virtualx-engine/doc/classes/Transform.xml

181 lines
6 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform" category="Built-In Types" version="3.1">
<brief_description>
3D Transformation. 3x4 matrix.
</brief_description>
<description>
Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a [Basis] "basis" and an [Vector3] "origin". It is similar to a 3x4 matrix.
</description>
<tutorials>
<link>http://docs.godotengine.org/en/3.0/tutorials/math/index.html</link>
<link>http://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
</tutorials>
<demos>
</demos>
<methods>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="x_axis" type="Vector3">
</argument>
<argument index="1" name="y_axis" type="Vector3">
</argument>
<argument index="2" name="z_axis" type="Vector3">
</argument>
<argument index="3" name="origin" type="Vector3">
</argument>
<description>
Constructs the Transform from four [Vector3]. Each axis corresponds to local basis vectors (some of which may be scaled).
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="basis" type="Basis">
</argument>
<argument index="1" name="origin" type="Vector3">
</argument>
<description>
Constructs the Transform from a [Basis] and [Vector3].
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Transform2D">
</argument>
<description>
Constructs the Transform from a [Transform2D].
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Quat">
</argument>
<description>
Constructs the Transform from a [Quat]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Basis">
</argument>
<description>
Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="affine_inverse">
<return type="Transform">
</return>
<description>
2017-10-14 12:45:26 +02:00
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="interpolate_with">
<return type="Transform">
</return>
<argument index="0" name="transform" type="Transform">
</argument>
<argument index="1" name="weight" type="float">
</argument>
<description>
Interpolates the transform to other Transform by weight amount (0-1).
</description>
</method>
<method name="inverse">
<return type="Transform">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<method name="looking_at">
<return type="Transform">
</return>
<argument index="0" name="target" type="Vector3">
</argument>
<argument index="1" name="up" type="Vector3">
</argument>
<description>
2018-04-29 15:44:07 +02:00
Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
Operations take place in global space.
</description>
</method>
<method name="orthonormalized">
<return type="Transform">
</return>
<description>
2017-10-14 12:45:26 +02:00
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
</description>
</method>
<method name="rotated">
<return type="Transform">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="phi" type="float">
</argument>
<description>
Rotates the transform around given axis by phi. The axis must be a normalized vector.
</description>
</method>
<method name="scaled">
<return type="Transform">
</return>
<argument index="0" name="scale" type="Vector3">
</argument>
<description>
Scales the transform by the specified 3D scaling factors.
</description>
</method>
<method name="translated">
<return type="Transform">
</return>
<argument index="0" name="ofs" type="Vector3">
</argument>
<description>
Translates the transform by the specified offset.
</description>
</method>
<method name="xform">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Transforms the given [Vector3], [Plane], or [AABB] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Inverse-transforms the given [Vector3], [Plane], or [AABB] by this transform.
</description>
</method>
</methods>
<members>
<member name="basis" type="Basis" setter="" getter="">
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="origin" type="Vector3" setter="" getter="">
The translation offset of the transform.
</member>
</members>
<constants>
2018-08-21 00:35:30 +02:00
<constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
</constant>
<constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
</constant>
<constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
</constant>
<constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
</constant>
</constants>
</class>