ptrw();
uint32_t *fptr = (uint32_t *)w;
fptr[0] = 0;
fptr[1] = 0;
fptr[2] = 0;
fptr[3] = 0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
{ //weights
buffer.resize(sizeof(float) * 4);
{
uint8_t *w = buffer.ptrw();
float *fptr = (float *)w;
fptr[0] = 0.0;
fptr[1] = 0.0;
fptr[2] = 0.0;
fptr[3] = 0.0;
}
mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
}
}
{
Vector<String> sdf_versions;
sdf_versions.push_back(""); //one only
giprobe_sdf_shader.initialize(sdf_versions);
giprobe_sdf_shader_version = giprobe_sdf_shader.version_create();
giprobe_sdf_shader.version_set_compute_code(giprobe_sdf_shader_version, "", "", "", Vector<String>());
giprobe_sdf_shader_version_shader = giprobe_sdf_shader.version_get_shader(giprobe_sdf_shader_version, 0);
giprobe_sdf_shader_pipeline = RD::get_singleton()->compute_pipeline_create(giprobe_sdf_shader_version_shader);
}
using_lightmap_array = true; // high end
if (using_lightmap_array) {
uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
if (textures_per_stage <= 256) {
lightmap_textures.resize(32);
} else {
lightmap_textures.resize(1024);
}
for (int i = 0; i < lightmap_textures.size(); i++) {
lightmap_textures.write[i] = default_rd_textures[DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE];
}
}
lightmap_probe_capture_update_speed = GLOBAL_GET("rendering/lightmapper/probe_capture_update_speed");
/* Particles */
{
// Initialize particles
Vector<String> particles_modes;
particles_modes.push_back("");
particles_shader.shader.initialize(particles_modes, String());
}
shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_PARTICLES, _create_particles_shader_funcs);
material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_PARTICLES, _create_particles_material_funcs);
{
ShaderCompilerRD::DefaultIdentifierActions actions;
actions.renames["COLOR"] = "PARTICLE.color";
actions.renames["VELOCITY"] = "PARTICLE.velocity";
//actions.renames["MASS"] = "mass"; ?
actions.renames["ACTIVE"] = "PARTICLE.is_active";
actions.renames["RESTART"] = "restart";
actions.renames["CUSTOM"] = "PARTICLE.custom";
actions.renames["TRANSFORM"] = "PARTICLE.xform";
actions.renames["TIME"] = "FRAME.time";
actions.renames["LIFETIME"] = "params.lifetime";
actions.renames["DELTA"] = "local_delta";
actions.renames["NUMBER"] = "particle";
actions.renames["INDEX"] = "index";
//actions.renames["GRAVITY"] = "current_gravity";
actions.renames["EMISSION_TRANSFORM"] = "FRAME.emission_transform";
actions.renames["RANDOM_SEED"] = "FRAME.random_seed";
actions.renames["FLAG_EMIT_POSITION"] = "EMISSION_FLAG_HAS_POSITION";
actions.renames["FLAG_EMIT_ROT_SCALE"] = "EMISSION_FLAG_HAS_ROTATION_SCALE";
actions.renames["FLAG_EMIT_VELOCITY"] = "EMISSION_FLAG_HAS_VELOCITY";
actions.renames["FLAG_EMIT_COLOR"] = "EMISSION_FLAG_HAS_COLOR";
actions.renames["FLAG_EMIT_CUSTOM"] = "EMISSION_FLAG_HAS_CUSTOM";
actions.renames["RESTART_POSITION"] = "restart_position";
actions.renames["RESTART_ROT_SCALE"] = "restart_rotation_scale";
actions.renames["RESTART_VELOCITY"] = "restart_velocity";
actions.renames["RESTART_COLOR"] = "restart_color";
actions.renames["RESTART_CUSTOM"] = "restart_custom";
actions.renames["emit_particle"] = "emit_particle";
actions.renames["COLLIDED"] = "collided";
actions.renames["COLLISION_NORMAL"] = "collision_normal";
actions.renames["COLLISION_DEPTH"] = "collision_depth";
actions.renames["ATTRACTOR_FORCE"] = "attractor_force";
actions.render_mode_defines["disable_force"] = "#define DISABLE_FORCE\n";
actions.render_mode_defines["disable_velocity"] = "#define DISABLE_VELOCITY\n";
actions.render_mode_defines["keep_data"] = "#define ENABLE_KEEP_DATA\n";
actions.render_mode_defines["collision_use_scale"] = "#define USE_COLLISON_SCALE\n";
actions.sampler_array_name = "material_samplers";
actions.base_texture_binding_index = 1;
actions.texture_layout_set = 3;
actions.base_uniform_string = "material.";
actions.base_varying_index = 10;
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
actions.global_buffer_array_variable = "global_variables.data";
particles_shader.compiler.initialize(actions);
}
{
// default material and shader for particles shader
particles_shader.default_shader = shader_create();
shader_set_code(particles_shader.default_shader, "shader_type particles; void compute() { COLOR = vec4(1.0); } \n");
particles_shader.default_material = material_create();
material_set_shader(particles_shader.default_material, particles_shader.default_shader);
ParticlesMaterialData *md = (ParticlesMaterialData *)material_get_data(particles_shader.default_material, RasterizerStorageRD::SHADER_TYPE_PARTICLES);
particles_shader.default_shader_rd = particles_shader.shader.version_get_shader(md->shader_data->version, 0);
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 1;
u.ids.resize(12);
RID *ids_ptr = u.ids.ptrw();
ids_ptr[0] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[1] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[2] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[3] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[4] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[5] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[6] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[7] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[8] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[9] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[10] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[11] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.ids.push_back(global_variables_get_storage_buffer());
uniforms.push_back(u);
}
particles_shader.base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.default_shader_rd, 0);
}
default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
{
Vector<String> copy_modes;
copy_modes.push_back("\n#define MODE_FILL_INSTANCES\n");
copy_modes.push_back("\n#define MODE_FILL_SORT_BUFFER\n#define USE_SORT_BUFFER\n");
copy_modes.push_back("\n#define MODE_FILL_INSTANCES\n#define USE_SORT_BUFFER\n");
particles_shader.copy_shader.initialize(copy_modes);
particles_shader.copy_shader_version = particles_shader.copy_shader.version_create();
for (int i = 0; i < ParticlesShader::COPY_MODE_MAX; i++) {
particles_shader.copy_pipelines[i] = RD::get_singleton()->compute_pipeline_create(particles_shader.copy_shader.version_get_shader(particles_shader.copy_shader_version, i));
}
}
}
RasterizerStorageRD::~RasterizerStorageRD() {
memdelete_arr(global_variables.buffer_values);
memdelete_arr(global_variables.buffer_usage);
memdelete_arr(global_variables.buffer_dirty_regions);
RD::get_singleton()->free(global_variables.buffer);
//def textures
for (int i = 0; i < DEFAULT_RD_TEXTURE_MAX; i++) {
RD::get_singleton()->free(default_rd_textures[i]);
}
//def samplers
for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) {
for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) {
RD::get_singleton()->free(default_rd_samplers[i][j]);
}
}
//def buffers
for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
RD::get_singleton()->free(mesh_default_rd_buffers[i]);
}
2020-02-28 00:01:49 +01:00
giprobe_sdf_shader.version_free(giprobe_sdf_shader_version);
particles_shader.copy_shader.version_free(particles_shader.copy_shader_version);
2020-10-12 18:06:47 +02:00
RenderingServer::get_singleton()->free(particles_shader.default_material);
RenderingServer::get_singleton()->free(particles_shader.default_shader);
RD::get_singleton()->free(default_rd_storage_buffer);
if (decal_atlas.textures.size()) {
ERR_PRINT("Decal Atlas: " + itos(decal_atlas.textures.size()) + " textures were not removed from the atlas.");
}
if (decal_atlas.texture.is_valid()) {
RD::get_singleton()->free(decal_atlas.texture);
}
}